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The effect 5B, of the Coulomb interaction on the A separation energy Bz of ~He was obtained by
variational calculations made for ~He and 'He. These calculations were made for several values of
q in the range 0&q &9 where qe is the proton charge, i.e., the Coulomb repulsion was artificially
boosted. For q &3, the dependence on q is linear, and interpolation to q =1 gives the physical
values with improved accuracy: —AB, =0.05+0.02 and 0.025+0.015 MeV for the ground and ex-
cited state, respectively. This procedure also gives more accurate values for the differences between
the proton and neutron radii of He. The corresponding differences of B~ between ~He and ~H, to
be attributed to charge symmetry breaking effects, are then 0.40+0.06 and 0.27+0.06 MeV. From
these values we obtain a phenomenological charge symmetry breaking potential which is effectively
spin independent. An examination of meson-exchange charge symmetry breaking models shows
that these are consistent with the phenomenological charge symmetry breaking potential for the
triplet but not for the singlet case.

I. INTRODUCTION tion,

The mirror pair of hypernuclei &H, ~He is the main
source of information about the charge symmetry break-
ing (CSB) AN interaction (for a review see Ref. 1). Thus,
the A separation energies ' for the ground (0+) state are

B~(~He) =2.39+0.03 MeV,

B~(~H) =2.04+0.04 MeV,

and for the excited (1+) state are

4B,=B~(~He) —Bp(pH),

6B,= —AE, , (9)

Bt, (pHe)= —[E(pHe) —E( He)],

Bp(t,H)= —[E(pH) —E( H)],
with the energies F. calculated using charge symmetric
AN interactions.

To leading order in the Coulomb interaction

Bz(&He) = 1.24+0.06 MeV,

B~(~H) = 1.00+0.06 MeV. (2)
where

b, E, =E,(~He) —E, ( He) (10)
The differences of the A separation energies

b, Bt,"~——Bp(pHe) —Bp(pH)

are then

6B& ——0.35+0.06 MeV,

EBS'"~=0.24+0.06 MeV .

(3)

is the difference between the Coulomb energies of &He
and He, i.e., Is.E, is the change (increase) in Coulomb en-

ergy of the He core due to the presence of the A which
compresses the core. Thus AB, is expected to be negative,
and the value to be attributed to CSB effects is

2 BACSB ZBA ZBAP —~B, .

The average values of B~ for ~H, ~He, to be identified
with the charge symmetric (CS) values, are

B~——2.22+0.04 MeV,

B~ ——1.12+0.06 MeV .

However, the experimental values AB&" must be
corrected to include the difference b,B, due to the
Coulomb interaction in order to obtain the values to be at-
tributed to CSB effects. hB, must be obtained by calcula-

Existing estimates of b,B, for the ground state are very
different: Dalitz et al. obtain

~

bB,
~

=0.2 MeV using
variational Monte Carlo (MC) calculations with hard core
AN and NN interactions, whereas Friar and Gibson esti-
mate only =0.02 MeV on the basis of the Coulomb ener-
gies of the 3 =3 and 4 nuclei. The smaller value is con-
sistent with an earlier Hartree-Fock calculation which
used a AN interaction with a soft short-range repulsion.
In the original paper on CSB effects, Dalitz and Von Hip-
pel obtained a value of =0.08 MeV from an estimate of
the compression of the He core by the A. This was based
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on purely attractive AN and NN potentials, which would
give a too easily compressible core and would thus overes-
timate

We have made variational MC calculations of the same
general type as those of Dalitz et al. for the 3 =3 nu-
clei, and for both the ground and excited states of the
3 =4 hypernuclei. For our AN potential we use an
Urbana-type 2~-exchange potential with a strongly repul-
sive core, and for our NN potential we use a central spin-
isospin independent potential with a repulsive core
(Mafliet-Tjon ). The latter gives an energy and radius of
He in reasonable agreement with experiment, ' as will

also be discussed in the following, so that the results for», can be expected to be meaningful. We remark that
the criticisms of Gibson and Lehman" about the adequa-
cy of certain hypernuclear (and also nuclear) binding-
energy calculations apply to the use of one-body wave
functions such as shell-model wave functions or Hartree
or A-nucleus wave functions using an effective A-nucleus
potential, and which do not include two-body correlations,
which are needed to, e.g. , allow for range effects of the
two-body forces. These criticisms do not apply to the
correlated wave functions we use—as the excellent agree-
ment between the variational and the exact Green func-
tion MC results for He, discussed in the following,
demonstrate.

A new feature of our calculations is that we boost the
Coulomb effects by varying the square of the proton
charge q e from q =0 to 9. In particular, we thus ob-
tain the energies E3 ——E( He) and E4 ——E(~He), and
hence Bz and AB„as functions of q . Thus

II. POTENTIALS

This gives a reasonable energy and radius for He as dis-
cussed in the following. For the pp interaction we have in
addition the Coulomb potential

VI I
= Vxx+ V.

q 2Q 2

V, = F(r) with q =0, 1,3, 5,7,9,

(15)

where

F(r) = l(NF=O), F(r) =erf(0. 984r)(NP= 1) . (17)

NF =0 corresponds to point-charge protons and NF = 1 to
a Gaussian proton charge distribution of rms radius 0.8
fm.

For the AN (s-state) potential we use an Urbana-type
2m-exchange potential of the same form as used in Ref.
12

We use central NN and AN potentials for the reasons
given in the preceding. Inclusion of noncentral and
three-body forces is not expected to significantly affect
6B, since this is closely related to the Coulomb energy
difference which, because of the long range of the
Coulomb interaction, is expected to be insensitive to the
short range and relatively weak noncentral and three-body
correlations.

For the NN potential we use the local central spin-
isospin independent Mafliet- Tjon (MT) potential (V)
(Ref 9).

Vz~ ——[7.39 exp( —3.11r)—2.93 exp( —1.55r)]—. (14)
Ac

Bp(q') = —[E~(q') —E3(q')],

», (q') =B,(q') B,(q'=0), —

(12)

(13)

V~+ = Vc —V4&2

Vc is a Woods-Saxon repulsive core
—1

and the desired value of », is then EB,(q =1). To
lowest order in the Coulomb interaction all quantities and
in particular the energies are proportional to q . Our ap-
proach thus provides a test of the accuracy and limits of
lowest-order perturbation theory by testing the linearity of
the results with q . In particular, our approach provides
a more accurate value of AB„and also of other quantities
such as the difference of radii between He and H, by
amplifying the effect of the Coulomb interaction from the
range 0&q &1 to the range of q ( &3) for which the
dependence on q is linear. This is an important aspect of
our calculations, because the statistical MC errors are ap-
preciable, especially for bB, (q =1), and by boosting
EB,(q ) to values with q & 1 and then interpolating for
q = 1 the effect of statistical errors is very much reduced.
Even with this amplificat;ion it is necessary to obtain
E3 (q ) and E4(q ) to an accuracy of 0.02 MeV or better.
In practice, because of limitations of computing time, this
implies the use of central NN and AN potentials. In ad-
dition to 5B, we also obtain (for the Mafliet-Tjon poten-
tial) a more thoroughly optimized variational value of
E( H), a value for Coulomb energy of He, values of the
differences in radii between He and H and between the
nucleon, neutron, and proton radii of He.

Vc = 8'c 1+exp (19)

with Wc ——2137 MeV, R =0.5 fm, d =0.2 fm. These pa-
rameters are very close to those for the spin, isospin in-
dependent core of the NN potential of Ref. 8 and are the
same as those used in Ref. 12. T is the one-pion ex-
change (OPE) tensor potential shape modified with a cut-
off,

3
—x

T (r)= 1+—+
X ~ X

(1 cP )2 (20)

V4= —,(V, + V, ), Vg = —,(V, +5V, ) . (21)

We have made calculations for the values V4 ——6.2 and

with x=0.7r, c =2 fm . Vzz corresponds to a two-
pion exchange (TPE) mechanism due to OPE transition
potentials V (AN~XN, Xb, ) dominated by their tensor
components. The intrinsic range of V~& is 2.0 fm, very
close to that of the hard core potential of Ref. 4. (The in-
trinsic range is the effective range when V4 just gives a
bound state. ) The strength V4 is the spin average strength
appropriate for ~H, ~He. In terms of the singlet and trip-
let strengths V, and V„
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6.05 MeV which encompass the ground and excited state
energies. For V4 ——6.2 MeV and V, = V, the scattering
length is a = —1.87 fm, and the effective range is
ro ——3.45 fm. These values give a reasonable fit to the low
energy Ap scattering data, in agreement with the well-
known result that with no AN spin dependence analysis of
the ground state of AH, ~He gives agreement with AN
scattering. For further discussion of analyses of Ap
scattering and of the s-shell hypernuclei and of the associ-
ated scattering parameters, see Ref. 13 and Sec. VI.

III. TRIAL WAVE FUNCTIONS
AND VARIATIONAL CALCULATIONS

We use trial functions of the standard product form for
the spatial part of the three- and four-body wave func-
tions, appropriate to symmetric I. =0 states.

A. He

We use

with K 2K p Kp K p+Kpp related in the usual way to
the n and p separation energies. (The latter are not con-
strained to the experimental values which may, however,
provide a convenient starting point in the search for the
optimum parameters a„p,happ. ) %3 thus depends on eight
variational parameters Kzp czp& JR&pp Qzpp Kpp& cppp Rppp

appe

B. AHe

The trial function is

3

+4 f p(r12)f p(r13)fpp(r23) g fJ1N( i4)

g is the spin function for the ground or excited state as
appropriate; 7 is taken into account through the appropri-
ate numerical value of V4 and need not be considered ex-
plicitly. The functions f„p, fpp, f~N are determined by a
Schrodinger equation of the form of Eq. (23) but with

+3 f (r12)f (r13)f (r23) +1 (22)
1 1

vnp vpp 3 and AN 4 (28)

2M( )n, p
(23)

where V„p= VNN, M(i,j) is the reduced mass for the
baryons i and j, and

2M n, p
1

+ A„p 1+exp
r —R Ilp

anp
(24)

2K~p
A„p ——~„p+ (v„p —1)

I"

The spin function enters only through the choice of the
appropriate NN potential, namely the MT potential of
Eq. (14). For the calculation of the correlation functions
we use the procedures of Refs. 10 and 14. For f„p ——fpp
our %'3 is identical with that of Ref. 10. For q & 5 this is
an excellent approximation (Table I), but for q ) 5, i.e.,
for large Coulomb repulsions, a marginally lower energy
is obtained with fpp&f„p, in particular with

happ & ~„p, cor-
responding to fpp being more extended than f„p.

The correlation functions are determined by a
Schrodinger-type equation. For f„p this is

in Eqs. (25) and (26). The parameters are now those ap-
propriate for AHe, and %4 depends on a total of 12 varia-
tional parameters. However, the energy is quite insensi-
tive to many of these and there are different parameter
sets which give almost equally low energies (e.g. , sets for
which f„p——fpp and f„p~fpp).

The integra»tions needed to obtain E=(%'
~

H
~

0')/
(4

~

'll ) and other expectation values were made with MC
procedures. The optimizations were made for point
charge protons (NF=O). However, we have made checks
which indicate that for extended proton charges (NF = 1)
the point charge optimization is not changed within the
statistical errors.

For a given set of variational parameters the statistical
errors for E ( He) are =0.01 MeV for q =0, 1 and
=0.015 MeV for q =3—9 (Table I). For E(~He) the er-
rors are =0.02 MeV for all q (Tables II and III). The
accuracy of the optimization is comparable to the statisti-
cal errors. Thus the total error for E( He) is =0.015
MeV for q =0, 1 and =0.02 MeV for q =3—9, and for
E(&He) the total error is =0.03 MeV. Since BA is the
difference of the two variationally determined energies, its
error is =0.04 MeV.

IV. RESULTS FOR H AND He

v„p(v„p —1)
+ .2

w1th VIIp= 2 (25) Results are given in Table I and also displayed in Figs.
1 and 2. The Coulomb energy

The equation for f» is obtained by replacing all quanti-
ties indexed by np with the corresponding quantities in-
dexed by pp and also with vpp 2 The form of the po-
tential A p App through which the variational parameters
enter is such that f„„,fpp have the form of asymptotic
behavior required by the full three-body Schrodinger
equation:

f„p-r "'exp( —z„pr),
(26)—Vf» -r "exp( —appr ),

E, =&~3~ V, ~~3&i&~3~q3&

is obtained for both NF=O and 1 [Eq. (17)). The point
nucleon, neutron, and proton radii ( r N ) ', ( r„)
(r )'~, were also calculated. These radii satisfy

3&r' &
= &r'. &+2& r', & . (29)

Since (r N) is obtained 'as an average over all three nu-
cleons, (rp ) over the two protons and (r„) over the sin-
gle neutron, the statistical errors of (r„) are reduced by
obtaining it from (rN ), (r„) using this relation. This is
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10~~

:Ec

hardly significant in view of the errors. The agreement
with the Green function MC value of —8.26+0.01 MeV
(Ref. 15) is excellent. This is an "exact" value obtained by
solution of the three-body Schrodinger equation. Similar
excellent agreement is then also expected for He for
q & 0 hand for &He for all q since in both these cases cen-
tral forces of similar short-range form as for H are used.

B. He

o~
0

I

6
q

IO

FEG. 1. The total energy E and the Coulomb energy E, for
He and for &He (for V4 ——6.2 and 6.05 MeVj vs q (q =the

square of the proton charge/e ).

A. Energy of 3H

We obtain E( H)= —8.25+0.015 MeV for the ap-
propriate (q =0) variational parameters given in Table I.
This value is in good agreement with that of Ref. 10:
—8.22+0.02 MeV. Our slightly lower value could be be-
cause of improved optimization; however, the difference is

I
]

I
J

I
(

2.2

the value in Table I which is consistent with that obtained
by direct calculation. For E, and the rms radii, the sta-
tistical errors (percentwise similar to those of the total en-
ergy) are considerably smaller than uncertainties resulting
from the optimization since these quantities, in contrast to
the total energy, are not stationary.

For q & 5 the equality f„„=f„~ is an excellent approxi-
mation, but for large Coulomb repulsions q ) 5 a slightly
lower energy is obtained for f„~&f„~,although even for
q =9 the gain obtained (=0.1 MeV) by relaxing the
equality f„~=f~~ is slight.

The results, especially for E and E„but also for
( r ) ', show that there are no significant deviations
from linearity with q for q &3. For such values of q
first-order perturbation theory in V„which predicts
linearity with q, is then a good approximation and
Coulomb distortion of the wave function is quite small.

Consistent with the accuracy of first-order perturbation
theory, the relation

E(q =0)—E(q') =E,(q'), with E, (q ):(V, ), —(30)

is satisfied for q & 3 (Table I) to within the statistical er-
rors. In particular we have

The variational calculations of Ref. 16 which use realis-
tic two-body plus three-body forces give 0.74 and 0.69
MeV for point and extended charge protons, respectively,
quite close to our values. The comparable (isoscalar)
value (neglect of mixed symmetry effects and of the neu-
tron charge distribution) for extended proton charges es-
timated from the experimental form factors is 0.67
MeV, ' and the experimental biriding energy difference
between H and He is 0.76 MeV.

For q ) 3, and especially for q )7, deviations from
linearity with q become significant. The deviations are
in the direction expected from higher-order contributions:
E and E, are less than the first-order result (dashed lines
in Fig. 1), the radii (Fig. 2) increase with q, and (r~ ) '~

increases more rapidly than (r„)'~ .

E, ( He)=E( H) —E( He)

=0.73+0.01 MeV for point charge protons

=0.67+0.01 MeV for extended proton charges.

(31)

2.I

E
C. Radii of 'H, He

I.9

I.8

l.7 ~
I 6 ( I . l I

0 2 4 6 8
q

IO

( r N )H, —( r N )H
——0.03+0.005 fm, (32)

Our use of a central spin-isospin independent (MT) NN
potential (small statistical MC errors) together with calcu-
lations for q & 1 (amplification of Coulomb effects plus
interpolation for q = 1) allows an accurate determination
of the radii of He and H and, in particular of the differ-
ence in radii between He and H, and also of the differ-
ences between the nucleon, neutron, and proton radii of
He. This is shown by Fig. 2. Thus we obtain

FECx. 2. The rms radii of the neutron (n), proton (p), and nu-
cleon (N) distributions in He vs q . and for He
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(r )» —(r )'~ =0.005 fm,
(r' )'"—(r')'"=0 O15 fm

(33)

2.5

2 4ii-

I
I

V4= 6.2 MeV

These results are mainly of interest in showing that a cal-
culation of radii as a function of q up to q =3 could
provide more accurate values, especially of small differ-
ences of radii, also for more realistic interactions.

For the point nucleon radii themselves, we then have
(rN)'~ =1.66 fm for H and 1.69 fm for He. The cor-
responding charge radii are 1.81 fm and 1.88 fm [using
Eqs. (5.1) of Ref. 16], and the isoscalar charge radius is
1.86 fm. The experimental charge radii, which include
mixed symmetry effects, are 1.70+0.05 fm and
1.84+0.05 fm, and the corresponding isoscalar charge ra-
dius is 1.79+0.05 fm.

The rather good agreement obtained with the MT po-
tential between the calculated and experimental values of
the total and Coulomb energies and of the charge radii,
implies that the local MT potential can also be expected to
give a reasonable description of the 3 =3 nucleon core
for the A =4 hypernuclei. In particular, Coulomb effects
for the A =4 hypernuclei should be quite realistically ob-
tainable by use of the MT potential. This satisfactory
agreement for the MT potential could also imply that for
the small differences of neutron and proton radii the defi-
ciencies of this potential may be more than compensated
for by the increased accuracy with which these differences
have been obtained.

V. RESULTS for AH and ~He

Results are shown in Tables EI and III for V4 ——6.2 and
6.05 MeV, respectively. There is a slight lowering of the
energy for q ) 5 with f„~&f~~, but this is barely outside
the statistical MC errors. For fAN no significant im-
provement for any q was found for values of c~, aA, and
Rz different from those for q =0 (cz ——2 fm,
aA ——Rz ——1 fm). However, some slight differences were
found in the optimum values of aA.

The radii ( r N ) '~, ( r ~ ) '~ are the point nucleon and A
rms radii with respect to the c.m. of the nucleons. Since
(rN)'~ is a measure of the radius of the He core it is
directly comparable with ( r N ) '~ for He.

Our results for E and E, are, as for He, linear with q
for q & 3, implying the corresponding validity of first-
order perturbation theory. For larger values of q the de-
viations from linearity are again in the expected direction
(more negative E and E„and larger radii) and increase
with q . For ~H the values of BA(q =0) vs V4 are
shown in Table IV. We have also included a lower statis-
tics result for V4 ——6.30 MeV. These results are repro-
duced by

Bx——2.40+10.91( V4 —6.2)+ 10.93( V4 —6.2) . (34)

0)
2.2—

2.1—

2.0—

l.9
0

I I I I I l I

2 4 8
q

FIG. 3. 8~ vs q for &He with V4 ——6.2 MeV.

IO

I
'

I

Vz = 6.05 MeV

0.9—

0.8—

for V4 ——6.2 and 6.05 MeV, respectively. (The value of
B~ shown is the average for NF=O and 1.) Because of
the relatively large errors (+0.04 MeV) one cannot draw
unambiguous conclusions about the deviations from
linearity of BA with q for larger q . Nevertheless, the
dependence of BA on q for both V4 ——6.2 and 6.05 MeV
is quite consistent with the q dependence of E3 and E4
separately, namely with a linear dependence for q & 3 and
with increasing deviations from linearity for larger q .

We have, therefore, given most weight to the results for
q =0, 1, and 3, and assuming linearity for q &3, have
obtained bB„using Eq. (13) and interpolating for q =1.
Thrs grves

b.B,=0.05+0.02—MeV ( Vg ——6.2 MeV)
(35)

=0.02+0.015 MeV ( V4 ——6.05 MeV) .

Figures 3 and 4 show that the errors are considerably
smaller than those obtained using only the results for
q =0 and 1.

According to first-order perturbation theory in V, the
preceding values of b,B, are equal to the corresponding
Coulomb-energy difference bE, [Eq. (10)]. Indeed, the
Coulomb energies of ~He are seen to be larger than those
of He and the core radii (rN )'~ are smaller than the ra-
dii (rN)'~ of He, consistent with the expected compres-
sion of the core induced by the A. The differences of the
directly calculated Coulomb energies [Eq. (10)],
bE, (q =1)=0.05 MeV and =0.03 MeV for V4 ——6.2
and 6.05 MeV, respectively, are in agreement with the cor-
responding values of b,B,. However, the uncertainties in
hE, are in general considerably larger than those in 68,

The values of B~(q ), obtained using Eq, (12) with the
appropriate values of E3(q ) from Table I and Eq(q )

from Tables II and III, are shown vs q in Figs. 3 and 4

0.7—

0.6
0

I I

6
q

FIG 4. Bz vs q for ~He with V4 ——6.05 MeV.

IO
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V, (Mev) 6.05 6.20

TABLE IV. Results for zH.

6.30

The differences in the Ap and An scattering lengths are
defined by

—E (MeV)
a, (MeV)
(r„)'~ (fm)

r ) z2 (fm)

9.26+0.016
1.01+0.025

4. 19
1.59

10.65+0.018
2.40+0.025

3.56
1.54

11.85+0.07
3.62+0.075

3.39
1.52

p n—Aa, =a, —a,", —aa, =a,'—a,",
where a,p, a," are the singlet and triplet Ap scattering
lengths and a,",a," are the corresponding An quantities.
(b,a is positive if the Ap potential is more attractive than
the An one. ) For the CSB potential we take

VcsB 1 T2 ( )( VcsBp + VcsBp ) (38)

—AB, =0.050+0.02 MeV,

Bc =0.025+0.015 MeV
(36)

The corresponding values, Eq. (11), to be attributed to
CSB effects are then quite close to the experimental values
of AB& and are

since the former are not obtained from the total energies
which are optimized.

The decrease in the radius of the A =3 core induced by
the A scales with the iricrease in Coulomb energy and is
thus consistent with this. Thus, for He(q =1) the de-
crease in radius due to the A is =0.16 fm for V4 ——6.2
MeV and 0.10 fm for V4 ——6.05 MeV, and the correspond-
ing fractional decreases in radii, =0.09 and 0.06, are con-
sistent with the corresponding fractional increases in E„
namely =0.07 and 0.05.

Figure 5 shows AB, vs the corresponding values of
B~(AH). The value bB, =0 is expected for BA ——0 and is
seen to be very well consistent with the two calculated
values. Interpolation to the experimental values of B&
gives

where P„P, are the sin~let and triplet AN projection
operators and V, , V, are the corresponding CSB
strengths. For the potential shape we use that of the at-
tractive part T of the CS potential, with T given by Eq.
(20). The total potential is then VAN+ V, with V&N
given by Eq. (18). If the strength Vis defined as by Eq.
(18), i.e., by the potential V, —VT, then V,

' and V,
' are

defined by

da a=a a=a,
(39)

(40)

A good fit to the calculated values of a (fm) as a func-
tion of V (MeV), for values of V not too different from
6.2 MeV, is

where a is the scattering length corresponding to V. Be-
cause the potential shape is fixed, there is a corresponding
unique relation between a and the effective range ro
which is then not an independent parameter. The
strengths V, , V, may then be expressed in terms of
Aa„Aa, :

ABz ——0.40+0.06 MeV,

6BA ——0.27+0.06 MeV .
(37) a = —1.88 —4( V —6.2)+5( V —6.2) (41)

from which V,', V,
'

may be obtained. The corresponding
relation for ro (fm) is

VI. PHENOMENOLOGICAL CHARGE SYMMETRY
BREAKING INTERACTION ro ——3.46 —3.77( V —6.2)+3.78( V —6.2) (42)

We obtain a phenomenological CSB potential and relat-
ed quantities, based on the values of 6BA of Eq. (37).

The average singlet and triplet strengths for AHe, are,
as follows from Eq. (21):

0.08

0.06—

& 0OO-
O

CQ
cl

V, = —, V~+ —, V,", V, = VP (ground state),

V,
*= V~, V,

*= —, V,"+—, V,
" (excited state) .

For ~H the indexes n and p are interchanged. Then

a V4 ——V,(',He) —V4(', H)

=
6 [—(v' —V.")+3(vf—v~")I

and correspondingly

av', =-,'[(v~ —v,")+(v~—v,")] .

(43)

(44)

(45)
0.02—

0"
0

(

2
B ( H) (MeV)

We then have ABA (dB~ ld V4)b. V4 w——ith
dBA/dv4 ——10.56 and 7.94 for the ground and excited
states, respectively [using Eq. (34) for the average values
of BA as given by Eq. (5)]. The potential VCsB then gives

FIG. 5. 5B, vs B~(AH). b, B~——1.76( —b,a, V,
' +36,a, V,

' ),
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&Bz——1.32(ha, V,'+b,a, V,
'

) .

Inverting these gives

b, a, =(4V,') '( —0.568KB~+2.268~~),
ha, =(4V,' ) '(0.568~A+0.756KB~) .

(47)

(48)

(49)

V, given by Eqs. (38) and (40), may then be written as

Vcs~ = —r3T —,[(0.5685Bp+0.7566BA )

+ (0.568bBp 0.75—6kBp )og o N],

or with the values of Eq. (37),

(50)

and from Eqs. (48) and (49),

b, a, =(4V,' ) '(0.39+0.14),
(52)

ha, =(4V,' ) '(0.43+0.08) .

For a, =a, = —1.9 fm: V,
' = V,

' =0.25 MeVfm ' and
ba, =0.39 fm, ha, =0.43 fm. These results clearly show
that V is effectively spin independent. In fact, the spin
dependence is even less than would be suggested simply by
the values of ABA, AB~, because dBA/d V4 is less for the
excited state than for the ground state. [In the analysis of
Ref. 12 the spin dependence was neglected and
V = —0.05~3T2 was used which is a good approxima-
tion to Eq. (51).] As we shall discuss in detail in Sec. VII,
this spin independence of the CSB interaction is in strong
disagreement with the predictions of existing meson-
exchange models.

In order to check whether the expressions (46) and (47),
and hence also Eqs. (48) and (49), are reasonable approxi-
mations, with the specific potential shape T„used, we
consider the four one-boson exchange (QBE) potentials
(A,B,D,I') of Nagels et al. ' which include CSB effects,
together with the calculations of Gibson and Lehman'9
for these potentials. Table V shows the average An, Ap
singlet and triplet scattering lengths a, and a, and the
values of b,a„b,a, of Ref. 18, and also the corresponding
values of V,', V,

' obtained using Eq. (41), and the values of
~A, bBA obtained with Eqs. (46) and (47). We also show

VcsB= —0.054&3T [(I+0.11)+(0.054+0. 14)o'p o'N],

(51)

the average An, Ap effective ranges of Ref. 18 together
with our values of ro [Eq. (42)] which correspond to the
average values of the scattering lengths. Also shown are
the results of Gibson and Lehman who made Faddeev-
type calculations of b,BA using separable (two-parameter)
potentials fitted to the values of a, ro of the corresponding
potential of Ref. 18. Qur values of b,B~ are seen to be in
quite satisfactory agreement with those of Gibson and
Lehman. Thus Eq. (46), and therefore presumably also
Eq. (47) and Eqs. (48) and (49), and also Eq. (50), is a
reasonable approximation to a calculation (such as that of
Gibson and Lehman) using the correct potential shapes.
For such a calculation, the results depend appreciably also
on the effective range (for a given scattering length), and
the reason for the good agreement is that our potential
shape also gives effective ranges (for potentials B, D, F)
in reasonable agreement with those of Nagels et al. How-
ever, even for potential A the agreement for ABA is not
bad despite the poor agreement between the effective
ranges.

VII. COMPARISON %'ITH MESON-EXCHANGE
MODELS OF THE CSB INTERACTION

To obtain some insight into the preceding results, and
also as a further check on our procedure for obtaining
ABER, we consider the following simple potential models.
For the CSB potential we use the OPE potential, '

V„=—0, 19&3V

(53)

V~= V~+ V~=fNN~
3

[op oN+ T(r)&AN]Y(r),

where Y(r), T(r) are the usual Yukawa and tensor shape
functions (no cutoffs) and where fNN ——0.082. For the
(strong) CS potential VzN we consider the following two
potentials: (1) The purely central potential VzN ——V2 of
Eq. (18) with V4 ——V=6.2 MeV. (2) An QBE potential
VzN ——V K (Ref. 20) which has a hard core of radius 0.43
fm and which includes kaon and o-meson exchange with
a ANK coupling constant g~~~=16; the o. coupling is
then adjusted so that V K gives a = —2 fm. This gives a
( S) AN potential with a tensor component of reasonable
range and strength due to K exchange. We use this poten-

TABLE V. AN scattering lengths and effective ranges (in fm) and 3 =4 CSB energy differences AB~, ABA (MeV) calculated from
Eqs. (46) and (47) for the potentials 3, B, D, F of Nagels et al. (Ref. 18), and for the potential models of Sec. VII with the OPE CSB
potential of Eq. (53). The errors of ABA, AB+ for potentials A —F are discussed in Sec. VII. ABA is the value calculated by Gibson
and Lehman (Ref. 19). a„a, are the averages of the Ap and An scattering lengths and ro„ro, the average effective ranges. Our values
of ro, obtained with Eqs. (41) and (42) for the values of a shown, are given in parentheses.

Model

2.42
2.29
1.90
1.96

ros

2.04(3. 10)
3.14(3.16)
3.72( 3.43 )

3.17(3.39)

Aa,

—0.51
—0.36
—0.26
—0.22

1.17
1.77
1.95
1.89

2.43(4.50)
3.25(3.58 )

3.25(3.40)
3.36(3.45 )

aa,

0.3
0.22
0.22
0.09

1.32
0.47
0.43
0.19

1.16
0.44
0.38
0.20

0.15
—0.02
—0.02
—0.03

Vp +V
VoK. + V
V K+V

1.87
1.96
1.96

(3.45)
(3.39)
(3.39}

—0.09
—0.09
—0.09

1.89
1.96
1.96

(3.45)
(3.39)
(3.39)

0.03
0.03
0.15

0.070
0.076
0.228

—0.020
—0.019

0.019
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tial for both the 'S and S channels; for the former the
tensor component acts only to give an effective central po-

T2
tential ( —VK ). The results for these potentials
V~N+ V are also shown in Table V. The calculations
of the low-energy s-wave scattering parameters for poten-
tials with a tensor component V are made in the stan-
dard way for coupled s-d channels. The relation of such
calculations with perturbation theory is extensively dis-
cussed in Ref. 20. In particular to leading order in V
such s-d scattering calculations are equivalent to second-
order perturbation theory in V which can- be represented
by use of an effective central s-state potential ( V ) /E
where E is an appropriate mean excitation energy. The
coupled s-d calculations, of course, also include higher-
order contributions in V as discussed in detail in Ref. 20.
For gN&K

——16 these higher-order effects (e.g., the
higher-order effects which occur through the potential in
the d state) are quite small.

It is important to note that the CSB tensor component
Vz cc V~T will effectively contribute to the triplet inter-
action in first order by acting in conjunction with the
strong CS tensor force VT . Thus with V~K one has a
(lowest order) contribution cc VT VT ~ VP VT (which de-
pends on the relative sign of Vz and V~). Vz acting
twice gives a negligible contribution because of the small
CSB strength. In particular for VAN

——Vq~ there will be
no contribution from VT 0.-V since in this case there is
no CS tensor force; for V~K the contribution from VT
will be proportional to VK, i.e., to gN„~. (No cutoff is
needed for V since this contributes only for V~K which
provides a cutoff through the hard core. ) Because V
dominates V its contribution to the effective CSB triplet
interaction may be comparable to that due to V . In fact,
as is seen from Table V, the CSB tensor part V" is seen to
give the major contribution (of 0.12 fm) to b,a, and also to

Table V shows that for the central part V of V, the
CSB results are the same for Vz and V K. Furthermore,
as a check on our procedure, calculations for zH with
Vq +V (for the ground state parameters of Table II)
give b,B&-0.06 MeV in fair agreement with the value
0.08 MeV obtained with the CSB potential of Eq. (50)
with a T~ shape.

Qualitatively, the results for V &+V„are similar to
those for the potentials B,D,F of Nagels et al. The
differences are due to their inclusion of CSB effects due to
p and 5 exchange and also to the effects of the X+, X
mass difference which enter through their coupled chan-
nel calculations (and which will make a small positive
contribution to ha, ). Some further differences in the trip-
let CSB result could arise from CS tensor force contribu-
tions due to K and TPE exchange which are included in
Ref. 18.

We now discuss the differences between the
phenomenological and meson-exchange CSB results, the
latter being represented by the results of Nagels et al. ,

'

as exhibited in Table V. It should be noted that for the
potentials of Nagels et al. , the errors in ABz, EBA which
result from the errors in their scattering parameters are
quite small. Thus, for potential D the errors are =0.02
MeV for AB& and =0.005 MeV for ABA. This is be-

cause for any one of their potentials the CSB potentials
are fixed by the choice of CSB coupling constants. Thus,
the errors occur only through the CS potentials whose pa-
rameters are in part determined by fits to the scattering
data. Thus, any errors in ABz, ABz, as obtained using
Eqs. (46) and (47), occur directly through the errors in the
CS values a„a, (and hence through V,', V,'), and also
through the induced errors in Aa„ha,
(ha, = —0.26+0.04 fm, ba, =0.22+0.02 fm for C)
which result from the errors in a„a, for a fixed CSB po-
tential.

Triplet CSB iriteraction. The triplet meson-exchange
value Aa, will have uncertainties due to uncertainties in
the CS tensor force, e.g., from uncertainties in g&N&, K*
exchange, TPE, etc. , contributions. Thus, e.g., from Table
V, the CSB tensor force contribution of our V K+V
mode1 to Aa, is Aa, =0.12 fm. This is proportional to
g&N~ and if this is increased from 16 to the not unreason-
able value of 24, then b.a, =0.18 fm and b,a, =0.21 frn.
Thus, any uncertainty in VT gives corresponding uncer-
tainties in the meson-theoretical estimates of b.a, . Be-
cause of this dependence on VT the meson-theoretical es-
timates of b,a, are then independent of those of b,a, .

Furthermore (probably moderate) differences between
the (calculated) AN values of b,a, and the phenomenologi-
cal values obtained from bB~,bB~ can arise from many-
body and nuclear structure effects. Dispersive effects for
the intermediate A or N in the tensor force contributions
~ VT VT are expected to reduce ha, by perhaps
15—20%%uo, intermediate to the reduction for (CS) AN-XN
OPE tensor couplings (Ref. 21) and the considerably
smaller reduction for a K-exchange tensor force (Ref. 20).
There will also be ANN contributions with the CS transi-
tion AN-XN potential acting twice for different nucleons.
Because of the long range and strong OPE tensor coupling
such contributions could possibly be significant but have
not been estimated. Finally NN tensor forces could con-
tribute. Although it seems unlikely that a relatively small
admixture of D states could significantly change the CSB
contribution for 3 =4, this remains to be shown.

In view of this discussion, and since in any case there is
no major discrepancy between the meson-exchange values
( =0. 1—0.3 fm) and the phenomenological values
( =0.25—0.55 fm) of b,a„we may conclude that the trip-
let CSB interaction obtained from the A =4 hypernuclei
is consistent with meson-exchange models.

Singlet CSB interaction. For the singlet value b,a, there
is now no uncertainty corresponding to that arising from
Vz. for b,a, . In the triplet case it was possible to compen-
sate any uncertainty in VT (e.g., in VK) by adjustments
in the central components ( V ) to give a total effective
CS potential in agreement with the data (i.e., a, = —2 fm).
This freedom does not exist for the singlet case where
only the total effective singlet potential is relevant for the
CSB contribution. Furthermore, dispersive and ANN ef-
fects, and probably also those of NN tensor forces, are ex-
pected to be less than for ha, .

The large difference for b a, between the meson-
exchange values ( = —0.2 to —0.45 fm) and the
phenomenological values (=0.35 to 0.5 fm), which are
even of opposite sign, then strongly suggests that meson-
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exchange models of the singlet CSB interaction are incon-
sistent with the A =4 hypernuclei, indicating that there
may be important quark structure contributions. Of
course complete calculations with AN and NN tensor
forces are required for the A =4 hypernuclei in order to
definitely establish that nuclear structure effects do not
change the preceding conclusions.
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