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A Lorentz invariant form of the NN amplitude is fit with a simple model which includes direct
and exchange first Born terms from a number of "mesons. " The (complex) couplings and nucleon-
meson form factors are adjusted to fit the NN amplitudes directly without iteration. The resulting
parameters agree well with one-boson-exchange potentials and have a systematic and small energy
dependence. Detailed analytic representations of the relativistic NN amplitudes are provided at lab
energies of 135, 200, and 400 MeV. The model separation of the NN amplitudes into direct and ex-
change contributions does not involve sensitive cancellations and is contrasted with the very dif-
ferent nonrelativistic results. The model amplitudes are used to construct optical potentials in a rel-
ativistic impulse approximation using both pseudovector and pseudoscalar n-N coupling. The pseu-
doscalar result reproduces earlier relativistic impulse approximation calculations which diverge at
low energies, while the pseudovector results are nearly constant with energy and in good agreement
with phenomenological potentials.

I. INTRODUCTION

Recently, a number of relativistic approaches to
nucleon-nucleus scattering have shown the importance of
correctly treating the strong relativistic interactions. Rel-
ativistic impulse approximation (RIA) (Ref. l) as well as
mean field theory (MFT) (Ref. 2) calculations, give a N-
nucleus optical potential which has Lorentz scalar and
vector components of order one-half the nucleon mass
(and opposite signs). Furthermore, these strengths are im-
portant in correctly describing spin observables.

However, RIA calculations to date have not explicitly
treated exchange contributions, have suffered from ambi-
guities in the reIativistic form of the NN amplitudes, and
have, for the most part, been limited to elastic scattering.
In this paper, a simple model with explicit exchange terms
is fit to the relativistic NN amplitudes. This allows one to
examine different off-shell extrapolations in the exchange
terms. Furthermore, the simplicity of the model may be
very useful in relativistic inelastic scattering calculations.
Finally, the model allows one to examine a number of rel-
ativistic ambiguities in the NN amplitudes.

The commonly used McNeil-Ray-Wallace (MRW) (Ref.
4) form of the relativistic amplitudes is completely local
and thus cannot fully treat the nonlocalities that must be
there from exchange. At lab energies of 500 MeV and
above (where the RIA works well), this appears to be a
good approximation. But, as the energy is lowered, this
incorrect treatment of exchange must fail. Indeed, the
scalar and vector optical potentials from the RIA diverge
at energies below 100 MeV, becoming much greater than
phenomenological optical potentials (which are nearly
constant with energy ).

An important step in RIA calculations (see the follow-

ing) is to equate four component spinor matrix elements
of some two-nucleon operator to the NN amplitudes.
Then, the projectile spinors are stripped away and the bare
operator used to construct an optical potential. The prob-
lem is that there are an infinite class of operators which
have the same free spinor matrix elements but which give
different optical potentials. Thus, the N-nucleus observ-
ables calculated in the RIA depend explicitly on the as-
sumed (arbitrary) form of the NN operator used to
represent the amplitudes. Therefore, it is important to
have a simple model of this operator where one can exam-
ine carefully the assumptions made about its form.

Our model for the NN interaction considers the ex-
change of a number of "mesons" in first Born approxima-
tion including both the direct and exchange NN scattering
diagrams. The meson couplings (complex) and meson-
nucleon form factors are adjusted until the relativistic rep-
resentation of the Amdt amplitudes is reproduced
directly without iteration of the meson exchanges.

The motivation for this procedure is severalfold. First,
the fit provides a simple analytic form which may be use-
ful in calculations and a detailed examination of different
off-shell extrapolations. Second, the fit gives a model
separation of direct and exchange contributions to allow
systematic improvements in the treatment of exchange in
nucleon-nucleon scattering.

The assumptions the model makes about the relativistic
form of the NN amplitudes are very simply related to the
type of meson-nucleon vertices used. Therefore we easily
study the sensitivity of the resulting RIA optical potential
to different vertices. (For example, the differences be-
tween pseudoscalar and pseudovector tr Ncoupling. ) In-
addition, the parameters from the fit are very close to
couplings of one boson exchange potentials (OBEP's).

31 1340 1985 The American Physical Society



31 RELATIVISTIC LOVE-FRANEY MODEL: COVARIANT. . . 1341

Thus, our model separation of direct and exchange contri-
butions is expected to be close to the results of a full
OBEP.

We are interested in the Lorentz structure of the NN
amplitudes (how the net amplitude is divided into Lorentz
scalar, vector, etc. , pieces). First Born approximation has
proven to be a good guide for the Lorentz structure of the
optical potential or self-energy. The scalar self-energy is
almost unchanged when relativistic mean field calcula-
tions are replaced by full Brueckner calculations. Thus,
Born approximations may be a useful first representation
of the structure of the NN amplitudes.

There are a number of significant advantages of a rela-
tivistic approach over the conventional nonrelativistic
work of Love and Franey, where the NN interaction is
represented by an arbitrary sum of Yukawa functions.
First, there is a simple relationship between the individual
Lorentz invariant amplitudes and the mesons exchanged
which is lacking in the nonrelativistic treatment. Second,
the parameters of the fit may be more meaningful since
they are close to OBEP values, and have a systematic and
small energy dependence. . There is no sensitive cancella-
tion between direct and exchange contributions (see Sec.
IV). In contrast, the Love-Franey fits have individual
direct and exchange terms which are an order of magni-
tude larger than the net. Finally, our fit is Lorentz co-
variant and allows one to correctly treat strong relativistic
optical potentials.

In Sec. II, the formalism of our fit is presented. Then,
in Sec. III, detailed results are presented for lab energies
of 135, 200, and 400 MeV. This section also shows the
quality of the NN observables produced. The model
separation of direct and exchange contributions is dis-
cussed in Sec. IV and contrasted with the very different
nonrelativistic results, while Sec. V uses the amplitudes to
construct RIA optical potentials for both pseudoscalar
and pseudovector ~-N vertices. %'e find that our explicit
treatment of exchange together with pseudovector pion
coupling leads to optical potentials in good agreement
with phenomenology. Our conclusions are in Sec. VI.

II. FORMALISM FOR THE NN AMPLITUDE

Since there is only a limited amount of information in
the NN phase shifts, one needs an explicit model of the
NN amplitude to learn about its Lorentz structure and
off-shell behavior. In principle, a OBEP model complete-
ly determines the full Dirac structure of an off-shell t ma-
trix -- and, indeed, such calculations are underway. '
However, the complexity of this program has limited
physical insight into the resulting amplitudes. Further-
more, most of the justification for one-boson exchange
(OBE) models has come from their reproducing of on-
shell NN data. Predictions for the off-shell, or Lorentz
structure of the NN amplitudes, need not be correct since
they have never been tested. Therefore, the extra com-
plexity of the full calculations may not be justified. In-
stead, we work with a simple model that reproduces the
same NN data and has coupling constants close to those
of OBE models. Because our couplings are similar, this
simple model may give results close to those of a full
OBEP.

Here, f, is the nonrelativistic amplitude, A, . . . , F. are the
Wolfenstein amplitudes, and k, is the momentum in the
c.m. frame. This is then equated to the Dirac spinor ( U)
matrix elements of the relativistic amplitude F,

(2ik, ) 'f, = U} U2FU} Up, (2)

represented with the set of Lorentz invariants ( i:
s =scalar, U =vector, p =pseudoscalar, a =axial vector,
and t = tensor).

t

F—g A(}}A (2}F
l =S

yP

a @5'~
~pv

Our gamma matrix conventions are those of Ref. 11. The
optical potential in an impulse approximation is given by
[see Sec. V and Ref. 1]

U,~, = 4vri — (F'p, +y F"pb),
M

(4)

where p is the momentum of the projectile and p, is the
scalar and pb the baryon density of the target.

We fit the invariants F with direct plus exchange con-
tributions

F'=i '
[FD(q)+.F',„(Q)] .

2Pc.m.

Note the kinematic factor where 2p, =(2T},bM)'~,
with T~,b the projectile's kinetic energy, E,
=[p, +M ]', and the direct momentum transfer q
for scattering angle 0, is

q =2p, sin(6}, /2),
while the exchange momentum transfer Q is

Q =2p, sin

For the direct contribution, we use

where

types' =kind of meson —N coupling for the jth meson,

(s, u, t, a, rop),

X =number of mesons used in fit,
(9a)

(9b)

Our starting point is the conventions of McNeil, Ray,
and Wallace for the NN amplitudes

(2ik, ) 'f, =A +Bo} o2+iqC(a }„+oq„)
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IJ =isospin of jth meson (0 or 1),
P(q)=f4(q) ~f3(q).

2

fg (q) =
2 (1+q /AJ )

q +mJ
—2

fj(q)=, ', (1+q'/&,')
q +mJ.

(9c)

(9d)

(9e)

with mj being the meson mass and parameters gJ and Aj
fit to data. For the imaginary parts, one has the new pa-
rameters mJ, g J, and Aj.

For the exchange terms, we rewrite exchange Lorentz
invariants in terms of the five direct invariants of Eq. (3).
This is known as a Fierz transformation. ' To start, con-
sider the exchange contribution of a scalar meson. The
elementary Feynman rules [see, for example, (2)] put a
factor at each vertex proportional to the unit matrix. This
gives a 4X4EB4&4 matrix contribution to the NN ampli-
tude which depends on

Using this matrix, one has

F',„(Q)=( —1) g C,y~, (rl r2) 'fJ(Q),
J

(14)

where I~N is the isospin of the two-nucleon state. Final-
ly, one takes combinations of isospin states to get pp and
pn amplitudes

F'(pp) =F'(INN ——1),
F (pn) =—[F'(INN ——1)+F'(INN ——0)] . (15)

These equations [(5), (8), (9), and (14)] form the basis of
our fits in Sec. III. Again, the parameters are, for the real
amplitudes, g; and cutoffs A;. In most cases, the masses
will take on their experimental values (see Sec. III). We
have chosen to use nonlinear cutoff parameters in Eq. (9d)
rather than a sum over Yukawas of different ranges in or-
der to minimize arbitrary cancellations that can result
from a linear sum over couplings of different signs. It is
easy to Fourier transform equation (9d) into r space

[ l]&z [1]2I (10)

Here the 1 (1') index refers to the initial (final) spinor of
particle one. This is expanded

[ 1]~2 [1]2I ——$ CjA, II 222 ,
J

d gfj(r)=f,e" fg(q)
(2m )

g AJ J J
4~ Aj —m, A,. —m'.

—m-r
e

—A r
e

or, in general,

~12'~21' —g Ckj~1 1'~22' i
k k j j

J

and the Fierz matrix C is

Ckj
——tr( A,"AjA,"Aj)/[tr[&'&']]',

2 2 1 —2 2

(12)

—~.r
e

2

For the imaginary amplitudes, the meson masses were
chosen essentially arbitrarily, and the couplings g; and the
cutoffs A; fit to data. In most cases, we were not able to
determine both m; and A; independently.

8 —4 0 —4 —8

C =— 24 0 —4 0 24
1

8 —8 —4 0 —4 8

2 —2 1 2 2

(13)

Note that C C= 1 since the exchange of the exchange
leaves the nucleons in the original order. Since both C„
and C„= 4 the exchange contribution from a scalar
meson will contribute to both scalar I', and vector I'„ in-
variants with equal weights. In contrast, the exchange
terms from a vector meson lead to a large scalar contribu-
tion (C» ——1) and a vector contribution of opposite sign
(CU~ ——

~ ) ~

III. DETAILS OF THE FITS TO THE NN DATA

Gne must fit to the pp and pn data simultaneously in
addition to fitting all five invariants s, U, p, a, and t at
once. (However, we fit real and imaginary parts separate-
ly. ) Thus, the NN data at a given energy are represented
by ten separate functions of q so as a minimum we will
consider a fit with ten linear parameters and ten cutoffs.

For simplicity, we fit to NN amplitudes rather than
directly to data but we examine the quality of the NN ob-
servables reproduced. The winter 1982 amplitudes of
Amdt et ah. were used for the 200 MeV fits while the
updated spring 1984 set was available for the 135 and 400
MeV fits. (The difference between the two sets is at most

TABLE I. Energy dependence of couplings.

Meson HM1

14.0
2.0
6.3

10.2

OBEP'
HEA

12.9
6.0
4.7

14.0

150

12.1

10.8
6.3

10.7

E lab (MeV)
300

11.5
2.3
5.1

8.5

10.7
—3.2

4.1

6.1

9.6
—5.9

3.0
4.2

'One-boson-exchange potentials which fit the phase shifts after unitarization in the Schrodinger equa-
tion. [Holinde and Machleidt (HM1) (Ref. 15) and Holinde, Erklenz, and Alzetta (HEA) (Ref. 16}].
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a few percent. )

The weights of different amplitudes were adjusted to
obtain good fits to observables. For example, s +U was fit
along with s and U separately to insure a good fit to the
cross section (since this involves some cancellation be-
tween s and v). In addition, it was necessary to increase
the weight of the small a and t amplitudes. The fits were
done at a range of q values corresponding to scattering
angles of 0 to 90 deg in the center of mass.

To examine the energy dependence of the parameters,
simple fits were done at lab energies of 150, 300, 500, and
800 MeV. The most important mesons in all of these fits
were the pi, eta, sigma, and omega and their couplings are
shown in Table I. (Note these fits involved ten mesons
and were very similar to the 135 and 200 MeV fits in the
following. ) First, the pseudoscalar invariant is by far the
largest and immediately determines the pi coupling con-
stant. The resulting value is remarkably close to OBEP
results (g of about 12 for the fit vs 14) and has very little
energy dependence. Likewise, the sigma and omega cou-
plings agree well with OBEP's at low energies and then
decrease very slowly with energy. The largest energy
dependence is for the eta meson (isoscalar pseudoscalar),
which is somewhat larger than OBEP at low energies, but
it decreases and eventually changes sign with increasing
energy. However, given the eta's much larger mass (550
vs 138 MeV) it's contribution is much smaller than the
pion. This systematic energy dependence may be a sign of
iteration effects beyond first Born approximation (in this
pseudoscalar isoscalar channel).

The pion form factor A is =550 MeV. This some-
what low value may reflect the derivative coupling of the

50 50
MeV n 200 MeV

40 40
a JY~-~-~ g.~.~A-~

sA 4Aa~O. +~ 30-
lh 20

v&eo

10- 10-
I

0 180 18 36 54 72 90 36 54 72 90
gO

1000 1000

800-

5 600-
Cl
ci 400-

800

g 600

~ 400
~X200- 200

'o 0 18 36 54 72 90
gO

18 36 54 72 90
gO

FIG. 2. NN amplitudes at E&,b ——200 MeV, See caption to
Fig. 1. The smooth lines are the fit using Table III. The small
a and t amplitudes have been multiplied by —100 in part (b)
and —30 in part (d).

rho meson which is not included in our fits and serves to
weaken the nonrelativistic tensor force from the pion.
[Note the derivative coupling of the rho
o" q~(1) cr&~'(2) should not be confused with a tensor
Lorentz invariant oz o" ]. Th.e eta form factor varies
with energy.

Detailed fits have been obtained at lab energies of 135,
200, and 400 MeV. Ten mesons proved adequate for the
real parts of the amplitudes at 135 and 200 MeV. In addi-
tion, ten mesons were used in all of' the fits to the imagi-
nary amplitudes. The NN observables were not very sen-
sitive to the quality of the fit to the imaginary amplitudes.
At 400 MeV, additional mesons were needed to reproduce
the complex behavior of the real tensor and axial vector
amplitudes. The parameters are collected in Tables II, III,
and IV, while the amplitudes are plotted in Figs. 1, 2, and
3.

75 75
pn 135 MeV

6o=
0

D0 0~-~-&-.X. O..a.P

EfJ ~
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60. 0 O~~ ~ ~~~~~ D
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gO

1250 1250 25 25
n 400 MeY1000-
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~ 500 =.

~ 1000
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C)~ 5oo

2020

15
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250-

~ X

00

~Oeartaoy5- VQ~ 4a

0 18 36 54 72 90gO'

250 5-
0 0 O 0 0 ~+~M&aPM

0 18 36 54 72 90
gO

~O

0 18 36 54 72 90
8

18 36 54 72 90
gO

700 1000

800-FIG. 1. Lorentz invariant form of the NN amplitudes in
GeV vs center of mass scattering angle at a lab energy of 135
MeV. Part {a) shows the s and v invariants [see Eqs. (2) and (3)]
for pp scattering. The imaginary part of the U invariant calcu-
lated directly from the Amdt amplitudes (Ref. 6) is shown by
the squares while the circles indicate the real part. Minus the
scalar amplitude is shown by the triangles (imaginary) and
crosses (real part). The lines are the fit using parameters from
Table II. Part (b) shows the imaginary part of the p (triangles}
and -50 times the small a (squares) and t (crosses) amplitudes.
Parts (c) and (d) are as per (a) and (b), but for pn scattering.

ph 400 MOY
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FIG-. 3. NN amplitudes at E~,b ——400 MeV. See caption to
Fig. 1. The smooth lines are calculated from Table IV, while
the small a and t amplitudes have been multiplied by —300.
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TABLE II. E~,b ——135 MeV fit. A Fortran subroutine which uses these inputs or Tables III and IV and returns the relativistic in-
variants I' . . . , I'I' is available from the author.

Meson Isos pin Coupling {MeV)
A

(MeV)
m

(Mev)

Imaginary

—2
A

(MeV)

t&

a~

5

P
tp

ap

1

0

0
1

1

I

1

0
0

138
550
500
783
600
800
960
760
800

1275

12.462
9.742

—6.006
11.066

—0.319
—2.088

0.184
—0.343

1.205
6.783

557.36
2500.00
718.43
630.78
432.67
444.57
236.73
547.59

1322.82
833.29

500
1000
600
700
750

1000
650
600
750
750

—6.335
3.679

—4.012
5.882
0.525
1.993
2.552

—2.123
—1.640
—3.567

1567.
652.
558
544

2448
1662
471
477

1382
1267

TABLE III. E),b ——200 MeV fit.

Imaginary

Meson Isospin Coupling

a)

P
tp

ap

1

0
0
0
1

1

1

1

0
0

138
550
500
783
600
800
960
760
800

1275

11.934
7.395

—5.707
9.875

—0.028
—1.020

0.307
—0.529

0.302
2.052

565.77
1386.82
1018.96
835.09
200.00
403.56
543.17
917.19

2500.00
1292.96

500
1000
600
700
750

1000
650
600
750
750

—3.732
4.567

—2.442
3.837
0.147
0.440
1.989

—1.581
—0.730
—1.709

994.92
1162.15
572.39
584.66

1139.03
865.60
565.87
557.28
880.91
933.15

TABLE IV. E)ab =400 MeV fit.

Meson Isospin Coupling
m

(MeV)

Real
A

(MeV) {MeV)

Imaginary
A

{MeV)

P
tp

ao
t)

f
I;p

ta)
I

ap
0
Ql

1

0
0
0
1

1

1

I
0
0
I
0
1

0
0

138
550
500
783
600
800
960
760
800

1275
200
200
250
250

1000
400

11.334
—4.662
—4.520

7.032
2.947

—0.209
—0.454
—0.391
—0.351

7.300
—0.316

0.015
—0.022
—0.304

0.513
0.073

526.02
212.14

1266.60
1191.05
200.00

2500.00
2500.00
250.71

2500.00
331.23
254.74
313.65
200.00

2500.00
216.16
245.52

500
1000
600
700
750

1000
650
600
750
750

—1.041
2.497

—1.360
2.208

—0.021
—0.105

1.069
—0.772
—0.206
—0.444

207.62
2412.39
2289.68
1172.29
2500.00
1042.87
1211.56
1327.56
838.87

2330.57
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pp 155 MeV
I I I ~ I ~ I a I ~ I a I a I a I ~

h
C/l

E
b C

pn f55 MeV
l0 ~ I I I ~ I I ~ I ~ I ~ I ~

g)
Etl

E

bC

The s and U amplitudes are the most important for elas-
tic scattering. At 400 MeV (see Fig. 3), the real part of s
is seen to fall more rapidly with q than the U amplitude.
However, as the energy is lowered (Figs. 1 and 2), both s
and u start to rise at back angles (this is fit with exchange
contributions). The absorptive parts of both s and U are
seen to be primarily isoscalar.

The p amplitude is one to two orders of magnitude
larger than any of the others and almost entirely real (the
small imaginary part is not shown). The small pion mass
is clearly evident in the rapid q dependerice of p. Also
shown in Figs. 1—3 are the very small a and t amplitudes

(multiplied by a large factor). At 135 and 200 MeV, a
and t are seen to rise smoothly with q. However, at 400
MeV, the q dependence of these amplitudes is more com-
plex. This necessitated adding more terms in the fit and
resulted in the largest fitting errors of any of the ampli-
tudes (see Fig. 3). Such errors may be significant in some
inelastic transitions which are sensitive to a and t. How-
ever, a and t are very small indeed at this energy and one
should also be worried how well the a and t amplitudes
(we are fitting) are determined by the NN data.

To judge the quality of our fits to the amplitudes the
resulting NN observables have been calculated and com-
pared to the observables predicted by the Amdt ampli-
tudes directly. Results are shown in Figs. 4—6 for the
cross section, polarization, depolarization, A~~, A, and R,
as defined in Ref. 13. The fit does a good job of repro-
ducing the NN observables.

pp 2OOMeV

pol-
I

0

a I ~ I a I a I a I ~ I a I a I ~ I

)0 50 50 70 90

~ I ~ I ~ I ~ I ~ f a f ~ I ~ I ~ I

(b)
pol-

0

I a I a I a I ~ I ~ I a I a I a I

10 50 50 70 90

~ I ~ I a I ~ I a I r I ~ I a I

I

E
b4

pn 200 MeV

~5 ~ I I I I a a 1 r a a I aO.

I ~ I a I a I a I a I a I a I I.

30 50 70 90 10 30 50 70 90

D pol

-0.5

(c)
DPol-

0

I r I ~ I r I ~ f r I r I I r

(b) ~ ' ~ ~ I ' I ~ I ' I ~

(h)
Pol -~=-

0

Ayy
0

Ayy
0

r I ~ I ~ I a I ~ f ~ I I 'a I 1

Dpol-

0

I r I ~ I r I r I r ~ r I a I ~

{c)

D pol

0

~0 '1 a I ' I a I a I i I a a a I a I a II

A

l ~ I a I a I a I ~ I a I a I ~ I

~5 ' r I ' I ' I ' I a ' I I

(k}
Il0 4yy 0

I I ~ I r I I I r~~al L4

Ayy 0

~ I a I ' I I ~ I ~ I ~ I ~ I ~ I

-0.5
I a a a I a I a I ~ I I a I a I

0.5,

a I a I ~ I a I ~ I a I a I ~ I ~ I

$0 50 50 70 90
eO

0.5

~ I a I I I I I I a !i
)0 50 50 70 90

a

I ' I ' I I I r ' I a ' I0
{e),

4

-O5 0

r I a I I I ~ I r I ~ f a $ ~ I ~ ~

(k)

FIG. 4. NN scattering observables at E~,b ——135 MeV vs
center of mass scattering angle. The dashed lines show the ob-
servables calculated from the Amdt amplitudes (Ref. 6) directly
while the solid lines are calculated from the fits. Part (a) shows
the log of the differential cross section for pp scattering. Spin
observables (using the notation of Ref. 13) are shown in parts {b)
(polarization), (c) (depolarization), (d) ( A~ ), and the triple
scattering parameters (e) ( A), and (f) (R). Finally, parts (g)—{1)
are as per (a)—(f) but for pn scattering.

0/5 0.5

R

I a I a I a I a I ~ I a I I a I

$0 50 50 70 90
80

~ I I a I I l a I I I a I

$0 50 50 70 90
OO

FIG. 5. NN observables at El,b
——200 MeV. See caption to

Fig. 4.
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E

b C

I I I ~ I I l ~ I I L

10 50 50 70 90

pa I
0

1 I I ' l ~ I ' I ~ I ' 1 I~

D pal
I~

g \ I ~ 'g '1
$ ~

(c)

pp 400MeVI r g g
'
~ g

'
~ g I ~ \ g

'I I

(a)

pn 4OOMeV
)0 I I ~ I I w I I ~ I e I ~ 1 ~ I

CA

E

Q Cg

I ~ I I x l I I ~ I

10 30 50 70 90

Dpol-

T ~ ~ g ~ —— — ~~, , . .

I $ ~ $ I f ~ $ ~

0
(h)

POI

-0.5

TABLE V. Direct and exchange separation of forward am-
plitudes.

a
t

Direct only'

E)ab=100 MeV
—61 (GeV )

43
1509

4
3

E~,b ——400 MeV
—21

13
620
—1

0

Direct and Exchange

—92 (GeV )

78
1503
—15
—5

—23
15

623
—1

0.1

'The real part of Eq. (8) is listed multiplied by (E, /2p, ) for
q =0, =0.
The imaginary part of Eq. (5) is listed (because of the explicit

factor of (i) also at t9 =0

Ayy
0

a I ~ i a I a I I a I I ~ i I-t

5 & & & I I ~ c ' r & ~ so.

-0.5

Ayy
0
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contributions are a common feature of most relativistic
Hartree-Fock calculations' and may significantly reduce
the sensitivity to how the exchange terms are treated.

(c) The small amplitudes a and t involve important ex-
change contributions. In the model, this is the only way
to reproduce the increase of these amplitudes with q.

Table V shows the total and direct only contributions to
the forward (8, =0) pp amplitudes.

V. IMPULSE APPROXIMATION OPTICAL POTENTIAL
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e

I I i I i I a I ~ I ~ i I ~ I
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e

FIG. 6. NN observables at E~,b ——400 MeV. See caption to
Fig. 4.

IV. DIRECT VERSUS EXCHANGE CONTRIBUTIONS

The model provides a separating into direct and ex-
change contributions. Since the couplings are close to
OBEP values, this breakdown is expected to be similar for
a full OBEP.

(a) The pseudoscalar invariant is almost completely
direct. Because the pion is so light, its exchange contribu-
tion to p is damped. Other mesons make only a small
contribution to p because of their larger masses and small-
er couplings.

(b) The s and U invariants at 200 MeV are about 75%
direct. As the energy increases, both s and v become
dominated by the direct terms only.

Note the direct and exchange contributions have the
same sign. This lack of cancellation is due to the inter-
play of sigma and omega exchange contributions. %hile
the exchange contribution of the sigma to s is indeed of
opposite sign (to the direct term), the total exchange con-
tribution is dominated by the omega because C„ is four
times lager than C„. These signs for the total exchange

The relativistic impulse approximation (RIA) has prov-
en to be remarkably useful in describing N-nucleus
scattering at 500 MeV and above. This approximation
starts with a covariant representation of the NN ampli-
tudes such as Eqs. (2) and (3) and then strips the spinors
away and takes the appropriate traces over the densities of
the target to get Eq. (4). This is a generalization of the
nonrelativistic "~p" approach and depends explicitly on
the operator form of the NN amplitudes, Eq. (3), not just
on these spinor matrix elements in Eq. (2). Clearly, the
NN data only give you information about Eq. (2), while
Eq. (3) is a prescription for a model dependent Dirac
operator. In general, there are an infinite number of dif-
ferent operators with the same spinor matrix elements.
We emphasize the RIA optical potential in Eq. (4) (and
observables calculated with it) depends explicitly on the
form chosen in Eq. (3).

Since the RIA optical potential is arbitrary, what ac-
counts for its success at high energies? Clearly, there is
important physics buried in the postulated form of the
NN amplitudes [Eq. (3)]. . This form is completely local
(no factors of a momentum dotted into a gamma matrix
appear exphcitly). The agreement with data at high ener-
gies suggest this is a good approximation. But, as the en-
ergy is decreased, the NN amplitudes cannot be complete-
ly local. At a minimum, there must be exchange nonlo-
calities. Indeed, the RIA optical potential of Eq. (4)
diverges at energies below 100 MeV and becomes much
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AF =y'g/2M . (17)

Use of the Dirac equation for the spinors in Eq. (2) shows
that Eq. (17) with the same F~ (which we could rename

I

greater than phenomenological potentials. We believe this
is because Eq. (3) is an inappropriate representation of the
amplitudes at low energies.

With our simple model of the NN amplitudes, we are in
a position to examine different forms in place of Eq. (3).
The most important ambiguity is the difference between
pseudoscalar and pseudovector m-N coupling. Consider
replacing the p invariant in Eq. (3) with

F~ =F~) will give identical spinor matrix elements [Eq.
(2)] of the NN amplitudes. Therefore, our fit of the data
is just as valid with y replaced by Eq. (17), and no two-
nucleon experiment can distinguish between them.

However, let us now calculate an optical potential to
first order in the NN r matrix which uses Eq. (17). For
elastic scattering from a spin zero target there are only
scalar, vector, and (a very small) tensor potentials. There-
fore, this change in the p invariant only effects its ex-
change contribution to these potentials. The direct terms
are unchanged. One calculates a 4&&4 Dirac matrix for
the exchange optical potential, U,„. In infinite nuclear
matter, this is

U,„(q =0)=2~ p occupied

f~(Q)( —) (~, r )AP(Q)
~

U )(U,
~

AP(Q) .
p, M

Here, the sum over spins of the target wave functions
ean be replaced with a projection operators, (p2+M)/2M.
The scalar and vector components of U,„can be projected
by taking appropriate traces. We also chose to make an
impulse approximation and assume the target nucleons
are at rest. This gives a scalar U, and a vector Uz contri-
bution

Equation (20) is equivalent to the Fierz expression, Eq.
(14), multiplied by the density. However, for it~", the
momentum dependence of the invariant used in Eqs. (17)
and (19) invalidates a simple Fierz matrix relation.

Comparing Eq. (19) to (20), we see that the pseudovec-
tor invariant reduced the exchange contribution of p by a
factor

pE,
U, = —4m

2Mp,
Qp 3f~(Q)

4M =+
4M

(21)

pE
Uo ———4m

2Mp,

(19)
Qp —2Qo 3f~(Q)

pE
U, = —4n

2Mp,

I

pE
Uo ——4m

2Mp,

3f~(Q)
ps ~

3f~(Q)
Pb

(20)

500
Ot'

If the y invariant is used instead, one would have

which is much less than one. The optical potentials from
Eqs. (19) and (20) are shown in Fig. 7. At high energies
they agree. But as the energy decreases, the pseudoscalar
equation (20) diverges due to the very large pion exchange
contribution. This expression agrees with the simple RIA
results and disagrees with phenomenologieal fits to elastic
scattering data.

In contrast, the pseudovector results have a very small
exchange contribution from the pion. Therefore, they are
almost constant with energy, in good agreement with
phenomenological fits. We conclude that the unrealistic
behavior of the original RIA optical potential (at low en-
ergies) is due to the completely local expression for the
NN amplitudes, Eq. (3).

This can be cured simply by including the exchange
nonlocalities implied by a pion with pseudovector cou-
pling. We emphasize, this is not a medium modification.
In fact, Pauli blocking was seen to have almost no effect
on the large real potentials although it substantially im-
proves the imaginary potential.

VI. CONCLUSIONS

-500
Sca lar

100
I

200 300 400
E lob

FICx. 7. Optical potentials in infinite nuclear matter.
I,'p~ ——0.16 fm, p, =0.15 fm ) vs projectile energy. The solid
1ines use a pseudosca1ar p invariant, Eq. (20), while the dashed
curves use a pseudovector invariant, Eq. t,'19).

In this paper we have developed a simple model of the
NN interaction for use in N-nucleus scattering calcula-
tions. The interchange of a number of mesons was con-
sidered (in first Born approximation). The (complex) cou-
plings and form factors have been adjusted to reproduce a
relativistic form of the NN amplitudes without iteration.

The model provides an analytic representation of the
amplitudes which may be useful in relativistic inelastic
calulations. Detailed fits were presented at 135, 200, and
400 MeV. These analytic fits may allow a detailed exam-
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ination of sensitivities to different off-shell extrapolations.
The model separation of direct and exchange contribu-
tions involves no sensitive cancellations (in contrast to
nonrelativistic results) and allows one to systematically
improve the treatment of exchange in N-nucleus scatter-
ing.

Furthermore, there are a number of important advan-
tages of the current work over the conventional approach
of Love and Franey. There is a simple relationship be-
tween the individual Lorentz invariant amplitudes and the
mesons exchanged. The parameters may be meaningful
since they are close to OBEP results and have a systemat-
ic and small energy dependence. Finally, the interaction
is Lorentz covariant and allows one to treat strong relativ-
istic optical potentials.

A new feature of relativistic approaches is their depen-

dence on the form of the operator used to represent the
NN interaction. We have calculated optical potentials us-
ing both pseudoscalar and pseudovector couplings for the
p invariant. The pseudovector calculations have much
less energy dependence. So we conclude the divergences
of earlier RIA calculations (at low energy) stem from an
inappropriate representation of the NN amplitudes.
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