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Pion elastic and inelastic scattering on s-d shell nuclei
in the 633-resonance region. Coupled-channel analysis
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Equations of the coupled-channel method are solved in momentum space for pion scattering on
Mg and Si in the 633 resonance region. The elastic and inelastic differential cross sections are

calculated by using the nuclear ground-state and transition densities which correctly describe the
(e,e') data for the same nuclear states. Also calculated are the double-analog double-charge-
exchange reactions Mg(ri+, w ) Si and ' O(n+, w )' Ne, and the results obtained are in surpris-
ingly good agreement with the experimental data. From the comparison of our coupled-channel and
distorted-wave impulse approximation results we conclude that the multistep mechanisms play a
minor role in the reactions considered.

I. INTRODUCTION

In recent years, the number of precise measurements of
pion inelastic scattering to definite excited nuclear states
for a variety of nuclear targets has increased. Most of
such reactions seem to have a one-step character, i.e.,
DWIA calculations reproduce the gross features of dif-
ferential cross sections satisfactorily. Such calculations
were done, e.g. , by Lee and Kurath' for a variety of p-
shell nuclei. The most ambitious DWIA-type calculations
up to now were performed by Lenz et ar. using the
isobar-doorway model. They took into account the modi-
fications of the elementary ~N amplitude in the nuclear
medium as well as the pion annihilation effects (at least at
the phenomenological level). These modifications give a
considerable contribution in some kinematical situations.
Generally a small effect of multistep mechanisms was ex-
pected also in some earlier papers (see, e.g. , Ref. 34).

On the other hand, it is well known that not all inelastic
processes can be accounted for by DWIA-type calcula-
tions. A well-known example iq the charge-exchange re-
action ' C(m+, m )' N. Here, the coupled-channel calcula-
tions remove, to some extent, the long-standing
discrepancy between DWIA results and the experiment.
There are also other inelastic transitions where the mul-
tistep processes seem to play a vital role.

The aim of the present paper is to develop a workable
formalism for coupled-channel calculations of pion elastic
and inelastic scattering processes. The method is based on
the multiple-scattering theory and enables one to take into
account simultaneously a rather large number of nuclear
excited states (up to ten or so) and to investigate in this
way the multistep aspects of the pion-nucleus reactions.

Such aspects are of special interest in the pion scatter-
ing by deformed sd-shell nuclei. In proton scattering by
such nuclei, excited states are strongly popuLated and play
an. important part in any description of proton scattering
processes. It is quite possible that the collective low-
lying excited states may make the multistep pion process-

es also rather strong for this group of nuclei. The failure
of the Glauber model calculations in describing the pion
inelastic scattering in Mg seems to support this point of
v1ew.

In the work reported in the present paper, detailed cal-
culations have been performed for pion elastic and inelas-
tic scattering on "' Mg and Si in the 633 resonance re-
gion, where there exist high-quality experimental data.
We study also the double-analog double-charge exchange
(DCE) reaction Mg(sr+, ~ ) Si, which provides a rather
stringent test of the model developed. The comparison is
made with the similar DCE reaction ' O(m+, m. )' Ne.
The two DCE reactions were rather extensively investigat-
ed on the basis of the Glauber model with mesonic
exchange-current contributions, and the optical models
with the second-order pion-nucleus interaction, and using
the isobar dynamics.

The coupled-channel calculations are compared here
with the DWIA results obtained under the same kinemati-
cal and dynamical assumptions in constructing the corre-
sponding transition matrix elements. Such a comparison
reveals the role of channel coupling in the transitions
studied. We also performed several calculations assuming
the pion on-energy-shell propagation through the nucleus.
An estimation of the off-energy-shell effects was obtained
in this way for the reaction under consideration.

The paper is organized as follows. The coupled-
channel formalism is briefly developed in Sec. II. The
procedure for obtaining the nuclear densities from the
electron scattering experiments is described in Sec. III.
Our calculated results are presented and compared with
the experimental data in Sec. IV. The conclusions are
given in Sec. V.

II. COUPLED-CHANNEL FORMALISM

We start with multiple scattering theory, in the frame-
work of which the pion-nucleus scattering matrix T(E)
can be written in terms of the auxiliary matrix
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T'(E)= (2 —1)T(E)iA

T'(E)= ( A —1)r(E)[1+6 (E)T'(E)],
where the Green's function

(2.1)

the first of which projects onto the nuclear states that are
explicitly taken into account (P space), whereas Qp pro-
jects onto the remaining states. Equation (2.1) takes the
form

6(E)=(E K —H„—+i@)

contains the nuclear Hamiltonian H~ and the pion kinetic
energy operator E . Furthermore,

T'(E) = U(E)[1+PpG(E) T'(E)],

where the potential matrix is given by

(2.4)

r(E)=u+ uWG (E)r(E) (2.2) U(E) =(3 —1)r(E)[1+QpG (E)U(E)] . (2.5)

is the pion-bound nucleon scattering matrix, U denotes the
pion-nucleon potential, and A is the number of nucleons.

Two Projection oPerators Pp and Qp are defined as

Pp —g in)—(n ~, Qp= g ~n)(n
~

Pp+Qp=M,
1

U(E)=(2 —1)r(E) (2.6)

Neglecting the nuclear excitations out of the P space, we
have

n &I' n+P
(2 3)

j

( m
)
T'(E)

i
0) =(2 —1) g (m

)
r(E)

(
n ) [6„p+6„„(E)(n

i
T'(E)

i
0)],

n&P
(2.7)

where G„„(E)= (n
~

6 (E)
~

n )

T ~(E)=u+ud(E)T ~(E),
where

(2.8)

d (E)=(E —K~ —k i
—kc —Uc+i e) (2.9)

Here, k| and kc are the kinetic energy operators of the
target nucleon and of an ( A —1)-nucleon core, respective-
ly. The constant U~ (0 is chosen to have approximately
the magnitude of the nucleon-core potential energy.

The relation

r(E) = T„g(E)+T g(E)[WG(E) d(E)]r(E) (2.10)—
holds and the impulse approximation consists of
r(E)=T~&(E). Since the approximation is based on the
pion-nucleon-core kinematics [see Eq. (2.9)], it is usually
called the "three-body" model. The model leads to a
Galilean-invariant potential matrix"

A. Impulse approximation

Since r(E) is a complicated ( A + 1)-body quantity, we
approximate it by the much more simple three-body
operator

l

volved. Moreover, Kerman, McManus, and Thaler have
shown that at least for small transferred momenta, the
corrections to the IA are roughly A times as small as
those to the CSA. Therefore, we expect that our model
[i.e., Eqs. (2.7) and (2.11)] represents a reasonable approxi-
mation except for the very light ( A ( 10) nuclei.

X5"'(k , k'c—)(qI ~t(z)
~ q, ), (2.12)

where t(z) is the pion-free nucleon scattering matrix. The
meaning of various kinematic variables in the three sys-

TABLE I. Notation used for energies and momenta of the in-
teracting particles.

B. Elements of the potential matrix

Prior to the derivation of the potential matrix U(E), we
recall the obvious identity

( p', k &, k c ~

T „(E)
~
kc, k„p)

= (2m ) 5' '( p '+ k ', —p —k, )

U(E)=(A —1)T g(E), (2.11)

and was successfully applied by Landau and Thomas' in
studying the pion elastic scattering by the helium isotopes.

A question arises whether our step beyond the coherent
scattering approximation (introducing a larger model
space P than just P' '=

~
0) (0

~
) should not be accom-

panied by a corresponding modification of the impulse
approximation, since the corrections to the coherent
scattering approximation (CSA) and the impulse approxi-
mation (IA) tend to cancel each other to some extent. '

Such a modification of the IA is technically rather in-

Initial (final)
pion momentum

Initial (final)
nuclear momentum

Initial (final)
target nucleon
momentum

Core momentum
Reaction energy

(momentum)

Arbitrary system

p (p')

k( (k))

kc (k~)

Q (Q')

—Q ( —Q')

2c.m.

q; (qy)

—q; ( —qy)

Ew, (pw, ) z (p2 )
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tems of our interest, namely in an arbitary system, in a
pion-nucleus center-of-mass system (A, ), and in the
pion-nucleon center-of-mass system (2, ), is apparent
from Table I.

Now the potential matrix can be written as

(a ', p ', n'
I
U(E)

I
n, p, ii )

=(2~) &' '(p'+&' —p —&)(Q'n'I U, (Eg, ) InQ),
(2.13)

where the potential matrix U„(Ez, ) in A, reads as

(Q'n'
I U, (Eq, )

I nQ) = fexp i (Q' —Q) (r'+r)+iv. (r ' —r)
(2n )3 2A

X&p [p„„(r ', r ) ( qf I
t (z)

I q; ) ]d U d r 'd r . (2.14)

Here, r ' (r ) is the nucleon-core relative coordinate in the final (initial) state, p„„(r,r ) is the nuclear density matrix, and
the symbolic notation

&p[p„„(r ', r}(qf I
t(z)

I q, )]=—
I I

~&i ~iz ~a ~i~

'tr'» '»' rir»+» )( qfo''»&»
I
t(z}

I qiir»+» )

is adopted in Eq. (2.14) for the summation over the target
nucleon spin and isospin projections. Momentum v
denotes in Eq. (2.14) the mean relative nucleon-core
momentum in the initial and final states and enters into
the elementary pion-nucleon scattering matrix via

2~ ~(Q'+Q)+M'-='f'+M'
(2.15) 3 —1k= —+ (Q' —Q), k '=

2A

3 —1 (Q' —Q),
2A

(2.19)

I

in Eq. (2.16). This represents a reasonable approximation
for energies Ez, considerably higher than the mean kinet-
ic energy of the nucleon-core relative motion. Second, we
neglected the terms containing v in Eqs. (2.15) and (2.16).
In other words, we replace the actual momentum of a tar-
get nucleon in the initial and final states by the effective
values

(p+ )'
2(m +AM)

(2.17)

where e~ )0 is the nucleon-core binding energy. Here, p
(~) is the pion-nucleon (nucleus) reduced mass, and m
and M are the pion and nucleon mass, respectively.

The potential matrix (2.14) exhibits the nonstatic and
nonlocal features of pion-nucleus interaction. In the vi-

cinity of the b, 33 resonance it describes the free b, 33 isobar
propagation between points r' and r much like the
isobar-doorway model. " However, there is no dynamical
distortion' of the isobar propagation in Eq. (2.14), which
has been taken into account at least phenomenologically
(via the spreading potential) in the recent isobar-doorway
calculations of pion elastic and inelastic scattering by
Lenz. '" In our model, a portion of the 6-core dynamics is
taken into account explicitly via solving the coupled chan-
nel system (2.7) within the P space.

In practical calculations, we have used approximations
that lead to a more static picture of the n. Nsubsystem-
propagation. First, we set

1 p
2M~A —1

v —Uc —ez ——0 (2.18)

l2
1. p, A 3 —1E"-2M~ A

1"-
2A

(Q'+Q} U-
(2.16)

since the energy E is scaled as

respectively. Such an approximation is very good for di-
agonal (n =n') matrix elements" of U, (E~, ), and its va-

lidity for nondiagonal elements was investigated in detail
by Lenz et a/. In some instances the last approximation
can yield for n&n' substantially different forward
(Q=Q') and/or backward (Q= —Q') matrix elements of
the "exact" (2.14) and approximate potential matrix

(Q'n'
I U„(E~, ) I nQ)

=(A —1)Sp[F„„(Q'—Q)(qfo I
t(zo)

I q;0)], (2.20)

since the latter may vanish there due to symmetry of the
nuclear form factors

(Q Q) f i(A —1/A)( Q
' —Q ) r

( )d3 (2 21)

Therefore, our approximate potential matrix is ex-
pressed in the "factorized" form (2.20) as a combination
of nuclear form factors and the elementary m.N amplitude
evaluated at effective pion momenta qfo and q;0 [see Eq.
(2.15)], and the effective pion energy

zo =E~e — (Q '+Q}'
SM m (2.22)

and the only m/M- —,
' terms retained in our calculations

are those associated with the "angle transformation. "' It
can be shown" that Eqs. (2.20) and (2.22) describe the
propagation of the mN subsystem between points r ' and
r; however, the density matrix p„„(r ', r) is approximated
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by its diagonal element p„„(—,'(r '+ r), —,'(r '+ r))
—=p„„(—,'(r '+r)).

The nuclear structure input in Eq. (2.20) can be extract-
ed to a large extent from the electron scattering experi-

ments, whereas a reliable evaluation of the "exact" expres-
sion (2.14) requires rather detailed knowledge of the nu-
clear wave functions of the ground and corresponding ex-
cited states, which is rarely available.

C. Pion-nucleon amplitude

The pion-nucleon scattering matrix can be expressed as

& qfo I
t (zo)

I q o) = — I A op+( t r )A01+i o'[ vf )( v', ](A 10+( t 7)A)1) l
p

(2.23)

where, e.g., vf ——qfp/ I qfp I, t is the pion isospin opera-
tor, and o and r are the spin and isospin operators of
the target nucleon, respectively. Furthermore, AqT
=As&(cos8) (S=0,1; T =0, 1) are usual' combinations
of the pion-nucleon off-energy-shell partial amplitudes
fl'a+' and c—os8= vf v;. Here, i is the pion-nucleon angu-
lar momentum, a= —,

' or —', is the isospin of the mN sys-
tem, and (+) corresponds to the total spin j=l+ —,

' of the
system.

I
(+)(

)
p

[1+(rop)']'
(2.25)

of the partial amplitudes. The on-shell values
fi'a '(p2„p—2„zp), p2, ——+2pzp were calculated according
to Ref. 17. The nonlocality of the 1rN amplitude is
characterized by the function Ul

—'(p), p =qfo, q;p, and p2, .
The parametrization

We used the separable form
(+) (+)

(+) (+) Ula (qf 0)Ula (qiO)
fla =fla (qfo, qi0&zp)= (+) 2[Ui; (P2, )]

(+)Xfla (P2c ~P2c ~Z0 ) (2.24)

was utilized in our calculations. The value rp 0.47 fm-—
leads to U1(3/2)(p), which is very much like the AN separ-
able potential' in the corresponding (resonating) particle
wave.

With the help of parametrization (2.23), the resulting
expression for the potential matrix reads as

(9'n'I Uc«~c) I
"Q&=— (A —1) P AsT&' '[vfxv ])"~s 'SP[~'s 'oP'+n'(Q' —Q)].

p S, T=0, 1'yS'
(2.26)

We defined crz' ——1 for S =0 and o'I"=o'y for S =1.
Similar relations hold also for i' ', ~& ', t's ', or ', and

[vf&&v;]I '

D. Relativistic corrections

( Q I
G„„(E)I Q) =2.W(pz, —Q —2..&e„+ie)

is replaced in Eq. (2.7) by

(Q IG„„(E)IQ) =[I'—@'„(Q)+le] ', (2.27)

where e„ is the nuclear excitation energy ( eo ——0) and

Since our calculations will be performed in the energy
interval 100(E&,&250 MeV, it is necessary to evaluate

relativistic kinematical corrections. Doing so we follow
the prescriptions of Ref. 19.

(i) The nonrelativistic Careen's function

&=@'0(go)=E (Qo)+E~ '(Qo)

is the total reaction energy (
I Qo I

—=p„, ), and

(g) (g2+ ~ 2)1/2

(EN)(Q) [Q2+ (M + )2]1/2

@'—&„(Q)=@' (Q„)—@'„(Q)= Q Q2

2M(n, g) '

where

(2.28)

Furthermore, 8'„(Q)=E (Q)+E„'"'(Q) holds and the re-
lation 8' —8'„(Q„)=0 defines the pion on-shell (asymp-
totic) momentum in an nth channel.

It can easily be shown that

1 @'+@",(Q)
-f~(n Q) [N'+@'„(Q)][E (g„)E'"'(g„)+E (g)E'"'(g)] (2.29)

Therefore, the relativistically modified system (2.7) again has the form of the coupled Lippmann-Schwinger equations

n&P Q~ —Q +i 6'
(2.30)
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where, however,

( Q'n'
~

F($')
~
OQO) = — [M(n', Q')~(O, Qo)]'~ (Q'n'

~

T(8')
~
OQO), (2.31)

and [see Eq. (2.26)]

( Q 'n'
~

V(zo)
~

nQ & = W'„„(O',Q) g ~szi ' '[vf X v ]r 'r's '~P[~r '&s 'P««(Q ' —Q)]
STyS

(2.32)

W„„(Q',Q) =
1/2

m(n', Q')m(n, Q)
!M(Q', k')!M(g, k)

The transformation factor

(2.33)

(iii) The relativistic generalization of the effective ener-

gy zo was postulated in the spirit of the "three-body"
model. For instance, for the matrix element (2.32), it has
the form

was obtained using Eq. (2.29) and the relativistic relation
between the elementary m¹cattering amplitude and the
mN amplitude in 2, . %'e denoted

zo ——8'+m +M — (m +M) + (Q'+Q)
2A

2 1/2

2 '1/2

p(Q', k') =E (Q')E!v(k') I [E (Q')+E!v(k')l

(q s+ k r)2I 1/2 (2.34)

(A —1) M + (Q'+Q)
2A

(2.36)

qfo ——!M(Q', k')

liO=P'(Q& ) E (g)

k'
E!v(k')

k
E„(k)

(2.35)

the validity of which was discussed in Refs. 19 and 20.

where the nucleon momentum k ' is given by Eq. (2.19).
An analogous relation holds also for!M(g, k).

(ii) The 2, momenta qfo and q;o are given by the ap-
proximative relativistic formulas

which in the nonrelativistic limit coincides with (2.22).

E. Method of calculation

P
Q«Q« Q—(2.37)

into the 6 function (pion on-shell propagation) and princi-
pal value part, we have

As a next step in solving system (2.30) we perform the
usual decomposition in pion-nucleus partial waves. If,
furthermore, the Green's function is split,

+ L', OL(Q Qo) ~ L', OL(Q QO)+! y Q ~ L', L"(Q Q )P L",OL(Q Qo)
m, L"

2 - Q"'~"L, I. (O' Q"»"L~-,OL(Q" Qo) —Q'~ L, I. (O' Q )F"L-,OL(Q Qo)
d

(2.38)

Summation in the 5-function term runs over the open channels only; this is denoted by a prime. We used the same regu-
larization of the principal value integral as suggested by Haftel and Tabakin ' in the elastic scattering case. The partial
waves are labeled by the total pion-nucleus spin j (e.g. , j =1.'+ J«=1."+J~), isospin I (e.g., I = 1+T„=1+T ),
and parity P Finally, . L, L', and L" are pion-nucleus angular momenta in corresponding channels. The dependence of
the potential matrix on energy zo is not shown explicitly in (2.38).

Starting from Eq. (2.32), we obtain the elements of the potential matrix in the form

c ~
L „L(Q',Q)= W„„(Q',Q)(A —1) g ( —1) " " ([LL'N])'~ [lrCD]

lrpN
CDST

t y 1/2 1
2.3T.6s. 2& !L' Lg+i lpg! —p . —

2p T

L
I . IS S S.

CD ~

D Cl LSC pDr I —p Cr
l —pp r 000 000 0 00

P, (c s&o)Asr(cos8)H(~ (cos&)n', n)d(cos&) .—1
(2.39)
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Here P„(cos@) are Legendre polynomials. AsT(cos8) are combinations of mN amplitudes, and the nuclear structure
enters into (2.39) via scalar quantities,

H~~ (cos8, n', n) =&4m+ &[N]( —1) "

J J'v

Tn T Tn

tsar

—J' v J ~y

—l
&& Jq 'Ji qr ~iA, (")~p[rs ~I p ' (r)]d" (2.40)

where q =Q
' —Q and cos& =Q ' Q/(Q'Q).

The system (2.38) was solved using the matrix inversion
method. ' The Coulomb interaction (finite size nuclear
charge) was taken into account only in the elastic scatter-
ing matrix elements (n'=n =0). The elastic scattering
phase shifts were obtained by using the matching pro-
cedure of Vincent and Phatak.

III. NUCLEAR TRANSITION DENSITIES

The transition densities p„„(r) in (2 40) should normal-
ly be calculated within some nuclear model wave func-
tions of the states

~

n ) and
~

n'). Unfortunately, the
models currently used are typically unable to reproduce,
e.g. , the observed electron scattering data. Since the
difference between theoretical and experimental (e,e') re-
sults are sometimes really large, it would be meaningless
to use such inaccurate nuclear structure information as in-
put for the (~,m') calculations. Instead we wish to extract
pn n from the known cross sections of inelastic scattering
of electrons on a given nucleus. From electron-scattering

I

experiments we can obtain only transition densities
p„o(r). When the calculations with pions in the frame-
work of the coupled-channel (CC) method are performed,
one needs the densities p„„(r) with, generally, n&0. To
determine them, it is necessary to start with some nuclear
model.

One can see that expression (2.40) contains the reduced
matrix elements of the tensor operator.

Mx",s=q i'i(qr)[I'Ir "']~.~s
'

between the nuclear states characterized by indices n' and
n. In Mg, Mg, and Si approximately half of the
2sld shell is occupied by nucleons; the nuclei are there-
fore believed to be deformed, and we use the collective
axial-symmetric rotor model for their description. In
the framework of this model the nuclear state is charac-
terized by ket

~

n ) =
~
J„K„J ), where K„is the projec-'

tion of J„on the symmetry axis of a nucleus (we omit the
isospin part). The reduced matrix element of the tensor
operator M& ' between these states can be written as

(J„K„I ~M~"
~ ~
J„K„)=Q[J„]

Jn X Jn
( —)

"' "'(K„~M'",
~
K„)

n' n' n - n

(2.41a)

for K„&0,K„&0and

J„NJ„v2 for K„&0"'«'
I M~x. I

» 1 f- K„,=() . (2.41b)

It is to be noted that the radial part of the reduced matrix element which contains the Bessel function j&(qr) rapidly tends
to zero (for not too large q) with an increasing value of 1. Therefore we restricted our numerical calculations to l &4 and
N &4. Indeed we also assume that the contribution of spin-dependent operators [ Y~scr]~ can be neglected. These facts
allow us to rewrite for K & 2 expressions (2.41a) and (2.41b) in the more compact form

(2.42)
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In terms of (2.42) one can determine the intrinsic matrix
elements (K„~M&z, rr ~

K„) from experimentally

known (e,e') form factors and eventually obtain all form
factors needed for CC calculations of the (~,m') reactions.
Doing so we always assumed that the proton and neutron
densities are the same. Therefore, we arrived at the rela-
tion

V T(T + 1)(K„~MrIrx, x K„) (2.43)

IV. RESULTS AND DISCUSSION

between the isoscalar and isovector reduced matrix ele-
ments. Equation (2.43) holds in the case T„=T„=T;
only such transitions are assumed in our examples.

In Mg four positive-parity isoscalar ( T =0) states are
excited in (n, n'): .J=K=0 (g.s.); J=2, K=O (1.37
MeV); J=2, K =2 (4.24 MeV); J =4, K =2 (6.01 MeV).
The CC calculation involving all these levels needs 29 nu-
clear form factors which can be determined from five
electron form factors by the method proposed above. In
the case of Mg we considered two positive-parity T =1
states in the CC calculation: J=K=O (g.s.) and J=2,
K =0 (1.81 MeV) that necessitates five form factors to be
determined from the two electron ones. Three T =0
states, J=K =0 (g.s); J =2, K=0 (1.78 MeV); and J =4,
K =0 (4.62 MeV) have been included into the CC calcula-
tion with Si. Eleven form factors needed have been ob-
tained by the aforementioned procedure from three elec-
tron ones.

For each transition we have fitted the constants of the
two-parameter Fermi density p2&r; (or r 'dpi'&Fldr for
inelastic scattering) so that the corresponding Fourier
transforms describe the experimental electron form fac-
tors for all nuclei considered (

" Mg, Si, and also ' 0).

that replaces the system of integral equations (2.38).
It has already been shown " that the on-shell approxi-

mation reproduces all basic features of the pion-nucleus
scattering in the 633 resonance region surprisingly well.
The comparison of the full coupled-channel calculations
with those containing only the pion on-shell propagation
indicates the role of the pion off-shell scattering mecha-
nisms which are rather strongly model dependent.

The nuclear densities used as input in our CC calcula-
tions are determined from the electron scattering experi-
ments. We have assumed that the proton and neutron
densities are the same for all the nuclei considered. No at-
tempt was made to modify the nuclear densities for better
fitting to the pion-nucleus scattering data.

A. m. +- Mg scattering

In Fig. 1 the calculated results are compared with the
experimental data for ~+ elastic and inelastic scattering
on Mg at E~=180 MeV. The ground state as well as all
the excited states considered are the isoscalar ( T=0) lev-
els. The results of our complete CC calculations are
denoted by full lines. The dashed lines were obtained

100

't0

10

In this section we present the results calculated for pion
elastic and inelastic scattering by ' Mg and Si within
the coupled-channel formalism. These results are com-
pared with the existing experimental data and with our
DWIA calculations.

The aim of the comparison is to reveal the importance
of multistep mechanisms in pion-nucleus scattering in the
region of light deformed nuclei. In some instances the re-
sults of coupled-channel calculations are also displayed in
which the pion propagation off the pion-nucleus energy
shell is disregarded. The procedure consists in neglecting
the principal-value part in the decomposition (2.37) of the
Green's function. In such a case, the pion-nucleus scatter-
ing amplitudes are solutions of the system of algebraic
equations
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FICx. 1. Comparison of calculated results with experimental
data I,'Ref. 26) for m+ elastic and inelastic scattering on Mg.

four coupled channels; ———channel coupling "turned
off."
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when the channel coupling was turned off. Therefore, the
dashed lines represent the optical model and DWIA re-
sults for pion elastic and inelastic scattering, respectively.
It may be concluded that qualitatively the calculated re-
sults reproduce the experimental data well in the region of
small scattering angles. There are definite discrepancies
in the region of the first minimum, and the diffractive
patterns of the calculated curves are somewhat shifted to
smaller scattering angles as compared with experiment.
The difference between the full and dashed curves is very
small; therefore the multistep processes play only a minor
role in both the pion elastic scattering and those inelastic
reactions that were considered in our calculations.

It should be noticed that there are small differences be-
tween our present and previous CC calculations. In ex-
tracting the nuclear densities from electron scattering data
in our preceding paper we erroneously omitted the pro-
ton form factor.

There are also some differences between our DWIA re-
sults and those of Wiedner et al. , especially as far as the
heights of secondary peaks are concerned. This is not
surprising, since these authors used a crude model of the
nuclear structure, where a certain "deformation parame-
ter" PL should be fitted. Nevertheless, the diffractive
structure obtained in Ref. 26 is also shifted towards small
scattering angles as compared with experiment, in much
the same way as our results.

B. m
—- 'Si scattering

In Fig. 2 the coupled-channel results (full lines) ob-
tained for the vr - Si elastic scattering are compared with
the experimental data at three energies. Assuming only
the pion on-shell propagation we arrived at the results
shown in Fig. 2 by dashed lines. The one-channel
(optical-model) calculations are not shown in Fig. 2, since
they differ only slightly from the full lines. An analogous
comparison of the calculated and experimental results is
performed in Figs. 3 and 4 for pion inelastic scattering to
the (2~+,0) and (4&+,0) levels, respectively.

As in Fig. 1', we can observe that CC calculations pro-
duce a diffractive structure, for ~- Si elastic and inelastic
scattering, which is shifted somewhat towards low scatter-
ing angles as compared with experiment. Such a shift
might be removed by slightly changing the diffusivity
parameter of the nuclear densities. However, as follows
from the comparison of our full CC and pion on-shell re-
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FICx. 2. Comparison of coupled-channel results with experi-
mental data (Ref. 27) for m elastic scattering on Si.
three coupled channels, complete Green's function;
three coupled channels, pion on-shell only propagation.
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FIG. 3. Comparison of coupled-channel results with experi-
mental data (Ref. 27) for m - Si inelastic scattering to the
(2&+,0) level. The meaning of the curves is the same as in Fig. 2.
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FIG. 4. Comparison of coupled-channel results with experi-
mental data (Ref. 27) for n. - 'Si inelastic scattering to the
(4~+,0) level. The meaning of the curves is the same as in Fig. 2.

30 40 50 60 70 80 90 't00

0, Idegj

FIG. 5. Comparison of coupled-channel results with experi-
mental data (Ref. 28} for m —+- Mg elastic and inelastic scatter-
ing. m+ scattering; ———m scattering.

suits, the position of diffractive minima is also affected by
the off-shell effects.

One can conclude that the CC calculations reproduce
rather well the experimental data in the region of small
scattering angles. The only exception is the inelastic
scattering to the (4~+,0) level, Fig. 4, where there are some
discrepancies for angles 5 (30'. As a rule, the CC calcu-
lations give a better overall description of the experimen-
tal data than the on-shell calculations. This is apparent
especially for the highest energy E =226 MeV data
shown in Figs. 2—4. Nevertheless, the positions of dif-
fractive minima are sometimes better reproduced by the
less model-dependent on-shell calculations.

C. m.—- Mg scattering

In Fig.5 the CC results obtained for the ground state
elastic n+ Mg scatte.rin-g and for the n+ Mg inelastic-
scattering to the excited (2&+, 1) state are shown by the full
lines. Analogous results obtained for the m - Mg
scattering are given by dashed lines, and the comparison
with the experimental data at E =180 MeV is per-
farmed.

In contrast with the two previously discussed nuclei,
Mg and Si, we have to deal with two isovector levels in

the case of Mg. Therefore, the potential matrix (2.26)
contains now, aside from the usual isoscalar term, also the
isovector part that is associated with the isovector part
Ao~ of the n.N amplitude. Thus the difference between

our m+- and m - Mg results is caused by Coulomb and
strong interaction effects.

Though the forward elastic scattering is fairly well
reproduced by our calculaitons, the calculated diffractive
structure is shifted towards low scattering angles as com-
pared with experiment. The shift is smaller than 5 in the
case of elastic scattering and it amounts to about 15' for
the inelastic scattering. In our calculations the first dif-
fractive minimum in the elastic m - Mg scattering
occurs at a somewhat smaller angle than in the elastic
m+- Mg one. The same trend is also observed in the ex-
periment; however, the quantitative description of the ef-
fect is rather poor. The calculations do not reproduce a
rather large difference between the m+- and m -inelastic
data in the first-peak region. Such a difference seems to
indicate that the protan and neutron densities differ for
the (2&+, 1) state.

The difference between CC calculations and optical-
model or DWIA ones is again very small, and it is not
shown in Fig. 5.

As for the comparison of our calculations and the ex-
perimental data, a word of caution is in order. The elec-
tromagnetic form factors from which we extract our nu-
clear structure input are experimentally known in dif-
ferent (and unfartunately rather narrow) intervals of
transferred momentum for different nuclei and nuclear
transitions. The best experimental data are available for

Mg. Both the electron elastic and inelastic ' form fac-
tors are measured up to q -2. 1 fm '. Such a transferred
momentum occurs in pion-nucleus scattering of E = 180
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FIG-. 6. Double-analog transitions ' O(~+, m )"Ne and
Mg(m+, ~ ) Si. Comparison of the calculated results with ex-

perimental data {Ref. 29) for differential cross sections at
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shell only propagation.

D. Double-charge-exchange reaction 6Mg (m+, m ) Si

We applied our model also to the double-analog transi-
tion Mg(sr+, sr ) Si which has been recently measured
at 5=5 for several energies around the b, 33 resonance.
The comparison of the CC result and experimental data
is done in Fig. 6. The agreement between the calculated
and experimental results is very good. Also, in this case
the channel coupling plays a minor role. The one-channel
(ground state) calculations, not shown in Fig. 6, differ
from the full line typically by 5 percent. Our model cer-
tainly provides a better description of the experimental
data than the Cxlauber model calculations (irrespective of
whether the meson exchange current corrections are taken
into account or not). The pion on-shell calculations
(dashed line) are in rather strong disagreement with the
experiment, especially below and above the resonance.
Such a situation is typical for a pion double-analog transi-
tion. This is demonstrated by our one-channel calcula-
tions of the ' O(sr+, n )' Ne reaction.

The agreement between the calculated and experimental

MeV for the scattering angle 8 &65'. Electron data ' of
almost comparable quality are available for the Si nu-
cleus. The least favorable situation occurs for Mg,
where the elastic and inelastic form factors are known
only up to q —1.15 fm '. This corresponds to the pion
scattering angle 5 & 28 for E = 180 MeV. In view of
this, it is not surprising that our calculations agree better
with pion scattering data on Mg than in the case of the

Mg nucleus.

results for the Mg(mr+, sr ) Si reaction indicates that
the assumption p~(r) =p„(r) is fulfilled for the Mg
ground state within a reasonable accuracy. It is encourag-
ing that the model accounts for both the forward elastic
and forward Mg(sr+, sr ) Si data which differ by six
orders of magnitude, without any adjustment of parame-
ters.

On the other hand, we are not able to correctly repro-
duce the dip position in the differential cross section of
the ' O(rr+, sr )' Ne and Mg(sr+, rr ) Si reactions,
which takes place at 8-20'. Similar to other calculations
that use only the analog intermediate states or several
nonanalog ones, our calculated minimum is shifted con-
siderably towards the large scattering. angles. To account
for the differential cross sections of DCE reactions, one
should provide room in the model for substantial core ex-
citations during the reaction, as the results of Ref. 8 seem
to indicate.

V. CONCLUSION

We have demonstrated that the multiple-scattering for-
malism is capable of explaining the pion-scattering data
on representative s-d shell nuclei in the vicinity of the
633 resonance energy. The conditio sine qua non for that
is the realistic nuclear structure input. In many transi-
tions the calculated cross sections tend to differ consider-
ably with data in the q range (e.g., for q & 1 fm ' corre-
sponding to e ) 30' at F. =160 MeV) where the nuclear
density is not fixed by the measured (e,e') form factors. It
seems that at present the most important theoretical task
should be a development of the new models of the wave
functions for the nuclear initial and final states capable of
providing the necessary detailed information.

The calculation provides a justification of the DWIA
method for the nuclear transitions considered and at ener-
gies near the 633 resonance. Our earlier experience with
the p-shell nuclei supports, however, the possible impor-
tance of the strong channel coupling at lower (E &100
MeV) energies. Data for the (sr, sr') reaction on Mg and Si
isotopes at such energies would be welcome.

Technically, a very simple on-shell variant of our for-
malism which actually solves a system of algebraic rather
than integral equations seems to be very well suited for
quick estimates in the b, 33 resonance region of energies.

The forward doub1e-charge exchange data for the
double-analog transitions ' O(sr+, sr )' Ne and

Mg(sr+, sr ) Si have been reproduced unexpectedly well
despite the extreme crudeness of our approach to this re-
action. The mechanism suggested here fails, however,
completely for nonanalog transitions like
' O(sr+, sr )' Ne, where including more than ten inter-
mediate (T =1) nuclear states in our CC system left us
with a cross section more than an order of magnitude
below the data.
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