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The polarization observables of the reactions P — 7+d, Pp — d=*, and 7d — 7d are investi-
gated. Expressions relating these observables directly to (LSJ) partial wave amplitudes are derived
and tabulations of the partial wave contributions are given for some of the observables. Examples
are given of how such tabulations can be useful for optimizing the connection between theory and
experiment and in suggesting possible new experiments. All observables are also calculated numeri-
cally using a unitary few-body model of the NN-7#NN system to generate the amplitudes. Sensitivi-

ty to the choice of P,; interaction is investigated. '

I. INTRODUCTION

The study of the 7NN system (including true pion ab-
sorption) is of fundamental importance in intermediate
energy physics. The few-body nature of this system
makes it amenable to precise microscopic descriptions
while at the same time providing a useful test case for
models of more complicated systems. As a prime exam-
ple of the sophistication that such descriptions have at-
tained in recent years, we mention the “unitary
model.” =7 This model describes all the processes
7d—md, NN—d, and NN-—-NN with the one set of
coupled linear equations, it preserves two- and three-body
unitarity, and it effectively sums the whole multiple
scattering series. In addition, there has been much in-
terest in the 7NN system regarding the existence of di-
baryons® (or more generally, evidence for quark degrees of
freedom®) and most recently, regarding relativistic ef-
fects.!® This interest is also reflected in the large amount
of accurate data that has become available in the last few
years. For NN— NN this data is essentially complete and
allows a reconstruction of amplitudes.!! For pp—dnr™
and 7d—d the data is almost exclusively!? restricted to
observables having particles polarized in either initial or
final states but not both. There is no doubt therefore that
in the forthcoming years there will be increasing interest
in measuring polarization transfer observables for these
two reactions; indeed there are currently proposals for
measuring _ﬁp«;:ivr at all the pion factories. One purpose
of this paper is to provide predictions of transfer observ-
ables for both Pp— d, and 7d —d.

Much of the current experimental data is well under-
stood in terms of A-isobar formation in intermediate
states; nevertheless, there are large and intriguing
discrepancies with data. A particularly disturbing exam-
ple!? is the asymmetry Ay in pp—dn™ at proton (labora-
tory) energies above 700 MeV. For example, when com-
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pared with the new LAMPF data'* at 800 MeV, most of
the current theories”!® tend to overestimate the asym-
metry by about 100%. As the theoretical models are
diverse in their various amounts of pion rescattering,
heavy meson exchanges, and relativity, it is very difficult
to determine the origin of the discrepancy. Similar cases
of diverse theories agreeing more with each other than
with experiment may be found for some spin correlation
coefficients!® in pp—dwt, as well as in some observables
in 7-d elastic scattering.!” In view of this uncertain con-
nection between experiment and the underlying physics, it
is most important that we have a good understanding of
the relationship between a measured observable (e.g.,
do/dQ, ityy, ty, etc.) and the central quantity of a
theoretical prediction, namely a partial wave amplitude.
It is the other and perhaps more important purpose of this
work to provide the basis for such an understanding by
examining explicit expressions relating partial wave am-
plitudes directly to observables. [As most calculations em-
ploy a nonrelativistic (LSJ) partial wave expansion, it is
these amplitudes that we will address in this paper.] Thus
our approach is significantly different from the recent
works that emphasize the relationship between observ-
ables and spin amplitudes.!® Although working with spin
amplitudes has the advantage that they are finite in num-
ber, the connection with theories that utilize a partial
wave decomposition is not optimal. We may also contrast
our approach with the alternative one of performing an
amplitude search to fit experimental data. The latter ap-
proach is indispensible in extracting numerical values for
amplitudes; however, much valuable information that
gave rise to a particular solution is buried in the numeri-
cal analysis. By examining the explicit mathematical rela-
tionship between experimental quantities and partial wave
amplitudes, we hope to obtain a deeper insight than is
generally afforded by other methods. Although the ulti-
mate (as yet unrealized) goal is to isolate those amplitudes
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(hopefully few) which are incorrectly predicted by present
theories, a study such as ours also provides us with a
better understanding of what one learns in general (if any-
thing) from a particular measurement, and can therefore
be useful in suggesting significant experiments yet to be
done.

To express any observable O,, (v just labels a particular
observable) in terms of the partial wave amplitudes
ar (I [Lf,Sf,L,,S,,J}) we follow the proposal of
Niskanen'® and perform an expansion in terms of orthog-
onal functions P} (6),

47000, —ZA P;(0), (1)

where o is the cross section, 6 is the scattering angle,
and P;7(0) is typically an associated Legendre function
(more generally it is a Wigner rotation function). The
coefficients 4] are then given by bilinear combinations of
the amplitudes,

A} =S C}U,I"aa} , )
nr

where C7(1,I') are factors made up of appropriate angu-
lar momentum recoupling coefficients. It is clear that an
advantage of investigating this expansion lies in the fact
that one can see directly and independently of experimen-
tal results which combinations of amplitudes contribute to
an observable, their relative strength in the contribution,
and those which do not contribute at all. Moreover, the
expansion allows one to directly ascertain the effect of
dominant amplitudes on some particular observable. For
example, we find that the existence of cross terms between
the large 21 amplitude (N-A in relative s state) and the
smaller 0%, 2%, and 4% amplitudes points to it,; as being
the only observable in pp—d#™ highly sensitive to these
amplitudes. Another interesting consequence of our ex-
pansion is that, once the coefficients C;(I,I') are tabulat-
ed, it becomes possible to look for linear combinations of
observables that eliminate the contribution of certain am-
plitudes. That this can be useful is well illustrated by the
combination og(1—A4,+A4,,+A4,,) which we have
found to depend solely on J"=2",4", ..., amplitudes.
At intermediate energies J” >4~ amplitudes are insignifi-
cant and the above linear combination provides an empiri-
cal way to constrain the two J”=2" amplitudes. It is
recognized that for interpreting data, the expansion given
by Egs. (1) and (2) is less useful if there are too many
non-negligible terms in the series. Unfortunately this is
the case for 7-d elastic scattering where many partial
waves contribute. In this case a blind amplitude search
may prove unavoidable. Nevertheless, the information
provided by the expansion should prove invaluable to our
basic understanding of many results.

In Sec. II we derive explicit expressions for the factors
CZ(I,I'). For pp—mtd we give separate expressions for
each observable. However, by considering the spherical
tensor form of polarization transfer observables we are
able to derive one expression for all the observables of a
general reaction 3@ +b—¢ +d.

In Sec. IIIA we discuss our results for the reaction
pp—7*td. A tabulation of the factors C}(I,I') is

presented and after consideration of what one can learn
from such tabulations we present numerical results for all
the correlation and polarization transfer observables of
pp—m*d. For this, the partial wave amplitudes are taken
from our calculations using the unitary few-body model.
Both energy and model dependence is investigated. For
the model dependence we choose three different para-
metrizations of the P;, interaction. We find remarkable
insensitivity of the tensor observables t,g, t,;, and t,, to
both the energy and our choice of model.

Section IIIB is devoted to our results for 7d—md. In
view of the large number of partial waves we do not dis-
cuss the factors C7(I,I') for this reaction; instead, we
concentrate on numerical results for the observables. We
find that many observables are large and show substantial
sensitivity to our choice of model. If we limit ourselves to
those polarization transfer observables that may be
measurable with present technology, then we find- that
t1l | at backward angles might be useful. We present our
conclusions in Sec. IV.

II. THE ORTHOGONAL FUNCTION EXPANSION
OF OBSERVABLES

In this section we derive expressions for observables of
pp—dmt and md—d that are of the form given by Eqgs.
(1) and (2). Our aim is to provide “look up tables” for the
factors C;(I,I'). Thus our approach is very similar to
that originally used by Mandl and Regge® for pp—mTd.
However, in their analysis they expressed the observables
(do/d€) and Ayo) in terms of an expansion in powers of
‘cosf. It has since become clear that an expansion in cosf
suffers from slow convergence’ and from large correlation
errors when used to parametrize data.?! The use of
orthogonal functions in the expansion improves the situa-
tion greatly (although not completely) and seems now to
be a standard feature of data analysis in pp—dmt—
particularly in extracting the angle independent coeffi-
cients A; of Eq. (1).

Before proceeding with the derivation, we first need to
state some of our conventions. We shall often denote a
general 2—2 reaction by a+b-—c-+d, where particles
a,b,c,d have masses m,,my,m.,my and spins s;,p,5.,54.
In order to make a close connection with the results of
Mandl and Regge, we choose their definition of the ampli-
tude when we are dealing with the reaction pp—dnw™.
The relation between their amplitude, denoted by ag
(=(fla]i)), and the usual reduced ¢ matrix Ty; that
satisfies??

Sf,=8ﬁ—ZWiS(Ef—Ei)S(Pf—Pi)Tﬁ N (3)
is given, after partical wave decomposition, by
ar=[4m(ps /p)i(pi)us(ps)2L; + D1'V2T, 4)

where I={Lf,S;,L;,S;,J} labels the LSJ quantum num-
bers, p; and py are the initial and final center of mass mo-
menta, and

( — (P12+m2)1/2(17; +m )1/2
o R mD P e mpI 2

PF+mI 2 p2+mb)1?
urlpe)= A i (5b)

(P +mc)1/2+(p +m )1/2 °
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For the case of 7-d elastic scattering it is more convenient
if we use the amplitude b; defined by

br=[4m(ps /p)ui(pispp)1 Ty (6)

The symmetry of this definition under the interchange of
i and f and the assumption of time reversal invariance

implies (for elastic scattering)
biL,.sp,L,.5,0) =b(L,5,L,5..0) (7

which in turn shall result in fewer partial wave channels
that need to be considered explicitly.
We shall use the Madison convention?® throughout.

A. Polarization transfer
Here we shall consider the general reaction

in the center of mass system with the “incident” particle a
and the “scattered” particle ¢ assumed to be polarized. In
describing the polarization transfer observables we follow
the' conventions of Simonius.?* In particular, we use
spherical tensors (rather than cartesian) to describe the po-
larization of every particle (even if spin 5). This choice
results in simple transformation properties of observables
under rotations and moreover, leads to a single expression
for all the possible transfer coefficients.

In accordance with the Madison convention, the polari-
zation of particle a is specified in a coordinate frame
(frame I) that has the z axis along the momentum p, of
particle a. Similarly for particle ¢ the frame to be used
(frame II) has the z axis pointing along p,. Frames I and
IT have a common y axis pointing in the direction p; Xpy
where p; and py specify those incoming and outgoing
particles between which the scattering angle is measured.
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are defined in terms of the polarizations t,‘:aqa and tﬁcqc of
particles a and c, respectively, by

cII
kg, = 2 1 29a tk q

ﬂ qa

“(0;b(3,3)d} ; (10)

the labels II and I specify the coordinate frames in which
the polarizations must be given, and the argument
{6;b(d,¢)d ]} further specifies the scattering angle and the
identity of the incoming and outgoing particles.

In order to relate the transfer coefficients to the ampli-
tudes a; for the reaction, we make use of the density ma-
trices p:a#; and p;c“é for the ensemble of particles a and

¢, respectively. It can be shown that these are related (up
to a constant) via

)= 2 (et la | patn 2Py, o {Batto la" | uepa)
Halg
Hptq

Pl Boke

(1n

We emphasize that all quantities in this equation refer to
the one coordinate system (our amplitudes are not helicity
amplitudes). If we now make use of the expressions relat-
ing the density matrix p,, to the spherical tensors t,,

kg =5 2, (=1 "H(spu's —u | kq)puy (12a)
py
(12b)

Pup=(1/8) 2, (=10 "H(sp's —u | kq)try
ka

where s is the spin of the particles in the ensemble and
§=(25+1)!/2, then we obtain that

Unless otherwise specified, in the following we shall take 2 e 4,! k";l“ 6;b(d,¢)d} , (13)
aqa
pi=p, and py=p. - )
k
For the reaction in Eq. (8), the transfer coefficients t":qi ¢ where
|
~k8, A e —Ha ’ c —He ’
Lk e =SaSc¢ (— l)s # (sa,u'asa —Ha l kaqa) 2 (-1 )-‘ g (SCI'LCSC —Hec | kcqc)
Haka Bk
X 3 petta | a | pats Y petta | @ | pops Y* / Trlaa™) , (14)

Hphg

which has specially been normalized so that t3=739=1. Again we emphasize that all quantities relate to the same coor-
dinate system. If we choose this system to be frame II say, then Eq. (13) can be related to Eq. (10) by rotating t,‘:aqa

through an angle 6 around the y axis. As usual, this is achieved through the use of Wigner rotation matrices (in our case
d functions), and we obtain that

q,
:qca = 2

.,aq

tkc ’ (15)

where the d function is given in the convention of Brink and Satchler.?’> Equations (14) and (15) give the relation be-
tween spin amplitudes and transfer coefficients. In Eq. (14) we can now use the partial wave decomposition
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(etala | paps) = 3 3 Z(schcSatta | SyMs,)(sapasppts | SiMs,)
SpS; LpL; UM

Ms Ms My My,

X(LyMy SyMs, | JM (LM, S;Ms | IM)Y, fML,(ﬁf)YZiML,. (Pi)ayr,s,1,5,9) (16)
and since the coordinate system was chosen to be frame II, p,=(0,0) and p; =(6,7), and it is clear we obtain a relation

for 7 k::: of the form given by Eq. (1) with the orthogonal functions being associated Legendre polynomials. The sums
over magnetic quantum numbers can be done, and after the further sum of Eq. (15) we obtain the expression we seek,

B ,
dmoatey’ = 3 To(LIaafdk, (0), | (17)
L,L,I’

where

o~

T (,I')=k,5,k.5.5,8 | L;S;L 48 1(2L +1)(27 + 1)(2J"'+ 1)(25, + 1)~ '(25, + 1)~

( 1)s,,+s,,+sc+sd+L}+S,’+L," +5/ Si Si ka | |Sr Sp ke
Ri= Sa Sa Sp Se¢ S¢ Sd
L; L; X;||Ly Ly X¢||X; ks L ||Xy k. L

X, Xf
L; L X;||Lf Ly Xy
X 18 S{ kq (\Sf S§ k. . (18)
J J' L J J' L
We note that the orthogonal functions in which we are expanding are now the Wigner d functions d‘ILc g,(0) which are
directly related to associated Legendre polynomials only when either of g, or g, are zero.

B. Polarization correlations

Unlike in the previous section, we make no attempt at a general formulation; instead, we give expressions only for the
reaction pp—m+d. Furthermore, we use Cartesian tensors exclusively and give separate expressions for the cross sec-
tion and all the independent correlation coefficients.

Denoting the polarization of the beam by P'® and the polarization of the target by P'?), the cross section is given by

do/dQ=C 3, (ug | 1+P0 | ug Y up | 1+PP0 |y Y pepa | T | popsy ) Cpeppa | T | papts)* (19)
allp

where 0‘® and o'® are the Pauli spin matrices for particles a and b, respectively, and

1
C=
(25, +1)(25p +1)

(21T)4(Pf /P,' )u,-(p,- ),uf(pf) . ) (20)
Rewriting Eq. (19) in terms of partial cross sections oy; (i,j=0,1,2,3; with o being the spin-averaged cross section):
do/dQ =04+ i P90+ é PP + 23‘, é PP, , @n
i=1 j=1 i=1j=1
leads to the usual definition of the correlation tensor 4;;, namely
Ajj=0; /oo (22)

By parity invariance, of the 16 possible 4;; (including the trivial 4o, =1), only eight are nonzero. In addition, the identi-
ty of the two initial particles reduces the number of independent correlations to six. With the choice of coordinate frame
having the z axis along the beam direction (frame I), the use of Eq. (16) in Eq. (21) leads to the following expressions for
six independent correlations:

o |LiLi L||Ly Ly L
dmo=1% 3 (I+DQI+DCL+DELY o o ollo o o
I,I''L
s._s |Li Li L||Ly Ly L .
Xss,.,s,’(_l)f g s || T s Py (cosO)azay , (23)
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drogdye=—i(3)2 3 (I +1)(2'+ 1)L+ D88 LL yL(—1)
LI'L
L L L[, ;L)1 s si|(pr 0 5| L L
Xlo o oflo o of|t + 1(lL, s Ly} T L
i J Li
X[L(L +1)]~2P; {( cosB)a;a} ,
' an o~ |Er Ly L
4moodn=—(3)"? 3 QI+ D@V +DQL+DSSLiLy | o o o
LI'.L
Si’ 1 Si Si' J' L J Li S,' J L," S,I J'
X1=D" 11 6 _1]|1 —10[|lo oo||lo 1 —1
SilS,f Si\lg L Jo|I\Li S JIIL; S J
+=D"1 0 1)1 —10]lo 0 o]0 1 —1
—in 1 S; S J' L .
X[L(L+1)] 111 (L, s, L P; ((cosO)a;ay ,
1 , 1 ~A oA, SiS * Lf Lf" L J' L J
dmonda=1 3 @I+D@I+ DL+ DEL -1 qaraf [0 o o, s, 1,
JLJ||Li S J||L; S T
X1lo oo||lo oo||o0 o o |Prlcosd)
J L J||L: S JI||L{ S J | 12
=211 Z_21llo -1 1 0 1 —1 [(L +20/(L —2)117"/%P; »( cosB)
i ; An, s s Lr L Log
4ropd,y =7 2 (2J+1)(2J"+1)2L +1LL ((—1) Ssi,si'afaf' 0 0 0|l s L
LI'L f °f =f
JLJ||L S J||Li ST
X1looo||lo oo||o o o]Pclcos®)
JoL J||Li S J||Li S J 12
+2|1 o 0 —11llo 1 —1 [(L+4+2N/(L—2)1] P »( cosO)
1 , A A, Ly Ly L[y L J
41TUOOAZZ=TIJ2"L(2"+1)(2J +1)(2L+1)Lfo85i,Sil 0 0 0 Lf Sf L_;-
JLJ||Li Si J||Li S J
X1looo|lo oo||lo oo
J'L J L;s; J L, s, J .
+211 0 —1llo 1 —1llo 1 —1||PelcosBlasar .

(24)

(25)

(28)
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III. RESULTS AND DISCUSSION

In each of the orthogonal function expansions Egs. (17)
and (23)—(28), the angular momentum factors are either
symmetric or antisymmetric under the interchange of I
and I'. For example, the factor 7. (I,I'), given by Eq.
(18), satisfies

T, (LI =(—1 T (1) . (29)

Thus we may explicitly sum over the two orderings of
channels I and I' giving expansions in terms of either
Relaya}) or Im(azaf). In this case the coefficients,
which we write generically as ¢y (I,I'), are related to the
C7(1,I') by at most a factor of 2. Specifically, we shall
write the orthogonal function expansions as follows:

For polarization correlations in pp—71d,

drow= 3, a’(I,I')P.(cos6)Re(asarf) , (30)
L even
r>I
drogpdy = 3, bL°I,I")P.(cosd) Im(aa}) , (31)
LI'>I
4ropAn= 3, bFI,I')P (cosb)Relasar), (32)
LI'>T
drogAs= >, [ar*(I,I')PL(cosd)
L even
I'>1

+cF(I,I')PL5( cos)] Relasa)) , (33)

drogdy, = ¥, [ap (I,I')P(cosb)
L even
I'>1
— (I, I')PL,(cosB) ] Relayaf), (34)
4rognA,= 2 ai(I,I')Pp(cos@)Relasar) . (35)
L even
I'sI

For tabulation purposes it is convenient to write
(36a)
(36b)

Axx =Zxx + 6xx ’
Ayy :Zxx —axx ’

where the definition of A4,, and C,, is clear from Egs.
(33) and (34).
For polarization transfers with g.=40 and ¢,+0,
k i
dmoeti’yt = 3 TyLIYdL, (6)Relaiaf), (37)
LI'>I
if k,+k. is even,
k
dmoiti’y’ = 3 Ty LIdL, (6)Im(aa}), (38)
L,I'>T
if k,+k. is odd. If either g.=0 or g, =0 then we use
Legendre functions .P; | g, —gq,| instead of the Wigner
functions in Egs. (37) and (38). For example, for unpolar-
ized initial states

drogity = > bNILI'P, (cos6) Im(aza}), (39)
LI'>I

dmontn=. > ai’I,I')P (cosO)Relaa}), (40)
LI'>I

drowty = 3 bF(UII')P. (cosO)Relaa}), (41)
LI'>I

dmogtn= 3, ct2(I,I')P,(cosd)Relasa}) . (42)
LI'>I

Expressions for the coefficients af’(I,I'), bP(I,I'),
etc., are trivially found from Eqgs. (18) and (23) (28). We
note that the tabulation of these coefficients not only
gives a better insight into the nature of an observable, but
it also provides an efficient method for calculating the
observables—the angular momentum algebra need only be
done once. This may be of practical importance as for ex-
ample in fitting data with an amplitude search.

All the above results implicitly refer to the center of
mass (c.m.) system. In the case of correlation observables
the results are also valid in the laboratory frame as the
c.m. and laboratory frames share a common quantization
axis (along the beam direction). However, for a polarized
particle in the final state the quantization axis in the c.m.
and laboratory frames will be different. A simple, and
strictly nonrelativistic, way to obtain the laboratory

g, la — .
transfers tk“ “ {OL;b(a ¢)d} in terms of the center of

mass transfers Ik, fa {6;b(d,¢)d} is as follows. Equation

(10) is the workmg definition of the polarization transfers
both in the c.m. and laboratory systems. Both the c.m.
and laboratory observers will use a common frame, frame
I, to describe the polarization state of particles a. Howev-
er, in describing particles ¢, each observer will use a frame
II that has its z axis along the momentum of particles c.
This is illustrated in Fig. 1. All frames use a common y
axis. Thus, in describing the polarization state of parti-
cles ¢, going from the c.m. to laboratory system is effec-
tively the same as rotating the state of particles ¢ by the
angle

w=0—0 ‘ (43)
around the y axis. Thus we have that?*
T cm
1 z
y; /4
4 T lab

N
|
|
|
|
|

Pd

A top view of the scattering plane for the reaction
b(3d,¢)d comparing c.m. and laboratory system quantities.
The polarization of particle c is represented by s.. Frame II is
defined as having its z axis along p. in either system; conse-
quently a c.m. to laboratory transformation is equivalent to a ro-
tation of the states |s.) around the y axis by the angle
[a—aL | =0-—0L.

FIG. 1.



1386 B. BLANKLEIDER AND I. R. AFNAN 31

c c.m. II
et (44)

c labIl __
% g, E

I

and the further use of Eq. (10) gives

k_g_lab q
a%a (7,2 ke ka4,
tch {GL’ a, C)d Ed kq

(4

“™(6;b(7,¢)d]} .

(45)
A more rigorous and relativistically correct derivation in-
volves the examination of how helicity states rotate in go-
ing from the c.m. to laboratory system.?® The final result
is still given by Eq. (45), however, o is now defined by the
equations

(46a)
(46b)

cosw = cos@ cosO; + V¢ m. sinfdsinf; ,

sinw=(m /E)(sinf cos@; — ¥ m. cosOsinb; ) ,

where ¥ m =(1—v2, /c¢?)~'2, and m and E refer to the
mass and total energy of particle c. In the nonrelativistic
limit we of course recover the expression for w given in
Eq. (43).

A. pp—7td

In this section we concentrate specifically on the
pp—m*d reaction. In Egs. (30)—(35) we have already
specified the six (counting the cross section oy, for con-
venience) independent correlation coefficients that we con-
sider. Assuming parity invariance there are 16 indepen-
dent transfer observables (excluding the cross section and
itd) which is related to A, bya factor of \/_2_) These we
ChOOSC tO be ”11, 120, La1y 12, 110, 110, i3, 0133, 210, L1,
tily, ekl il irdl ) ird)) and it,_,. Before presenting
our results for these particular observables, we should note
that although the spherical form for the transfer observ-
ables is convenient for us, experimentally it is frequently

. . iJ
easier to measure Cartesian tensor observables P,-:j:. The

relationship between the two is easily determined from the
defining relations

ke = Tr(ry o Frl. o 1)/ Tr(FF") (47a)

P = Tr(m, , Frr, o F1)/ THFFY) (47b)
where F are the helicity amplitudes and 7y, 7;;, and the
relationship between them is given in the Madison conven-
tion.2> We note that

(W' | Thg | ) =8(—=Y"H(su's —p | kq) (48)
and Eq. (14) is just a version of Eq. (47a) but with single
frame amplitudes replacing the helicity amplitudes. For
completeness we give the relations for the reaction

p(B,d)mt

P;‘:(%)‘/Z(t}i—z%‘_]) (=Kss) , (49a)
Pl=(5)2tl +¢1L1) (=Kyy) (49b)
P:=(3)V%}) (=K..), (49c¢)
=—2/V3t}, (49d)
=—2/x/§z11 , (49¢)
P} = ——Zztzo , (491)
P}, :\/31':21 , (49g)
—V73it)9, (49h)
P’i—— (V2% 41, (49i)
PL=(3"V2%ey -3t ), (49j)
PL=(3)" %ty —13,), (49Kk)
Pl —P)=—V6i(ty+1;1,) . (491)

We follow our previous notation’ and sequentially order
the partial wave amplitudes a; as in Table 1. Although

TABLE 1. The partial wave channels, up to A-wave pions, of the reaction pp—=7+d.

Pion Ly Sy L; S; p-p
a; JT wave (md) (rd) (pp) (pp) state
ao 0+ p 1 1 0 0 1S,
a, 1- s 0 1 1 1 3P,
a, 2+ p 1 1 2 0 D,
a3 1- d 2 1 1 1 3p,
a4 2- d 2 1 1 1 3p,
as 2= d 2 1 3 1 3F,
as 3- d 2 1 3 1 3F,
a; 2+ f 3 1 2 0 'D,
asg 4+ f 3 1 4 0 G,
as 3~ g 4 1 3 1 3Fs
ap 4= g 4 1 3 1 F,
an 4- g 4 1 5 1 3H,
agp 5~ g 4 1 5 1 3H s
as 4+ h 5 1 4 0 G,
a, 6+ h 5 1 6 0 I
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we retain up to A-wave pions (ag—a4) for numerical cal-
culation of observables, it is not practical to present a full
tabulation of all the corresponding coefficients c¢7 (I,I')
here. However, one can ascertain most features from a
smaller tabulation based on a more limited number of par-
tial waves. Indeed, we find that for proton energies below
800 MeV, most of the numerical contribution comes from
amplitudes ap—ag (at most f-wave pions), so we retain
only these nine amplitudes in presenting our tables.
For correlation observables in P(P,m*)d the coeffi-
cients c¢;/(I,I'), as defined in Egs. (30)—(36), are
enumerated in Table II. Lack of space precludes us from
presenting corresponding tables of coefficients for all the
polarization transfers in p(_ﬁ,ﬁ yat; however, the coeffi-
cients for the simplest of these, namely the vector and ten-
sor polarizations as defined in Eqs. (39)—(42), are also tab-
ulated in Table II. We now discuss the way in which
Table II may help illuminate the relationship between
theoretical amplitudes and a measured observable. First-
ly, we know both ‘on physical grounds and from calcula-
tions that the dominant amplitude at intermediate ener-
gies is @,. This is attributed to the fact that the J=2"+
channel is the only one in which a nucleon and a delta
(formed in the scattering process) can be in relative s
state. From Table II we can directly ascertain the conse-
quences of a dominant a,. We would expect that those
observables with |a,|? contributions in the numerator
(there will always be a |a,|? contribution coming from
the division by the cross section) will mostly be deter-
~mined by the magnitude of a,. Those not involving

| a, | in the numerator but with cross terms involving a,
(Ayo, A, and ity in Table II) should be especially sensi-
tive to those amplitudes that multiply a,. In Table III we
summarize all the independent correlation and transfer
observables in pp—7*d that do not have |a, |? terms in
the numerator—amplitudes having cross terms with a,
are also listed. We see that it;; is unique in that it is the
only such observable having the large @, multiplying the
amplitudes ay, a;, and ag. We therefore expect that ac-
curate measurements of it;; will be crucial in the deter-
mination of ag, a7, and ag. Indeed the recent iT;; mea-
surements of Smith et al.?’ have already had a significant
constraining effect on amplitude searches?®*—especially re-
garding the previously highly undetermined phase of a,.
Another feature apparent from Table III is that the polar-
ization transfers involving a longitudinally polarized pro-
ton beam, namely tig, t%?, ti?, and tig, will depend rather
sensitively on the coupled J=2" amplitudes a4, and as;
in contrast, the other observables have large contributions
coming also from a,;, ag, and perhaps to a lesser extent
from aj, thereby making a determination of a, and as
more difficult (although not impossible, as we shall see
below).

We note from Eq. (45) that the above observations hold
equally well for the laboratory as for the c.m. system. On
the other hand we should temper any conclusions by the
realization that there are amplitudes besides a,, particu-
larly a,, a4, a¢, and ag, that can give non-negligible con-
tributions all on their own. In fact if we take the extreme
stance that all amplitudes are negligible compared to a,
then, using Table II, we would get A,,=4,,=A4,,=—1

for the correlations and
V2 7+25P,( cosB)+ 108P,( cosb)

tyy=——=
0=""9 1+ P,( cosh) » (50a)
V'3 5P;3(cos8)+ 9P, ( cosO)
ty=——2
21 35 1+ P,( cosh) ’ (500
. 313 5P;;( cosf)+2P4,( cosh) : (500)
27" a0 14P,( cos) ’ ¢

for the polarization tensors in the center of mass.

To compare these “predictions” with an actual calcula-
tion, and indeed to provide the first calculation of many
of the transfer observables, we use a few-body unitary
model to calculate the amplitudes a;. The description of
this model, including full details of the actual calculations
used in the present discussion, may be found in Refs. 7
and 29. Here we mention only those aspects of the few-
body calculation that are most germane to the present dis-
cussion. As we have already noted, the unitary model
provides a simultaneous description of the reactions
pp—7+d, md—md, and NN—NN, and includes, at least
in principle, much of the physics in an exact way.
Perhaps the single most important difference between all
the unitary few-body calculations is in the precise treat-
ment of the P;; channel. For this reason we choose three
different parametrizations of the P, interaction in order
to test the model sensitivity of polarization observables.
Two of the interactions,” denoted by M1 and P6,
describe both the pole and nonpole pieces of the P, ¢t ma-
trix by separable potentials in such a way that the nonpole
piece is used in explicit dressings of the 7NN vertex as
well as the nucleon propagator. The third interaction,’
denoted by BOS8, describes the full ¢ matrix by a two-term
separable potential and no explicit dressings are per-
formed (they are effectively included through the use of
physical masses). Although explicit dressings are required
by unitarity,®® interaction BO8 has the virtue that it is
able to describe the pion production cross section while
the more precise descriptions (M1 and P6 for example)
underestimate the cross section by 20—50 %.

We first examine the energy dependence of the polari-
zation observables. For this we choose interaction M1 for
the Py; channel, and the three-proton laboratory energies
T, =383, 567, and 800 MeV which span the 33-resonance
region. In Fig. 2 we present results for the correlation ob-
servables at the three energies showing experimental data
where available. We see that the cross section below 800
MeV is badly underestimated by the assumed model. This
is typical of all the latest calculations using the unitary
model and is believed to be caused by neglect of states
having backward going pions in the NN—NA ampli-
tude.”® Nevertheless, the shapes of the distributions are
reasonably well reproduced so it is hoped that the predic-
tions for spin dependent observables may be more realis-
tic. It is evident from both the calculation and experi-
ment that A,, as well as A4,, deviate substantially from
—1 so that a, is definitely not the sole contributing am-
plitude. Considering this conclusion the behavior of 4,,
is enigmatic. 4, is largely energy and angle independent
and moreover, for energies below 800 MeV, is in the re-
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TABLE II. Orthogonal polynomial coefficients, as defined by Eqgs. (30)—(36) and (39)—(42), for the correlation observables in
P(P,m1)d, and for the center of mass tensor observables in p(p,a )m*. A square root is implied for numbers to the right of the colon,
thus —4:3 means (—4)(3)"2

Amplitude
41000 product ad a)d a? a?® Aoy aZ aZ a? a?
| ao | + 0 0 0 —% 0 0
la;|? + 0 0 0 + 0 0 0
a1 + ¥ 0 0 e 0
a3 |? 0 -3 0 0 T -3 0 0
a2 ¥ %o 0 R S S
las | 2 % 4i9 "4% 0 - 2ls *% 71(93‘ 0
Jas] I T + e S
la;|? % % ”137 0 —711‘ —%‘ —% 0
lag |2 T £ E BT - - —q5 1
Re(aoa}) 0 —L:y 0 0 . 0 0
Re(aoa¥) 0 +:3 0 0 —13 0 0
Re(aoat) 0 0 —1 0 0 0 1 0
Re(a;a¥) 0 it 0 0 0 +ir 0 0
Re(a;a¥) 0 35 0 0 0 +:3 0 0
Re(a a¥) 0 35 0 0 0 23 0 0
Re(a,a}) 0 r 0 0 0 - 0 0
Rel(a,a¥) 0 —1:3 —3:6 0 0 +:3 2:6 0
‘Relaya}) 0 g 21 0 0 —2:5 . 0
Re(asa¥) 0 +:5 0 0 0 +i5 0 0
Re(a;a}) 0 i 0 0 0 i 0 0
Re(a;at) 0 — 2 0 0 _— - 0
Re(aa¥) 0 — B2 0 z L5 -1z 0
Re(aqaf) 0 +:5 %5 0 0 +:5 25 0
Re(asat) 0 T 2 0 0 4.0 22 0
Re(aqa}) 0 —% % —%:3 w%:% 0 %% %:3 % -;-
Amplitude Amplitude
47000 Ay product ay” az* ay ag 477040Crx product 3 st
[ao|? — % 0 0 0 las|? % 0
as |? - ~7 0 0 ag|? — 7 =
las|? 3 = -3 0 as|? 2 s
|as|? * o6 —% 0 as|? T W
jar)? e T
las|? -+ -5 -5 —hr Re(a;a¥) it 0
Relaal) le-% 0
Re(aoa?) 0 5 0 Re(aa¥) 53 0
Re(aoa¥) 0 —13 0 Re(aa¥) — i 0
* Re(aoa§) 0 0 0 Re(a;ay) iS5 0
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TABLE 11. (Continued).

Amplitude Amplitude
Ao 00 A s product ay’ ay* ay” ay” 47000Crx product 5 c
Re(a,a¥) 0 T3 36 0 Re(asa¥) i 0
Re(a;a}) 0 -5 =TT 0 Re(a;af) W —%
Re(aat) -y —3:4 £:2 0 Re(aqa)  —iir i E
Re(aqa}) 0 1.4 £33 L.+ Re(aqat) ——218—:5 —T%;;—:S
Re(asas) —T‘[:% —
Amplitude
4oy product by° b3° b3° b0 b%°
Im(aoat) e 0 0 0 0
Im(aoa¥) + 0 0 0 0
Im(aoat) 0 0 —+ 0 0
Im(aa%) + 0 0 0 0
Im(a,a}) 0 +5 0 0 0
Im(a,a¥) 0 -3 0 0 0
Im(a;a?) 0 0 T 0 0
Im(a,a}) 0 0 1.1 0 0
Im(a,a¥) v —2%:% 0 _—136-;% 0 0
Im(asay) "%’—116' 0 —%:-110— 0 0
Im(a,a?) -—% % 0 _%;% 0 0
Im(ayag) 34 0 it 0 0
Im(a;a¥) 0 -5 0 0 0
Im(asa¥) 0 —y 0 0 0
Im(a;a¥) =13 0 -4t 0 0
Im(a;a3) 0 0 - 0 +
Im(a,a?) 0 By 0 — 5L 0
Im(aqas) 0 — 55 0 — 5 0
Im(a.a3) 3 0 s 0 0
Im(asay) 0 0 752_;5 0 %:5
Im(asa?) 0 1k 0 ENES 0
Im(asa?) i 0 . 0 0
Im(asa}) 0 0 ERES 0 L.
Im(ag¢a?) =33 0 it 0 ERN
Im(agay) % 0 — 0 —
Amplitude
4710004 % product b¥ b% b5 by b¥
laq|? 0 - 0 - 0
las|? 0 o 0 - 0
Re(apat) — 3y 0 0
Re(agat) + 0 0 0
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TABLE II. (Continued).
Amplitude
4000 A x product b¥ b% b b¥ b¥
Re(aoad) 0 0 - 0 0
Re(a,a%) —% 0 0 0
Re(a,a}) 0 +3 0 0 0
Relaa¥) 0 —3:3 0 0 0
Re(a,a¥) 0 0 -+t 0 0
Re(a,a}) 0 0 -+t 0 0
Re(a,a¥) S 0 — 0 0
Re(a,al) e 0 — 1t 0 0
Re(a,a%) — 3 0 S 0 0
Re(a,ag) 3.4 0 i1 0 0
Re(azal) 0 -5 0 0 0
Re(asa¥) 0 — i 0 0 0
Re(asa%) — 3 0 +i+ 0 0
Relajasg ) 0 0 2% 0 —%
Re(ayas) 0 =i 0 — 0
Re(aqa¥) 0 >i5 0 o i5 0
Relazal) _%;% 0 _%:_11? 0 0
Re(asay) 0 0 _%:5 0 __11_8:5
Relasaf) 0 — 0 —i 0
Re(asa®) —ti 0 —1limtg 0 0
Re(asa) 0 0 — i 0 — i
Re(aga?) — a3 0 — 5 .0 — 2t
Re(agay) —798— 0 —;g 0 %
Amplitude Amplitude
4o gity; product b ;’ b il b é‘ 4mogtn product a %0 a %0 a®® a %O a §°
lao|? — 5y 0 0 0 0
Im(aoay) —5:3 0 0 la,|? 0 Ty 0 0 0
Im(aoa¥) - 0 0 la,|? —aiy —miy  — it 0 0
Im(aga¥) 0 —+3 0 las|? —+it 3t 0 0 0
Im(a;a¥) —+:3 0 0 la,|? 2t i 0 0 0
Im(a,af) —+:3 0 0 las|? i i — i 0 0
Im(a,a¥) —4i3r 0 0 lag|? s —air =52 2l 0
Im@ai) 3 0 0 D e T L
Im(a:a}) 53wy 0 las |2 — T T —enT —iT w2
Im(a,ay) i3 =i 0 Re(aga’) 0 1 0 0 0
Im(asaf)  +:3 0 0 Re(agat) 0 —1:3 0 0 0
Im(a;a¥) 413 0 0 Re(apa}) 0 0 2 0 0
Im(asas) —3:1 153 0 Re(a,a¥) . -+ 0 0 0
Im(asas)  =:15  15:15 0 Re(aa¥) 0 <5 0 0 0
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TABLE 11. (Continued).
Amplitude Amplitude \
4mogity;  product bi! by bl'  4mogty  product a® a® al a® a?
Im(asas) 51y o 0 Re(a;a}) 0 i 0 0 0
Im(a,a}) —+ B Re(aa?) 0 -4 5 0 0
Re(aza¥) 213 23 %3 0 0
Re(aa}) 0 -k - -5 0
Re(asa}) 0 S 0 0 0
Re(a;a¥) 0 5 0 0 0
Relazal) 0 %:2 -—%:% 0 0
Re(asa?) 0 —iy St 0 0
Re(asat) 0 +:3 23 0 0
Re(asaf) 0 73 3 0 0
Re@ai) 0 ML &3 w2
Amplitude Amplitude
4oty product b3 b3 b b3 4dogty product c? c? c? c®
lai|? T 0 0 0 la;|? T 0 0 0
la,y|? —i3 — i3 0 0 la,|? —T53 — i3 0 0
la;|? — 5y 0 0 0 las |2 -y 0 0 0
lag|? —3 —ge3 23 0 lag|? EEE 0 0 0
las|? 3 53 0 0 las|? 53 i 0 0
las > =y —weed —w — ey lag|? —%3  —wry wEs 0
Re(agal)  +:3 0 0 0 la;|? —3  —a5i3 0 0
Re(aoat) + 0 0 0 |ag|? it e et -5l
Re(aoa}) 0 +:3 0 0 Re(a,a}) T 0 0 0
Re(a;ay) —1:¢ 0 0 0 Re(a,af) —4:% 0 0 0
Re(a;a}) +:3 0 0 0 Re(aa¥) —+4i=r 0 0 0
Re(aa})  +:ior 0 0 0 Re(a,at) 4+ . 0 0
Re(a1at) —5iv =iy 0 0 Re(a,a%) —oix —2ix 0 0
Re(a2a%) i3 . oy 0 0 Re(a,a}) it ey —iw 0
Re(a,ay) —1ri¢ — w5y —1r% 0 Re(asa}) —4:+ 0 0 0
Re(asaf) —+:3 0 0 0 Relasaf) —+ior 0 0 0
Re(asa¥) —+:1o 0 0 0 Relazat) 51 T3 0 0
Re(a;as) 457  —153 0 0 Re(aa?) —2:% —-% 0 0
Re(aqat)  5:15  5:15 0 0 Re(aat) =:15 53 0 0
Relasat) b =i 0 0 Re(asat) 2515 % 0 0
Re(asag) & o ey 0 Re(asa}) = — o e 0

gion of —0.9 qualitatively agreeing with our naive a,
dominance prediction. A very similar and, as it turns out,
related phenomenon occurs for the tensor polarizations.
In Fig. 3 we present results for the polarization transfer
observables specifically expressed in the laboratory frame
in order to be most useful for considerations of possible

experiments. Again the three curves on each graph corre-
spond to the three energies 383, 567, and 800 MeV. For
each of the tensor observables t,q, #5;, and #;;, we note
the similarity between the different energy curves. More-
over, the a, dominance predictions corresponding to the
c.m. relations of Eq. (50) also follow the same shapes (in
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TABLE III. Observables in pp—dnt having no contribution from |a, |2, together with a list of
those amplitudes that, in the contribution to an observable, have products with the large a,.

Amplitudes having

Amplitudes having

Observable cross terms with a, Observable cross terms with a,

Ayo a,,a3,a4,as,dg 11 a,,a3,a4,ds,d6

R a,,a3,a4,05,0¢ t a,,a3,04,ds5,d6
6’”‘ none t}l_l a,,a3,d4,05,04¢
ity ap,as,as ity ay,a3,d4,ds5,d6
to a4,as it a,,a3,a4,ds,d¢6
0 ay,as ityh, a,,a3,a4,ds,0¢
£ a4,as ity a;,a3,a4,as5,d¢
3 a4,0as it

a,as,as,as,qae

fact they are virtually indistinguishable from the 567
MeV results). The relative constancy of these curves is in
marked contrast to the large energy dependence of it;,
11 and indeed most other transfer observables. Although
there are as yet no measurements of any of the polariza-
tion tensors, there is nevertheless indirect experimental
confirmation of the constancy of these quantities. This is
provided by the relation®!
1434, =23ty +V 2ty (51)
which holds rigorously for the reaction pp—7+td. We
note that Eq. (51) applies equally well for the c.m. and
laboratory frames since each side of the equation is invari-
ant under rotations about the y axis. Of course Eqgs..(50)
and (51), taken together, imply that 4,, = —1 independent

of energy and angle; as we have noted, this is at least qual-
itatively what is measured. To reconcile this success of
the a, dominance assumption for the tensor polarizations
with its failure for A4,, and A,,, we are led to assume that
there must be some type of cancellation taking place
within the expressions for the tensor observables. Unfor-
tunately, the exact nature of this cancellation is not easily
seen from Table II.

The model dependence of the above observables is ad-
dressed in Figs. 4 and 5 where we compare calculations
resulting from the three choices M1, P6, and BO8 of the
input P;, interaction. The energy chosen for this compar-
ison is 567 MeV although we note that comparisons at
other energies do not result in substantially different con-
clusions. Again the most striking observation from Figs.
4 and 5 is the constancy of the tensor polarizations even

500——1— T T 0 T T T
" O (ub/sr) e o A
aoo]- " ¥ s 4 -o02 % >
o ¢¢¢¢ EO\‘]"
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FIG. 2. Energy dependence of the center of mass differential cross section (o) and the five correlation observables for the reac-
tion P(P,7+)d. The three curves are results from a few-body calculation with the “M1” Py, interaction (Ref. 29) and correspond to
the proton laboratory kinetic energies of 567 MeV (solid curve), 383 MeV (dash curve), and 800 MeV (dash-dot curve). The experi-
mental points are distinguished only by energy as follows: 567 MeV (open squares; Refs. 34—38), 383 MeV (solid squares; Ref. 39),

and 800 MeV (open circles; Refs. 14, and 40—42).



31 . RELATIONSHIP BETWEEN PARTIAL WAVE AMPLITUDES . .. 1393

0.2 T T 1.0 T

| tﬁ% "] 05} 20

i/
SN T T T~ or 4
(o} {%;%:)&\/ //
qﬂu‘# * 05 Y
o1} 1 ob7
P
025 ) 20 180 % 6o

(c)

1 1 1 1 4
o] 60 120 180 60 120 180 he] 60 120 180 60 120 180
Gd(c.m.) Gd (c.m.)

FIG. 3. Energy dependence of the laboratory-system polarization transfer observables for the reaction p(‘p’,ﬁ )a+. The three
curves are results from a few-body calculation with the M1 Py, interaction (Ref. 29) and correspond to the proton laboratory kinetic
energies of 567 MeV (solid curve), 383 MeV (dash curve), and 800 MeV (dash-dot curve). The experimental points for it;, are from
Ref. 27 and are labeled as follows: 567 MeV (open squares) and 800 MeV (open circles).
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FIG. 4. Model dependence of the center of mass differential cross section (o) and the five correlation observables for the reaction
P(P,71)d at the proton laboratory kinetic energy of 567 MeV. The three curves are results from few-body calculations using the P,
interactions M1 (solid curve) (Ref. 29), P6 (dash curve) (Ref. 29), and BO8 (dash-dot curve) (Ref. 7). The experimental points are
from Refs. 34—38.
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FIG. 5. Model dependence of the laboratory-system polarization transfer observables for the reaction p(B,d)w* at the proton labo-
ratory kinetic energy of 567 MeV. Three of the curves are results from few-body calculations using the P;; interactions M1 (solid
curve) (Ref. 29), P6 (dash curve) (Ref. 29), and BOS8 (dash-dot curve) (Ref. 7). The dotted curve is the 575 MeV result of the Osaka
group’s amplitude search (Ref. 28). The experimental points are from Ref. 27.

though the corresponding cross sections differ by as much
as 100%. In fact many of the spin-dependent observables
display weak model dependence, and those that have
| @, | ? contributions in the numerator (Ayy, A, Az, to,
t51, and t,,) are particularly insensitive to the differences
in our choice of models. Thus the main effect of choosing
different P, interactions appears to be a simple scaling of
the partial wave amplitudes and any hope of agreement
with A4,., 4,,, and 4, data will need to come from a
mechanism that is probably missing from the unitary
models (perhaps the backward going pions?). One may
consequently wonder whether an experimental .determina-
tion of the tensor polarizations could yield results dif-
ferent from our predictions despite the fact that they are
totally insensitive to our models. One possible way to try
and answer this question is to compare our predictions
with that of an amplitude search solution that fits avail-
able data. Such a comparison is included in Fig. 5 where
we plot the tensor polarizations resulting from the Osaka

group’s amplitude search?® at 575 MeV (dotted curve).
For t,9, differences between our predictions and those of
the amplitude search are small for angles between 40 and
120 degrees. The largest difference occurs at extreme for-
ward and backward angles; there, ¢,, is approximately
zero and by Eq. (51) ¢, is determined by the existing ex-
periments for A,,. It therefore seems likely that unless
one can do a very accurate experiment, no new informa-
tion will be obtained from measuring ¢,y. Similar argu-
ments follow for ¢,,. For t,;, there are small but signifi-
cant differences and again accurate measurements would
be needed for their determination. Some of the observ-
ables not involving |a,|? in the numerator are much
more able to discriminate between our three models. In
this respect Ayo, Az, ity1, t1], 1o, 10, it}}, and it}} ap-
pear to be the most useful.

Another way to exploit Table II is to look for useful
combinations of observables. For example, it is apparent
that the combinations og(l+A45), og(l+A4,), and
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ooo(144,,) depend only on triplet amplitudes (i.e., initial
protons are in a triplet state). The complementary quanti-
ties oooll—A4y), 0po(l— A4, ), and og(l—4,,) depend
mainly on singlet amplitudes—the triplet contribution
coming only from the J"=27,4", ... channels. Thus the
use of these quantities for comparing theory and experi-
ment can focus more directly on the physical content of a
calculation; in this case, for example, we would be able to
say something about the spin-orbit force in the calcula-
tion. Indeed such a comparison, using o(1+A4,,) has al-
ready been used by Glass et al.*! in presentin% their data.
From Table II we find that the combination ogy(1—4,,
+ Ay +A,,) depends only on J"=27,4"7, ... amplitudes;
moreover it forms precisely the triplet component of
ooo(1—A,). Thus it is ogo(1 — A4, — Axx —A4,,) which de-
pends purely on singlet amplitudes. At medium energies
where we can neglect the channels 47,67, ..., we get the
remarkable result that ogo(1—A4,+ A4, +4,,) depends
only on the two 27 amplitudes a4 and as. As 4,,~—1
and A,, ~A,, rather accurate experimental results are
needed to determine a4 and as from this linear combina-
tion. Although other combinations like oo(1—V2t5)
(does not depend on J"=27,4",...) seem less interest-
ing, these might still have use in future amplitude
searches as they can reduce the number of amplitudes that
need to be varied.

B. md—nd

Present polarization measurements of w-d elastic
scattering have generated much speculation about the ex-
istence of dibaryons. This was initially sparked by a mea-
surement of iT;; at 256 MeV that appeared to confirm
the oscillatory behavior predicted in a prior calculation
having dibaryon admixtures. Since then, i7T";; has been
remeasured with the most significant change being that
there no longer appears to be an oscillation at backward
angles. At forward angles the oscillation is now smaller
than previously observed and overall the necessity for a
dibaryon has all but disappeared. For the other currently
measured polarization observable ¢,y there is remarkable
disagreement between the results of Gruebler et al.*? and
Ungricht et al.3* The results of the former group still
hold out promise of an exotic phenomenon in 7-d elastic
scattering. At present we can only speculate as to the
eventual outcome of these dilemmas. If there is some-
thing exotic then one would also expect to see a self-
consistent behavior of other m-d elastic observables;
indeed there may be observables where a signature might
be better seen. Even in the absence of exotic effects the
polarization measurements of 7d—md are still very in-
teresting in that they may provide a way of resolving the
ambiguity inherent in the separation of the P,; interaction
into pole and nonpole pieces. In md—d the pole piece is
responsible for true pion absorption while the nonpole
piece contributes to multiple scattering in the P;; channel.
These two pieces are expected to cancel to various extents
for the different observables. Comparison with experi-
mental cross sections seems to indicate a need for a rather
complete cancellation between these two parts. If one be-

lieves the measurement of Ungricht et al. then this ap-
pears to be also true for t,5; however, there is no reason
why there should be complete cancellation for all observ-
ables and one can envisage learning about the separate
pieces of the P;; by a sum of polarization measurements.
For these reasons we deem it timely to examine all the ob-
servables in wd—md despite the obvious experimental
difficulties of doing polarization transfer experiments for
this reaction.

There are 25 independent observables describing
7d—m7d (as usual we assume parity conservation). Un-
fortunately, an analysis of observables in terms of the
underlying bilinear combinations of partial wave ampli-
tudes is not as fruitful for wd—>md as it was for
_p’p—>31r. This is due in part to the large number of par-
tial waves needed for a realistic description; while for
‘ﬁp—»ﬁw there were nine amplitudes contributing for J”
values up to 4%, the corresponding number for rd—nd
is 17. The other reason is that, as it turns out, very simi-
lar combinations of amplitudes contribute to every observ-
able and no observable stands out as being indispensible
for learning about particular partial waves. We shall
therefore not present tables (like Table II) but instead sim-
ply give results of our calculations using the few-body
model.

We feel that, at this stage, the most interesting aspect of
investigating md—>md observables is the above-mentioned
possibility of obtaining information about the pole and
nonpole pieces of the P,; interaction. We would therefore
like to test the sensitivity of the polarization observables
to different models of the P, interaction, and for this
purpose we employ the M1, P6, and BO8 choices intro-
duced in Sec. III A. Moreover, we should emphasize that
our 7-d elastic amplitudes come from the very same cal-
culation that generated the 567 MeV pp—dw™ results dis-
cussed previously; the corresponding kinetic energy in the
m-d laboratory system is 140 MeV. In Fig. 6 we show the
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FIG. 6. Model dependence of the center of mass differential
cross section for the reaction d(w,7)d at the pion laboratory ki-
netic energy of 140 MeV. The three curves are results from
few-body calculations using the P,;; interactions M1 (solid
curve) (Ref. 29), P6 (dash curve) (Ref. 29), and BO8 (dash-dot
curve) (Ref. 7). The experimental points are from Ref. 43.
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FIG. 7. Model dependence of the laboratory-system polarization transfer observables for the reaction d(mr,m)d at the pion labora-
tory kinetic energy of 140 MeV. The three curves are results from few-body calculations using the P;; interactions M1 (solid curve)
(Ref. 29), P6 (dash curve) (Ref. 29), and BO8 (dash-dot curve) (Ref. 7). The experimental points are from Refs. 32, 33, and 44.
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m-d differential cross section in the center of mass for
each choice of Py, interaction. Although the interaction
M1 provides the best fit in this case, it in fact provides
the worst fit for the corresponding pp—dnrt differential
cross section. Thus there really is no “best” choice
amongst the three P,; interactions. The spin dependent
observables are presented in Fig. 7. Many of the observ-
ables display large sensitivity to our three choices of Py,
model. It is significant that one of the most sensitive such
observables is 7,5. Not only is this quantity measurable
with present technology, but the behavior of other observ-
ables, like t}8, it%l_l, and 13, appears so similar that we
suspect that they all carry much of the same information.
As tyo must be much less difficult to measure than the
“transfer” observables, this should provide even more in-
centive for an extensive program to measure ¢,,. Experi-
mentally the most tractable spin transfer observables
would be the vector to vector ones. Of these the least dif-
ficult would probably be the ones involving polarizations
perpendicular to the deuteron’s momenta, namely tH and
ti1 .. In this respect it is extremely interesting that one of
these, ¢11 |, displays a sensitivity to the P, interactions
that appears rather different to that displayed by 2,
(naturally there is a closer relation to it;;); in addition, the
size of #]1, can be quite large so that this observable
should probably be the logical choice for the next genera-
tion of polarization experiments of 7-d elastic scattering.

IV. SUMMARY

In this paper we have investigated the spin observables
of the reactions pp—7*d, pp—dn ™+, and 7d —>md. To
calculate all the observables we have specifically chosen a
procedure that relates partial wave amplitudes directly to
observables. We feel that an investigation of such direct
relationships is important as it relates as closely as possi-
ble theoretical predictions that use a partial wave decom-
position to an experimentally measurable quantity. Our
procedure is similar to the one used by Mandl and
Regge® for the reaction Pp—m*d and involves express-
ing an observable in terms of an orthogonal polynomial
expansion as given by Egs. (1) and (2). The factors
C7(1,I') determine the contribution of the partial wave
amplitude product a;aj to the observable in question and
depend only on angular momentum recoupling coeffi-
cients. In Egs. (23)—(28) we have given specific expres-
sions for these factors for the case of Pp—mTd spin-
correlation observables. We have also derived an expres-
sion for the general polarization transfer reaction
d+b—"¢ +d—given by Eq. (18). In Table II we gave a
tabulation of these factors for the spin-correlation observ-
ables of Pp—m+d and the tensor polarizations of
pp—»ﬁn’f An exhaustive tabulation for all observables
was not given both because of space limitations and be-
cause Table II suffices to demonstrate the way in which
one might use the information contained in such a tabula-
tion. We gave two examples of such uses. The first was
to use a theoretically and/or experimentally based preju-
dice regarding the size of some amplitude to estimate the
sensitivity of an observable to other less known ampli-
tudes. This was illustrated by the well established as-

sumption that the dominant amplitude in pp—7*d is the
2% amplitude a,. Then by looking for products of a,
with other amplitudes (Table III) we deduced that it,,
should be the only observable highly sensitive to the
smaller amplitudes a,, a7, and ag. Similarly we found
that “p’p~—>_d'77-+ observables involving a longitudinally po-
larized proton beam should be sensitive to the 2~ ampli-
tudes a4 and as. The second example that we gave for
exploiting the tabulation consisted of looking for linear
combinations of observables that result in a cancellation
of some of the partial wave contributions. Such linear
combinations could bring an even more useful connection
between theory and experiment. For pp—=7+d we found
that the combinations ogg(1+4+4,,), op(l+4,,), and
oool(l+4,,) depend only on triplet amplitudes,
ooo(l—A,, — A, —A,,) depends only on singlet ampli-
tudes, and ogo(l— A, + Ay +4,,) depends (at medium
energies) only on the two 2~ amplitudes a, and as. Our
examples were mainly for illustrative purposes and un-
doubtedly do not exhaust all the possibilities that may be
obtained from the tabulation of the C}(I,I').

We have also provided numerical calculations of all the
observables for the above reactions. Many of the observ-
ables involving polarization transfer have not, as far as we
know, been previously calculated. To generate the ampli-
tudes we used a unitary few-body model of the NN-7#NN
system.”?° This has the feature that our results for both
pp—7td and md—7d come from solving the one set of
coupled equations. The energy dependence of the
pp—mtd observables was investigated (Figs. 2 and 3),
and a rather interesting behavior of the tensor polariza-
tions t59, 1, and ?,, was uncovered. The tensors were
found to have only mild energy dependence—their shapes
being well described by assuming a dominant a, ampli-
tude. Indeed throughout our investigation we have found
the tensors very insensitive to the choice of energy or
model. The further (experimental) specification of A4,
leads, via Eq. (23), to highly constrained values of t,, and
t5;. This may be of practical value in calibrating a deute-
ron polarimeter or in monitoring a tensor deuteron target
in 7-d experiments.

As a major source of uncertainty in the unitary models
is the form taken by the pole and nonpole pieces of the
P,; interaction, we have tested the model dependence of
our results by using three different descriptions of the P,
channel. Two of these (M1 and P6 of Ref. 29) implement
the propagator and vertex dressing as prescribed by the
unitary theory.® The other (BO8 of Ref. 7) includes the
dressings only in an effective way. The three resulting
descriptions gave very different results for the differential
cross sections of pp—wtd (Fig. 4) and 7d—wd (Fig. 6);
however, not all the spin-dependent observables were sub-
stantially different for the three cases. Of the observables
in pp—7Td that do not involve tensor components, we
found that Ao, A, ityy, til, t19, and ¢!} are the most
sensitive to our choice of model (Fig. 5). For md—wd
many of the observables involving spin transfer displayed
a strong sensitivity to the choice of the P;; model (Fig. 7).
Unfortunately most of these observables would be diffi-
cult or impossible to measure with present technology.
One possibility, however, could be t}l_l which appears to
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display a strong sensitivity at backward angles that is
rather different from that of #,,.
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