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With the relativistic Boltzmann equation as a basis, we present a physically transparent theoreti-
cal approach to hadron and light fragment production in high energy nucleus-nucleus collisions. By
use of multiple scattering expansion techniques and methods of transport theory, in combination
with considerations from statistical thermodynamics, we arrive at a simple and practical model. Its
flexibility and usefulness is demonstrated by a comparison with a variety of experimental data in the
bombarding energy range of 400 MeV/nucleon to 2.1 GeV/nucleon.

I. INTRODUCTION

Heavy ion collisions in the energy range from 250 MeV
to 2 GeV per nucleon have been studied extensively, both
experimentally and theoretically. ' This has led to a
reasonably global insight into the reaction dynamics, espe-
cially with respect to inclusive observables (A~+Aq
~M +X where the particle M is detected and the
remainder, X, is summed over). Among all the models
which have been proposed to explain the experimental
data we mention explicitly the intranuclear cascade (INC)
model. Here, the collision of two nuclei is assumed to
proceed through a superposition of individual particle-
particle interactions resulting in a complicated cascade.
The INC model is then a simulation of the classical mi-
croscopic behavior of colliding nucleons and is closely re-
lated to the Boltzmann equation. This nonequilibrium
kinetic equation is valid for dilute systems and should be
a reasonable starting point to describe inclusive data since
these are dominated by peripheral collisions where high
densities are not so easily reached. More exclusive data
like the recently measured high-multiplicity events"' re-
flect much more the high density regimes in a nucleus-
nucleus collision and so far INC models do not reproduce
the observed features. Here, new approaches are needed
which may give rise to new and unexpected physics.

Inclusive observables, and we will restrict ourselves to
these, are dominated by phase space. Still, a number of
nonequilibrium features show up in the data which are re-
lated to specific nucleon-nucleon dynamics and the tran-
sparency of light nuclei for each other. Also, the produc-
tion of composites (deuterons, He, . . . ) and mesons
(m.,K, . . . ) in these reactions gives rise to some interesting
observations and should be treated at the same level as the
nucleonic degrees of freedom. One might then be able to
determine for example why the pion spectra have a dif-
ferent shape compared to the proton spectra. In order to
obtain a satisfactory understanding of these and other as-
pects we need a simple and transparent approach. At the
same time it should offer a reliable description of in-

elusive data without the complexity of a Monte-Carlo
simulation as in the INC models.

In Sec. II we describe such an approach which is based
on the Boltzmann equation. Through a multiple collision
expansion, the eikonal approximation, and the use of
transport theory ingredients, one reaches in a straightfor-
ward manner the objective, an attractive and practical
model. %'hen combined with the Hagedorn statistical
thermodynamics prescription of strong interactions, ' it
provides also for the possibility to calculate the produc-
tion of composites and some features of pion production.
For the latter it is moreover necessary to include explicitly
the isobar degree of freedom. In Sec. III we collect some
of our results. We compare the performance of our model
with a number of results obtained by INC models and the
corresponding experimental data. Furthermore, we
specifically address ourselves to the questions raised be-
fore and we point out a number of nonequilibrium
features which play an important role in these reactions.
Finally, in Sec. IV we present our conclusions. The em-
phasis of the paper lies in the detailed derivation of the
model itself, which contains only one free parameter
which is the nuclear freeze-out volume. While some of
the results have already been used intuitively, it becomes
now clear which assumptions are involved (and whether
they are reasonable) in order to deduce it from the
Boltzmann equation. This equation, we believe, is the ap-
propriate starting point to describe nonequilibrium phe-
nomena as they occur in high-energy nucleus-nucleus col-
lisions. Throughout the paper, we restrict ourselves to
collisions between nuclei of equal mass number.

II. THE MODEL

In this section, which is the central part of our paper,
we present our model. In Sec. IIA we describe how the
primary nucleon distributions can be obtained from a
multiple collision expansion of the Boltzmann equation.
The connection with transport theory is established in Sec.
II 8, resulting in near-analytic expressions for the multiple
collision components of the primary nucleon distributions.
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The rescattering, or the final state interactions of the pri-
mordial nucleons, then leads to the final nucleon spectra
as well as to the formation of composites. This is dis-
cussed in Sec. IIC within the framework of the Hagedorn
approach to the statistical thermodynamics of strong in-
teractions. At the incident energies discussed in this pa-

per, an appreciable amount of pions is produced. How we

deal with pion production is described in the closing (Sec.
IID).

A. Multiple collision expansion
of the Boltzmann equation

Since the INC approach presents the most elaborate mi-
croscopic description available we will start there. The ki-
netic equation which forms more or less the basis of the
cascade approach is the Boltzmann equation. Here, the'
one-particle distribution function N(r, p, t) is calculated as
determined by the well-known covariant equation (cf.,
e.g. , Ref. 10):

E +p 7 N(r, p, t)= f f f [N Nj W(p PJ' IPPJ) NNJ—8'(PPj Ip PJ )]den,'dcojdcoJ &

Bt
(2.1)

where

den=, p"=(po, p) =(E/c, p)
dp
po

and

N =Kg+AT, (2.6)

D(Ns)=C(Xa&NT)+C(Ng&N~) &

D(NT)=C(NT&Na)+C(NT&NT) &

(2.7)m.d r represents the coordinate vector, p the momentum
vector (p" the four-momentum), and t the time variable.
The Boltzmann equation contains two parts, i.e., the drift
term [left-hand side of (2.1)] and the collision term
[right-hand side of (2.1)], and we abbreviate the equation
as follows:

which is equivalent to Eq. (2.2).
Our aim now is to simplify these equations assuming

the nucleus-nucleus collision consists of two stages. First,
there is the direct formation of a nonequilibrated region
of participant nucleons. Second, in the expansion stage,
the complicated dynamics of the formation, breakup, re-
formation, etc. , of light fragments through final state in-
teractions and rescattering between participants takes
place. We recognize both stages in Eqs. (2.7). Since
C(N~, Nz) and C(Nz. ,Nz. ), respectively, describe gentle
final state interactions among beamlike or targetlike parti-
cipants while the remainder of the equations deals with
the primary violent nonequilibrium "production" of
beamlike or targetlike participants, we will now assume
that both stages can be decoupled from each other. In
other words, we neglect the effect of rescattering on the
first stage which is then governed by the linearized cou-
pled equations:

D(N)=C(N, N) . (2.2)

The collision probability 8' is related to the elementary
nucleon-nucleon cross section as follows:

do= f f 8'(p;Pj Ip PJ )de,'dcoj, (2.3)

where v,j is the relative velocity of the colliding particles
and 8' still contains the conservation of total momentum
and total energy

(P&Pj IP& Pj )=~(P&.Pj IP& Pj )~

x(pf'+pj" p~ p,'—") . — (2.4)

D (Ng )=C (N~, Nz ),
D(NT)=C(NT, Ns) .

(2.8)

The general relation between 8' and the differential cross
section is then given as (valid in any reference system):

P Pj I PPJ''
d lp& I

(2.5)

I pj I I
p'

I
)

with E,„, the total energy in the outgoing channel. For
more details on the relativistic version of the Boltzmann
equation we refer to the literature. 'o

In the energy region of interest, i.e., high bombarding
energies, the nucleon-nucleon differential cross section is
strongly forward-backward peaked. Since also initially
the projectile and target nucleons are well separated in
momentum space, we distinguish between beamlike (B)
and targetlike (T) nucleons in the one-particle distribution
function ¹

Rescattering will be an important mechanism towards the
establishment of local equilibrium among beamlike or tar-
getlike participants which, if it would be reached immedi-
ately, implies C(Ns, N~)=0 and C(Nr, Nr)=0. Further-
more, it will give rise to composites (deuterons, tritons,
etc )as well, . through final state interactions. Hence, we
will impose, in an a pasteriovi fashion, local thermal and
chemical equilibrium on the primary participants distri-
bution [as obtained from (2.8)] as the major effect of re-
scattering. This will be discussed in more detail in Sec.
II C.

The set of linearized equations (2.8) will now be rewrit-
ten in terms of a multiple collision series as follows. In
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N' '(r, p, t~—oo ) =p(r)fF(p), (2.11)

where p(r) is the mass density for either projectile or tar-
get taken as a Woods-Saxon form normalized to the nu-
clear mass number and f~(p) is the Fermi momentum dis-
tribution which is taken as a Gaussian form with a width
2crF —,k~ (Fermi m——omentum kF ——0.25 GeV/c).

Equations (2.10) are still very cumbersome to solve
mainly because they are coupled to each other. As is clear
from Eq. (2.10), in N~"r each order of n is coupled to all
orders Nr"~ since Nr &

——Q„Nr"z. On the other hand, if
we view the collisions as proceeding sequentially, i.e., the
average number of collisions n(t) as a function of time t
increasing monotonically with t, then not all orders XT"z
are equally important for Nz'r or Nz r', taking the two
extremes. The first collision n =1 is dominated by the in-

terms of a formal expansion parameter e, which has to be
taken as @=1at the end, one can write

D(N„)=C, (N„,N„)+~C,(N„,N„),
(2.9)

Na, r= g &"Na, r'

n=0

and by substituting the last equation into the first and
considering terms in e", one obtains an iterative set of
equations for Xz"T..

D (Nt3 r ) =CL (Na, r,Nr t3 )

(2.10)
B,r ) Ct. (~B,r ~ N r, B ) + G (+B,r i N r, B ) ~

Note that we either expanded Xz or XT depending on
which of the equations (2.8) was considered. The terms
CL and Co correspond to the loss and gain term (respec-
tively, with minus and plus sign) in (2.1) and we have the
formal equality C( ) = Cl ( )+ Co( ). The zeroth-order dis-
tribution functions Xz ' and XT' represent at t~ —oo

the projectile —respectively, target spectator distributions
which are given by the expression:

+Co[Ng (t = —oo),Nr (t = —oo)], (2.12)

and similarly for Nr" with the N' ' distributions fixed at
t = —oo and given by the expression (2.11). For the next
collisions n ~ 1, which will tend to equilibrate the system
more and more, we take the other extreme, i.e.,

D ( Ng" ') =CL, [Ng"', N r" '( t = + oo ) ]

+Co[N23" ",Nr (t =+ oo )], n & 1, (2.13)

which describes the consecutive scatterings of beamlike or
targetlike nucleons in an equilibrated stationary host
medium Nr"'(t =+ oo) which we assume to be of the
form

Nr '(r, p, t =+ oo)=pr(r)f~(p) . (2.14)

Here fE(p) is the equilibrium momentum distribution of
the host medium (targetlike) which we take as a
Maxwell-Boltzmann distribution with a temperature ~
still to be determined. The most crude approximation in-
volved is the use of the undisturbed mass density pr(r) in
Eq. (2.14). Doing so, we assume that normal nuclear den-
sity is somehow to be expected on the average during the
collision. This is in line with the use of the Boltzmann
equation which is valid only for dilute systems. If com-
plicated high density profiles occur during the collision
process then this approximation definitely breaks down,
but also the whole starting point of our approach is no
longer valid. Otherwise, we expect it to be more or less
reasonable.

The resulting set of equations for the multiple collision
series expansion (2.9) is now given by Eq. (2.12) with Eq.
(2.11), and Eq. (2.13) with Eq. (2.14), both of which have
the same structural form. More explicitly one gets in the
laboratory frame for either beamlike or targetlike partici-
pants:

teraction of (cold) spectator beamlike particles with spec-
tator targetlike particles, and therefore we can approxi-
mate the corresponding equation in Eq. (2.10) as follows:

D(N~ ') =CL[N~ ', Nr (t = —oo )]

a +v V N'"'(r, p, t)= —o«, p(r)uN'"'(r, p, t) I dp'K~(p'
l
p)+o„„p(r)I dp'u'K (p

l

p')N'" "(r,p', t),Bt

where u =
l
p/E

l
and

1
K~(p4 I pi) = I d~2dtu3

EEI V )

a=E,F .

1
~(pip2

l p3p4)f. (p2)

(2.15)

(2.16)

Here, Ko(p
l

p') is the scattering kernel which depends on f (p2), with a=F for the choice (2.11) at n =1 or a=E for
the n & 1 terms [Eq. (2.14)]. In both eases, to be discussed in Sec. II B, one has for a=E or a=F different expressions
for K~(p l

p'). The nucleon-nucleon total cross section o.„„has been factorized out for convenience. Fxpressed in terms
of the differential nucleon-nucleon cross section one finds from the relations (2.4) and (2.5):

1 1 dodp2u&26(Ei+E2 E3 E4), — —f (p2) .
Vi dp4 p4 ~0~ d4 (2.17)
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The quantity U, 2 is the relative velocity of particles 1 and 2. The partial differential equation (2.15) for N'"'(r, p, t) can
be converted into an integral equation using the method of characteristics:

0
N~"~(r, p, t)= f dm. «,p(r+vr)

0

X f dp'K. (p~ p')u'N'" "-(r+vr, p', t +r)exp —f «'Uo„.,p(r+vr') f dp'K~(p'~p)

We now introduce the stationary distribution function I" '(r, p) which counts at position r the total number of particles
per unit of time within dp, which have experienced n scatterings moving through a unit surface element perpendicular
to p for aH times:

P'"'(r, p)=—
~

v
~ f dtN'"'(r, p, t), (2.19)

where v is the velocity in the direction of p. The definition (2.19) defines a flux of particles and can easily be related to a
cross section. We then obtain from Eq. (2.18):

P'"'(r, p)= f dip(r rl)o—„,f dp'K (p
~

p')P'" "(r—rl, p')exp —f dr)'p(r g')o„—, f dp'K~(p'
~
p) (2.20)

with +=I' for n = 1, a=E for n ~ 1, where g is a vector
along the v axis.

Equation (2.20) can be solved numerically as was done
in Ref. 11, where average depleted mass distributions (of
order n) were used instead of the undisturbed ones ap-
pearing in the equation here. However, this still remains a
very complicated task and therefore we use an appropriate
high-energy approximation known as the eikonal approxi-
mation. This means that we replace the zig-zag coordi-
nate path of the nucleons by a straight line in the z direc--
tion, i.e., we replace g by zz in Eq. (2.20). An immediate
result is the fact that the distribution function P'"'(r, p)
becomes separable in coordinate and momentum space

P(n)(r p) 6(1l)(r)M(1l)(p) (2.21)

6'"'(b, z =+ oo ) = o„, p(b, z')dz'
nf

The functions 6'"' and M'"' are governed by the equa-
tions (where z denotes a unit vector in the z direction)

6'"'(r) = f dz "p(r —z"z)o„,G'" "(r—z"z)
g tt

X exp[ — dz'p(r —z' z)o „,],
M'"'(p)= f dp'K (p

~

p')M'" "(p'), (222)

which follow from Eq. (2.20) using the eikonal prescrip-
tion and the assumption that o.„, is independent of the
bombarding energy which is reasonable at high energies.
Also, replacing U~2 by U& in (2.17) we find

f dp'K (p'
i p) =1 . (2.23)

The geometrical part 6'"'(r) can be reduced to a familiar
expression. Taking its asymptotic value z —++ m corre-
sponding to the scattering condition, one obtains from Eq.
(2.22)

6'"'(b) = f dz'db'p;„(b' —b,z')

X 6~"~(b,.=+ (2.25)

with 6'"'(b,z = + oo) given by the relation (2.24).
Equations (2.22), (2.24), and (2.25) are the key results on

which we base our further study. They can be solved and
from their solutions one can construct the primary parti-
cipant distribution. If we would completely discard re-
scattering then one could calculate the nucleon inclusive
cross section immediately from the expression (equal col-
liding nuclei):

f db 6'"'(b)[M'"'(p)+M'"'(p)],
n=i

(2.26)

with the nucleon mass number 3, the Glauber-Matthiae
geometrical factors 6'"'(b), and the corresponding
momentum distributions M~"'(p) and MT"'(p) of beamlike
and targetlike nucleons normalized to unity. This has
been done in Ref. 13.

In Sec. IIC we will show how to modify Eq. (2.26) to
take rescattering into account. First of all we will show
how the basic equations (2.22) for M'"'(p) can be solved
in a near-analytical way. Here we follow closely Ref. 14.

B. Connection with transport theory

The iteration equation (2.22) for M'"'(p), n ~ 1 can be
approximated by a Fokker-Planck equation, if the NN
differential cross section has a smooth exponential depen-
dence on the invariant momentum transfer squared t, i.e.,

Xexp —o'«, f p(b, z')dz' (2.24)
exp(t/I ) . (2.27)

which are the well-known Glauber-Matthiae factors' for
nucleon-nucleus scattering and where b denotes the im-
pact parameter. For a nucleus-nucleus collision we have
to fold in the initial projectile (the target) mass distribu-
tion pI~.

In this case, the right-hand side (rhs) of the iterative equa-
tion for M'"'(p) can be expanded to second order in
g= p —p'. This leads to the Fokker-Planck equation
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M'"'(p) = g [c„M'"'(p)]
Bn & Bpg

+ g [D~&M'"'(p)], n & 1, (2.28)
Px Pp

k,p=1,2,3,

&g, )=—Pp, , &g', )=2D, &4g„)=O, X~~,
with

P=—r /(6m~), D= —,'r
Equation (2.28) then takes the familiar form:

(2.33)

(2.34)

and C~ are those of the drift vector
r

c,= — &g, )+ g D,„a
Bpp

(2.30)

We have used in Eqs. (2.29) and (2.30) the definitions

&4&—= f dkk&z(pip'),

& 4P„&—= f d0 40„Kz(p l

p'»

C=p —p'

(2.31)

It is useful to consider Eqs. (2.28)—(2.31) in the nonrela-
tivistic approximation. The collision kernel (2.17) can
then, for the case n & 1, be given in analytic form:

K~(p
~

p') = —exp( —g /r )
2mr2 g

Xexp( —p (p.g) /2m' . (2.32)

where D~& are the components of the diffusion tensor

(2.29)

M'"'(p)=(PV~ p+Db~)M'"'(p)
Bn

(2.35)

describing the momentum distribution of a test nucleon
moving in an equilibrated host medium with friction con-
stant p and temperature r. It follows from Eq. (2.34) that
mrP=D, which is an analog to the Einstein relation
known from Brownian motion. As a consequence, for an
"infinitely" large number of collisions (in our case three
or four) the thermal Maxwell distribution with tempera-
ture ~ is reached.

In the relativistic regime, the kernel KE(p
~

p') (and
hence its moments) cannot be evaluated analytically
anymore. Therefore, the corresponding Fokker-Planck
equation will be more complicated than Eq. (2.35).
Nevertheless, we can obtain an approximate solution
M'"'(p) by making use of the fact that the solution of Eq.
(2.35) can be given in terms of a propagator G„which is
of Maxwellian form, and in terms of the distribution M"'
as initial condition. The relativistic generalization of this
solution is given by'

lg
M'"'(p*) = f, G„(p*

i

p'*)M'"(p*
i po), (2.36)

(Remember that for the case n & 1 we use a Maxwell-
Boltzmann distribution with temperature ~ for the heat
bath function f@.)

For leading order of p2/2m' one then finds for the mo-
ments (2.31)

where po is the incident momentum per nucleon. The as-
terisk denotes the fireball rest frame. We note that for
identical nuclei (as we consider here) the fireball rest
frame is equal to the c.m. frame of reference. The propa-
gator Gn is given by

G„(p
~

p')=N„Eexp( —I[m +(p —p'e ~'" ") ]' —m]/r„), (2.37)

with the normalization constant X„:
+n

N„=(4mm )
' exp K2

m n +n
(2.38)

where

(1 e —2P(n —1)) (2.39)

The temperature r of the heat bath (i.e., of the fireball) is
determined by energy conservation

(2.41)

to remain valid. The use of this relation is the reason that
in Eqs. (2.37)—(2.39) only the friction constant p and the
temperature r of the heat bath appear, whereas the dif-
fusion' constant D is absent. With p fixed by Eq. (2.34)
there is no free parameter left in our theory.

One can immediately verify from Eqs. (2.36) and (2.37)
that

m lim M'"'(p*) =M"'(p*),
n~1 (2.42)

Eo ——3w+ m (2.40)
m

7

where Eo is the incident energy per nucleon in the fireball
frame and K1,K2 are the modified Bessel functions of
first and second order, respectively. We note that for the
friction constant p of Eqs. (2.37)—(2.39) we take over Eq.
(2.34). Also, we assume the Einstein relation

lim M'"'(p") =(4vrm )
' exp K2

n~ao m 'r ' 'T

—Ek „/rXe

Hence, the function M~"~(p*), n & 1 represents a smooth
interpolation between the first collision and the thermal
limit. The (nonstatistical) distribution function M'" is
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—~& —&o )
)jc

Xe (2.43)

More accurate expressions can be found in Ref. 16.
As we shall see in Sec. IIC we finally only need the

first and second moments of the function M'". These
can easily be generalized to the relativistic regime.

C. Statistical thermodynamics and rescattering:
The Hagedorn approach

We now discuss an approximate way to treat the col-
lisions among beamlike or targetlike nucleons which we
have neglected in Eq. (2.7) to arrive at the linearized Eqs.
(2.8). These collisions will further contribute to the at-
tainment of local equilibrium among the primary partici-
pants as obtained from Eq. (2.8). Rescattering of partici-
pants will thus lead to thermalization but also give rise to
the formation of composites or the production of new
species like mesons. The latter of course can also be pro-

obtained by using the general scheme described in Sec.
IIB with the scattering kernel (2.16) involving the Fermi
distribution fF. To be more specific, M"' is obtained
from folding the Fermi distributions of the two colliding
nucleons with the corresponding elementary cross section
and integrating over all unobserved momenta. In general,
this evaluation of E(p

~
p) with a Fermi distribution

fF(p) of Gaussian form with a width 2o F ———, kF (where

kF is the Fermi momentum), e.g., Eq. (2.17), has to be
done numerically. But to a good approximation the result
can be obtained analytically in the nonrelativistic approxi-
mation as

1/2
(1) * 1 2~F+ r (p*~pe)2/r2

M+T(p )=
2 e

~I 2~a. I

duced in the primary stage and we will show in Sec. II D,
for the case of pions, how to deal with them. Composites,
however, are most likely produced in the rescattering
stage when the relative momenta of the participants are
small.

It seems to be impossible to calculate explicitly all these
processes (see, however, Ref. 17 where the production of
deuterons is treated in a rigorous way), and therefore one

. uses statistical thermodynamics. Here, the original corn-
plicated interacting ensemble is replaced by a new collec-
tion of noninteracting particles in local thermal and
chemical equilibrium, including now, as new species
specifically, the results of the interactions that are like
bound states. The complicated dynamics is shifted into
the density of states or phase space.

The remarks made before would apply very well in a
situation where the interacting system has attained global
equilibrium (fully equilibrated). However, here we are in
a regime which is far from this idealized equilibrated
state, and one cannot simply abandon all the nonequilibri-
um features present in a nucleus-nucleus reaction. For in-
stance, we would like to keep the concept of the multiple
collision series since the order of scattering n is correlated
to a time scale. Furthermore, the first collision n =1 is
very different from n = oo, and since both on the average
occur at different times they should be treated separately.

A nice prescription which combines both the nonequili-
brium features from the primary stage and the statistical
thermodynamical treatment of the rescattering stage has
been given by Hagedorn and Ranft (Refs. 8 and 9). We
will apply it to our situation as follows. Consider our pre-
vious result Eq. (2.26) for the inclusive cross section of
primary nucleons. Incorporating rescattering as outlined
above, we obtain for the inclusive cross section for species
i (nucleons, deuterons, . . . ) the expression:

= y f db I. (X,'"') '(T,'"',p,'"')+ L (&'T"') „'(T&"',p'T"')

n=1
(2.44)

with the thermodynamical spectrum for species i

dX; g;V
(T,p) = ' exp

dp (2m)'

(+2+I 2
)

I /2

+$
T

(2.4S)

with statistical weight g;=(2S;+l)(2I;+1) with spin S;
and isospin I;, temperature T, and chemical potential p;
given by the relation

p; =(A; —Z;)p„+Z;pal+8; (2A6)

expressing chemical equilibrium. The particle of type i
has (A; —Z;) neutrons and Z; protons and a binding ener-

gy 8;. The quantities p„and p& are the chemical poten-
tials for neutrons and protons, respectively. The quantity
V denotes the volume of the interaction zone and is a pa-
rameter (freeze-out volume) in the model within reason-

I

able limits. The symbol

1. (A, )

stands for the Lorentz transformation from the rest frame
where we assumed local equilibrium to the moving frame

. (velocity A,), which for equal nuclei is the fireball frame.
Comparing the expression (2.44) with the original one,

Eq. (2.26), we see that the momentum distributions Mz"T
have been replaced by others expressing local (i.e., depen-
dent on 8, T, and n), thermal (temperature T), and chem-
ical (chemical potentials p„,pp) equilibrium in their rest
frames. The unknowns A, , T, p„, and p„are determined as
follows. For each n and either beamlike 8 or targetlike T
participants we construct the first and second moments of
Mg"r (p*):

dp&p'), ' = f, p*M'", '(p*) (2A7)
I

and
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(Ee)B,T P EeM(n) (pe) (2.48)

corresponding to the average momentum and average en-

ergy per nucleon (after the first stage) in the fireball rest
frame. These moments can be evaluated directly using
the results for MB"T of the previous section. One finds (n)ZB"T= gZ;n;, (2.57)

ticipant zone enables one to obtain 1M„,1U,~ and T, for each
n and each 8 or T subsystem separately:
T subsystem separately:

(n)NB"T ——Q A;n;,

e)B T +( e) P—(n —11 (2.49)
-(n)
&a, T=

(E')„T= 3r„+m

+n

+ (~e ) 2p—1n —11 (2 5()) with

(n)-g (n)
[ B,T((Es )B,T g(n1 ( e )B,T))

Equation (2.49) is an exact result, and Eq. (2.50) holds to a
very good approximation.

In (p")B T and (E*)„' for n &1 to be completely
determined we need in addition the average momentum
(p )1'" and energy (Ek;„)1' after the first collision.
Using the expression (2.43) for MB'T(p) we obtain

~»T [1 (g(n))2 ]
—1/2

(2.58)

The quantities XB T and ZB"T are obtained from the(n) (n)

number of participants calculated in the clean-cut
participant-spectator geometry of Ref. 18.

(p*)", =.o,o, +p', 1—
2p11 (2crF+1 )

2o.FI
2m 2 2(@~+I 2

(2.51)

where in the latter expression the nonrelativistic term
po /2m has been replaced by its relativistic counterpart.
It is worthwhile noting that Eq. (2.49) is valid in the non-
relativistic limit as well, whereas Eq. (2.50) becomes in
this case

(Ee)NR 3 + +(~e )NR —2p(n —11 (2.53)

g(n1 ( e )B,T/[((p4)B, T)2+m2]1/2 (2.54)

The total number n; of particles of type i and the corre-
sponding average energy e; can be constructed from the
expression (2.45) as

g. Vm. T ~ (+ )n+12

X
71P) nm)

exp K2

(2.55)

g. Pjyg. T co (+ )n+13

X
nPI-

exp T

nm 3T n~.
EC) + E~

We shall use Eq. (2.50) in subsequent calculations.
Together with the known number of baryons and

charges present we can now determine the variables A. , T,
p„, and 1L1,~ appearing in Eq. (2.44). First of all we have
for the velocity X:

D. Pion production

Beyond an incident energy of 0.6 GeV/nucleon pion
production becomes an important aspect in nucleus-
nucleus collisions and has to be treated properly. In our
model pionic degrees of freedom enter in two ways ac-
cording to the two stages envisioned in the dynamics of
the reaction. Firstly, it is necessary to incorporate the
direct production of pions in the first stage since about
half of the total nucleon-nucleon cross section goes into
inelastic (pion production) channels. Secondly, the rescat-
tering between the primary nucleon participants will pro-
duce also pions for the same reason. In this second stage
we treat the dynamics in a statistical way, and pions occur
as one definite species i in the local thermal and chemical
equilibrium of the total ensemble as described in Sec. II C.

One can easily modify the transport model of Sec. II B
to take direct pion production into account.

Just as in the INC models we assume pion production
to be mediated by the 5( —,, —,) resonance through the in-
elastic reactions N+ N —+N+6, and pion absorption by
means of the inverse reaction N+ 6—+N+N. Taking the
N+ N~N+6 differential cross section for 6 production
to be the same as for the N + N~N + N channel, we ob-
tain for the n =1 (first collision) momentum distribution
M,'"(p'):

(
Q )2yp2 (

Q Q )Py2
M~ (p )~e e

where

(2.59)

(r') =—„'s+(ma —m ) /4s ——,'(m~+m )

and m~ ——1.235 GeV/c is the 6 mass, and s is the c.m.
energy squared. The corresponding average momentum
and kinetic energy of the b, after the first collision then

(2.56)

Then the conservation laws for total baryon number X '"',
total charge number Z '"', and total energy e '"' in the par-

2l7Fp 0 + I.

2oF+ I

I-4@* 2o.F +I1—
2po (2cT~po + I r )

(2.61)
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and

(~8 &6
2m~

20.FI
2OF~+I ~

)fc

r Po
2g~

+

2o.FI+—
3 2oF+ I

(2.62)

Although nonrelativistic, Eq. (2.62) turns out to be, be-
cause of the large 6 mass, a good 'enough approximation
for our purposes. Also, we note the relation correspond-
ing to Eq. (2AO) for the determination of the temperature
r in the presence of b, resonances:

EP =3v+PNm

m

m
Ep

T

+pgm g

x,
'T

(2.63)

where

3/2 —m /r

4m'/'e -"/ +16m ~"e

16m 3/&e ™~
7

4m /e /+16m~ e

(2.64)

(2.65)

(2.66)

Now we have to find out how many of the initial nucleons
are converted into 6 resonances after the first collision.
This number is fixed by the branching ratio a for either
the N+ N~N+ N or N+ N~N + 6 channel to occur.
Assuming the spin-averaged transition probability for the
elastic process N+ N~N+ N to be given by

~
t, i ~, and

the inelastic spin-averaged transition probability given by

~
t;„,i ~, we have

inei I
~NN —+Nh (2.67)

+
~
t;,.i ~

tTNN NN+tTNN

Taking now

oNN NN+g NN Ng
——42 mb,

all we need is an estimate for o.NN N~. For this cross sec-
tion we take the pion production cross section
N + N~N + N + m as calculated by Bertsch. ' This au-
thor has calculated the effective pion production cross
section, modified for the scattering of nucleons from two
Fermi spheres and respecting the Pauli exclusion princi-
ple. The values obtained in this way for the branching ra-
tio a are listed in Table I and are different, especially at
low bombarding energies, from the ones obtained by using
the free (measured) pion production cross section instead
of the effective one.

Except for the very high bombarding energies (2.1

GeV/nucleon) it seems reasonable to include the b.
dynamics only in the first collision (n =1) contribution to
the primary participants distribution (first stage). In this
way only creation of deltas has to be considered, since for
absorption one needs at least one additional collision. In
subsequent collisions (n & 1) the average available energy
is degraded so much that either the inelastic channel is
closed or pion production mechanisms other than through
the isobar mechanism are important. They will however
contribute very little as compared to the first collision.
Therefore we disregard 5 dynamics completely in the pri-
mary, first stage for all n &1.

Another source of pions originates from the rescatter-
ing between beamlike or projectilelike participants. Pionic
degrees of freedom can be included easily in the statistical
thermodynamics by regarding the pions or deltas specifi-
cally as a species to be included in the formalism of Sec.
II C. For n = 1 we have, before rescattering, a mixture of
nucleons and delta resonances for which we know the rel-
ative abundance, and the average momenta and average
energies separately. From these quantities we construct
the average velocity of the combined system and the cor-
responding average energy available in this mixed ensem-
ble of nucleons and deltas. These then serve as input for
our thermodynamical treatment of rescattering equations
(2.57) and (2.58). The effect of rescattering in the initial
collection of nucleons and deltas in n = 1 is thermo-
dynamically expressed in the establishment of local
thermal and chemical equilibrium in a collection of dif-
ferent species Ii I, where we include both deltas and pions
besides nucleons and composites. Thus rescattering or fi-
nal state interactions convert the original deltas into deltas

TABLE I. Input data for the calculation of the final inclusive particle cross sections.

Elab
0

(Mev) (MeV)
(p*&&

(MeV/c)
(E*),
(MeV)

(p*&i
(MeV/c)

2100

59

160 l

5

220

440

900

95

200

446

148

755 300

0.22

0.35

'At these low energies the NN elementary cross sections are nearly isotropic and therefore the expres-
sion for P is not valid anymore. However, since in this energy regime n„i,„„;,„—3 collisions are suffi-
cient for equilibration and P '=n„,i

—1, we can calculate P.
These values are obtained by letting I ~oo and replacing the Fermi distributions by 5 functions,

which leads to (p* ) ~
——pa /2.
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and pions {plus nucleons). By taking the number of deltas
and pions after rescattering equal to the original number
of deltas determined by the branching ratio a, one intro-
duces a new constraint to be added to the ones already
present in Eq. (2.57). This allows for calculating the
chemical potentials p~ and p =p~ —p~ where the latter
is a consequence of the condition of chemical equilibrium.
The remaining deltas after rescattering are now allowed to
decay into nucleons and pions via 6—+m+N. The decay
of the 5 is incorporated using explicit formulas given by
Hagedorn and Ranft, ' and taking into account the width
of the 6 resonance I a ——112 MeV/c through an integra-
tion over an appropriate Lorentz form for the mass distri-
bution. The resulting momentum spectrum in the rest
frame where we assumed local equilibrium for particle i
{either pion or nucleon) resulting from the two-body decay
m~ —+m;+mj. is then given by the expression:

dN;, g;g~~, , T'
dp72 ap(nip, vl a )

dp (2m)' &PPI

/T &+ —e+ /T1+ e —1+ e +
T T

pg
X (2.68)

Pl g
e+ ——

2 (EE;+pp;),
m;

E;= (ma +m; —mj~),
2P21 g

(2.69)

p;= I[ma —(m;+mj) ][ma —(m; —mj) ]I'~
fPl g

I g/2~
P( vl g, vl a )=

{m —m' )~+r /4

ma ——1235 MeV/c, I'&——112 MeV/c

III. NUMERICAL RESULTS
AND COMPARISON WITH EXPERIMENT

The purpose of this section is twofold. Firstly, we want
to emphasize those features of our model which distin-
guish it from thermal models and make it, despite its sim-

As we already mentioned there are no pionic degrees (or
delta resonances) involved in the n & 1 contributions to
the primary participants distribution. The rescattering
modification for n ~ 1 will however include pions besides
nucleons and composites Therefo. re, for n ~ 1 pions are
produced thermally according to available energy with
chemical potential p~=0.

To conclude this section we list in Table I the input
used in our calculations at the various incident energies
per nucleon'and for equal nuclei.

plicity, similar in many respects to the much more com-
plex nuclear cascade approaches. This is discussed in Sec.
IIIA. Secondly, we wish to test our model for a wide
range of incident energies and projectile-target masses by
a comparison with appropriate experimental data. To
keep the comparison transparent we mainly discuss gross
features rather than details of all kinds of different pro-
duction cross sections. For such details, we refer to our
previous publications. In Sec. IIIB we discuss the
slopes of the nucleon and pion spectra as a function of the
incident energy per nucleon. Beam energy and mass
dependence of the composite particles to proton ratio are
the subject of Sec. III C, as well as the beam energy depen-
dence of the negative pion to the total nuclear charge ra-
tio. The final Sec. III D is devoted to a comparison of our
calculations for the proton and pion spectra with the cor-
responding experimental results at the incident energy of
2.1 GeV per nucleon. Throughout our calculations we
take for the freeze-out volume V which enters as a param-
eter, a value such that the corresponding freeze-out densi-
ty corresponds to half-normal nuclear matter density.

A. The role of the first collision
and comparison with cascade calculations

The first collision contribution is instrumental for the
agreement with the measured. nucleon inclusive spectra at
forward angles. This is illustrated clearly in Fig. 1 for the
reaction Ar+ KC1—+p+ X at 800 MeV/nucleon, with
data points taken from Ref. 7 but now displayed in a non-
standard fashion (log versus log plot). This figure shows
that the quasifree peak of the primary first collision com-
ponent prevails after taking rescattering through the
Hagedorn prescription into account: The nonzero relative
velocity between the center of mass frame (i.e., the fireball
rest frame) and the first collision rest frame results in a
shift of the fireball spectrum towards the experimentally
observed one. The shift becomes less pronounced with
growing outgoing laboratory angle and will finally disap-
pear at large angles.

Figure 2 shows a comparison of the proton and pion in-
clusive spectra from our model with corresponding in-
tranuclear cascade calculations and with data from Ref.
7. In Fig. 2(a) the proton inclusive spectra from the
Ar+ KC1 collision at 800 MeV/nucleon are displayed.
Although some discrepancies remain at forward angles,
the overall agreement of all calculations with each other
and with the data is good. Corresponding pion spectra
are shown in Fig. 2(b). Here, a comparison is made in ad-
dition with the intranuclear cascade calculations of Ref.
25. The latter calculation uses a scenario for pion produc-
tion which is essentially the same as ours: Pions are creat-
ed already during the collision and not only, like in Ref.
24, via the decay of stable delta resonances at the end of
the collision. Therefore, it is not surprising that our re-
sults are in better agreement with those of Ref. 25 than
with those of Ref. 24. A common feature of the model
calculations shown in Fig. 2(b) is that they overestimate,
like almost all other models, the pion production rate.
Possible explanations for this are given in Refs. 4, 21, and
27.
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FIG. 1. The proton inclusive double differential cross section
for the reaction 800 MeV/nucleon Ar+ KCl as a function of
the proton kinetic energy in the laboratory system. (a) For a
laboratory angle of 10 deg. (b) For a laboratory angle of 20 deg.
Full line: Our model. Dashed line: The quasifree component
only. Dotted line: The fireball model (Ref. 36). Black circles:
Experimental data of Ref. 7.
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B. Exponential slope factors for high energy protons
and pions as a function of the incident energy per nucleon

Nagamiya and collaborators observed that their mea-
sured proton and pion inclusive spectra at a c.m. angle of
90 could, apart from small deviations at low outgoing
proton energies, be parametrized rather well by

FIG. 2. The hadron inclusive invariant differential cross sec-
tion for the reaction 800 MeV/nucleon Ar+ KC1 as a function
of the hadron momentum in the laboratory system. Full lines:
Our model. Histogram: The cascade model of Ref. 24. Full
and open circles: Experimental data of Ref. 7. (a) For proton
production. (b) For positive pion production. The dotted histo-
gram denotes cascade model results of Ref. 25.
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FIG. 3. The slope factor EQ of the parametrized hadron in-

clusive cross section Eq. (3.1) as a function of the bombarding
energy/nucleon in the c.m. system. The react&on considered is

Ne+ NaF at a c.m. angle of 90 deg. Full and dashed lines:
Our model for proton and pion production, respectively. Full
and open circles: Experimental data of Ref. 7 for proton and

pion production, respectively.
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FIG. 4. The ratios of the d, H, and He inclusive total pro-
duction cross sections to the proton inclusive total production
cross section as a function of the bombarding energy per nu-

cleon in the laboratory. The reaction considered is Ne+ NaF.
Dashed line: Our model. Circles and triangles: Experimental
data of Ref. 7. The full line serves as a guide through the exper-
imental points.

E exp( Ek /Eo )—,0 (3.1)
d p

where Ek is the kinetic energy of the outgoing proton
(pion). The slope factor Eo which is a measure for how
much the participant region is heated up at the time of
the particle emission and is sometimes called "apparent
temperature, " was then plotted at various beam
energies/nucleon. We have done a similar analysis. The
results are shown in Fig. 3 for the system Ne+ NaF The.
calculated slope factors are slightly too high at 400 and
800 MeV/nucleon and slightly too low at 2.1

GeV/nucleon. They are, like those extracted from the ex-
perimental data, different for protons and pions. This
latter feature was some time ago, widely discussed in the
literature (cf., e.g. , Ref. 29). In our model, the reason for
the lower apparent temperature of the pions as compared
to that of the protons is twofold. Firstly, the transforma-
tion of the spectra from their local rest frame to the
nucleus-nucleus c.m. frame lets the pions, because of their
lighter mass, appear cooler than the protons. This ex-
planation is formally similar to, but physically different
from, the one given in Ref. 29. In the blast wave model
of Ref. 29, the nonzero boost velocity is due to the collec-
tive flow in the expansion phase, whereas in our model it
originates from the nonequilibrated component in the ear-
1y phase of the collision. Secondly, the 6-decay kinemat-
ics leads to a slope of the pion spectra steeper. than that of
the proton spectra. '

too high at 400 MeV/nucleon. The d/p ratio has been re-
lated to entropy in Ref. 30 in a simple way by using the
Sackur-Tetrode formula. Given that such a connection is
meaningful in the case of heavy ion collisions we then ob-
tain a satisfactory agreement with the calculated and mea-
sured entropy. This is in contrast to the results of Refs.
30 and 31, but in these works only central collisions were
discussed. If in cascade calculations impact parameter
averaging is performed the discrepancies essentially disap-
pear.

The mass dependences of the same ratios are displayed
in Fig. 5 for a beam energy of 800 MeV/nucleon and the
systems C + C, Ne+ NaF, and Ar + KC1. Here we are
in qualitative disagreement with the experimental data:
The calculated ratios are essentially mass number in-

dependent, whereas the measured ratios grow larger with
increasing masses. This disagreement persists for heavier
systems as we have checked for the reaction
139La + 139La

The ratio of negative pions to the total nuclear charge is
shown in Fig. 6. At 400 and 800 MeV per nucleon, the
agreement with the measured ratio is quite good, whereas
at '2. 1 GeV/nucleon our calculation yields too few pions.
This could be due to the fact that there we neglected reso-
nances with masses larger than that of the b, whose decay
also leads to pions.

C. Ratios of composites to protons
and of pions to the total nuclear charge

The beam energy dependence of d/p and H( He)/p ra-
tios is shown in Fig. 4. The collision is again Ne+ NaF.
It is seen that our model nicely reproduces the trend of
the experimental data, although the ratios are somewhat

D. Proton and pion inclusive spectra
at 2.1 GeV/nucleon

The inclusive spectra at 2.1 GeV/nucleon are particu-
larly interesting because our model makes a definite pre-
diction here: It predicts a large transparency of the reac-
tion because the number of collisions needed for equilibra-
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tion is approximately six to seven. This is due to the very
strongly forward peaked elementary NN cross section
which in turn results in a small friction constant (cf.
Table I). How do our model calculations compare with
the experimental data? In Fig. 7 such a comparison is
done for the proton spectra with data from Ref. 33. The
drawn line is the result of our model as it is discussed in
Sec. II. The agreement with the data is overall satisfacto-
ry, the largest deviations being a factor of 2. The agree-
ment could probably be improved if the input average mo-
menta for treating the expansion stage would be treated
separately for N's and b's as has been done in Ref. 34,
where, however, composite particle and pion production
has been neglected. In the c.m. system, our spectra are
strongly anisotropic, in qualitative agreement with the ex-
perimental results of Ref. 7. Hence, the large percentage
of nonequilibrated contributions to the inclusive proton
spectrum is supported by experiment. The dashed line
denotes the results of a scenario where the 6 is treated as
a stable particle decaying into N and m only at the end of
the heavy ion reaction and where composite particle pro-
duction has been turned off. Apart at low momenta the
proton spectrum is not very sensitive to the different
scenarios.

FIG. 5. The dependence of the ratios considered in Fig. 4 on
the total mass number, at a fixed bombarding energy of 800
MeV/nucleon in the laboratory. See Fig. 4 for an explanation of
the curves and symbols.

Ne+ NaF = p+X

2.1 GeV/nucleon
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FIG. 6. The ratio of the number of negative pions to the total
nuclear charge as a function of the bombarding energy/nucleon
in the laboratory. The reaction is Ne+ NaF. Full line: Our
model. Squares: Experimental data of Ref. 7.

2

1

Momentum (GeV/c)

FIG. 7. The proton inclusive invariant differential cross sec-
tion for the reaction Ne+ NaF at 2.1 GeV/nucleon as a func-
tion of the proton laboratory momentum. Full lines: Our
model. Dashed lines: Our mode1, but with pion production ex-
clusively from stable delta resonances which are allowed to de-
cay into a nucleon and a pion only at the end of the collision.
The experimental data are from Ref. 33.
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In Fig. 8, we show corresponding results for pion pro-
duction. The agreement with the experimental points is
seen to be very. good. In contrast to the proton spectra,
the pion spectrum is very sensitive to the production
mechanism of the pions. In particular, the creation of
pions during the reaction is seen to be vital; the spectra
calculated with the assumption of stable 6's is much
worse compared to the data: The slopes are much too
steep. This is consistent with previous calculations at 800
MeV/nucleon. '

103

I ) &
I

&
f I

Ne+ NaF = tt +X

2.1 GeV/nucleon—

IV. SUMMARY AND OUTLOOK

We have developed a simple multiple collision (trans-
port) model which describes nucleon and meson as well as
light fragment emission in the energy range of 400—2100
MeV per nucleon. Our approach is based on the relativis-
tic Boltzmann equation. Through an expansion of the
one-particle distribution function in terms of the number
n of independent nucleon-nucleon (NN) collisions the
Boltzmann equation is recast in an infinite set of coupled
integro-differential equations. Linearizing these equations
by neglecting the interactions of the test nucleons with
each other and letting them scatter with partner nucleons
whose distributions are stationary (Fermi distributions for
the first collision n =1, thermal distributions for n &2),
they can be solved in the eikonal approximation. Each
solution represents a multiple collision term with collision
number n and factorizes in a coordinate dependent
(geometrical) and a momentum dependent (dynamical)
part. The geometrical part is given by the well-known
Glauber-Matthiae factors, and the dynamical part is to a
good approximation given by the solution of a Fokker-
Planck —type equation with parameter-free drift and dif-
fusion coefficients. These primary distribution functions
are modified by final state interactions which we assume
to lead to light fragment formation in the expansion phase
of the collision. To obtain the final light fragment cross
sections we use Hagedorn's thermodynamics of strong in-
teractions for each multiple collision component in the
corresponding local rest frame. At incident energies of
400 and 800 MeV per nucleon these local rest frames turn
out to be appreciably different from the fireball rest frame
only for the first collision, i.e., at these energies the main
nonequilibrium features of the spectra arise from the
quasifree component of the primary distribution. The sit-
uation is different at 2. 1 GeV per nucleon. Here, accord-
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FIG. 8. Same as Fig. 7, except that in this figure pion pro-
duction is considered.

%'e appreciate valuable discussions with S. Mies and W.
Zwer mann.

ing to our theory, the initial participant zone is highly
nonequilibrated because of the small friction constant
P=—,

' (i.e., =6 collisions per nucleon are needed for equili-
bration). One therefore has to keep track also of the local
fireballs for n & 1. Our results are not very sensitive to
the parameter of the model which is the nuclear freeze-
out volume as long as we choose it within reasonable lim-
its.

To summarize, the agreement of our theory with the
measured nucleon, pion, and light fragment inclusive
spectra over a wide energy range of 400 MeV to 2.1 CieV
per nucleon is overall satisfactory. Taking this together
with the successful application of the model to strange
meson production we conclude that the transport
theory for particle inclusive production provides a useful,
simple, and transparent description of the corresponding
experimental results.
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