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We generalize a simple version of the optical background representation for the transition ampli-
tude to the case of well-nested doorways. Using this simple generalization of the optical background
representation an alternate statistical theory of multistep compound reactions is suggested, which
uses the idea of nested averaging in the case of well-nested doorways and is valid under very general
conditions. Simple connections are established between the present approach of multistep com-
pound reactions and that of Feshbach, Kerman, and Koonin, of Agassi, Weidenmuller, and
Mantzouranis, and of Hussein and McVoy. The present formulation exhibits the chaining condition
of Feshbach, Kerman, and Koonin in the extreme low energy limit, is time reversal symmetric, and
yields the Bohr description of compound nuclei in the appropriate limit.

I. INTRODUCTION

The evaporation model of Weisskopf' for compound
reactions, which employs the independent hypothesis by
Bohr and uses complicated compound nuclear states, has
been very successful in explaining the gross features of
such reactions. Many of the fine features of such reac-
tions were explained after the elegant mathematical work,
based on the Bohr independent hypothesis and the
Weisskopf evaporation model, of Wolfenstein and of
Hauser and Feshbach. The characteristic time for such
reactions is large and because of the large density of the
complicated compound nuclear states employed statistical
considerations are applicable and one obtains an isotropic
angular distribution. On the other hand, for direct nu-
clear reactions, the characteristic time is short, wave func-
tions employed are simple, and the angular distribution
shows a forward peaking. By changing energy as one
moves from the domain of compound nuclear reactions
towards the domain of direct nuclear reactions the charac-
teristic time decreases; one needs less complicated nuclear
wave functions and the angular distribution changes from
full isotropy to a mere symmetry around 90 for multistep
compound reactions and to an anisotropic distribution
with forward peaking for multistep direct and direct reac-
tions. ' The aim of the present paper is to improve the
understanding of the mechanism of multistep compound
reactions using a statistical dynamical theory.

There are several statistical theories already existing for
multistep compound reactions. The nested average ap-
proach ' of multistep compound reactions of Hussein and
McVoy (HM) is basically a generalization of the optical
background representation of the fluctuation amplitude of
Kawai, Kerman, and McVoy' (KKM) to the case of
well-nested doorways. The nested average approach ' is
simple and exact and only makes some general assump-
tions about the widths and spacings of different classes of
doorways. The model of the nested average approach as-
sumes the presence of a hierarchy of doorway resonances
to be grouped into classes according to their total widths.
The average width I „and spacing D„ in class n obey

~pg ))~{gg+]) ~g ))Dg

where n = 1,2, . . . , N. Equations (1.1) define a well-
nested sequence of classes of compound nucleus (n =N)
and doorway ( n & N) resonances.

The characteristic times corresponding to different
classes of resonances in a multistep compound reaction
are not expected to be measured directly in the near fu-
ture. One can only hope to feel the presence of such
characteristic times indirectly through the study of the
autocorrelation function

C(e) = (ct(E)o(E+e)) —(cr(E) ) (o(E+e)), (1.2)

which will contain more than one correlation width I .
Equation (1.2) will yield a generalization of the Ericson
expression" C(e)-(1" +e )

' valid for the one class
case. At this point one should recall that the idea of di-
viding the cross section into its multistep components was
first used by Griffin' in his exciton model. The model of
Hussein and McVoy yields a simple generalization of the
Ericson" expression for the autocorrelation function valid
under the general condition (1.1) and contains the
Hauser-Feshbach result for conventional compound nu-
clear reactions.

Though the elegant formulation of Feshbach, Kerman,
and Koonin (FKK) yields useful results for multistep
compound reactions, it possesses several unpleasant
features ' as has been pointed out previously. Firstly,
the chaining condition that FKK introduce is merely a
hypothesis and their dynamical formulation violates it. A
part of this violation is a mathematical artifact of the spe-
cial version of the optical background representation they
use. As a consequence, while physically the chaining con-
dition is expected to be obeyed at extreme low energies it
is violated in the FKK approach. Secondly, unlike in the
optical background representation of KKM and in its
generalization by HM, the multistep fluctuation ampli-
tudes of FKK do not average to zero without needing
properties of statistical fluctuation of certain form fac-
tors. Thirdly, over and above the conditions defined by
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Eq. (1.1) FKK impose the condition I „~&D~„&~ in or-
der to achieve "self-averaging" of the multistep transition
amplitude. Once the chaining condition is removed in the
FKK approach one needs even a stronger condition:
I „~~DJ for all n and j.' (An attempt was made in Ref.
13 to eliminate the first two limitations of the FKK ap-
proach in the extreme low energy limit. ) As a conse-
quence of these unpleasant features the formulation of
FKK is not time reversal symmetric.

The formulation of FKK is an attempted literal
translation of the doorway state formulation of Feshbach,
Kerman, and Lemmer' ' to the case of a hierarchy of
doorways. Such a simple generalization maintaining the
nested door~ay structure appears to be useful for the
analysis of experimental results. The FKK formulation
sorts the levels associated with a model Hamiltonian into
classes which then define the various stages of the reac-
tion. For conventional compound nuclear reactions,
though FKK write their final result in a way reminiscent
of the Hauser-Feshbach form, any attempt to extract the
symmetric Hauser-Feshbach form from the manifestly
asymmetric FKK formulation is doomed to failure.

Finally, there is the mathematically elegant and
rigorous formulation of Ag assi, Weidenmuller, and
Mantzouranis (AWM) which goes far beyond the ap-
proach of FKK in complexity and generality. As in the
FKK approach the AWM formulation sorts out the levels
of a model Hamiltonian into classes which then define the
various stages of the reaction, and assumes that the
many-body matrix elements of the Hamiltonian governing
the reaction are random in phase. Though the A%'M for-
mulation does not have the unpleasant features of the
FKK approach, the fluctuation cross section of AWM in-
volves the inversion of a matrix in the class space, which
makes the approach rather complicated to use.

It has been noted that unlike the formulations of FKK
and AWM that of HM does not employ a model Hamil-
tonian but is a generalization of the usual KKM optical
background representation of the fluctuation amplitude to
the ease of well-nested doorways. Recently, we' have
provided an alternative optical background representation
of the fluctuation amplitude. In this work we generalize
this alternate optical background representation of the
transition amplitude to the case of well-nested doorways.
It has been pointed out that the alternate optical back-
ground representation is a convenient rewriting of the
KKM one; similarly the present generalization of the al-
ternate optical background representation to the case of
well-nested doorways is shown to be a convenient rewrit-
ing of the HM generalization. The present formulation
yields multistep cross sections and correlation functions
obeying the general condition (1.1) and having the follow-
ing distinct advantages. Firstly, under appropriate condi-
tions the present formulation exhibits chaining property.
Secondly, the present formulation is explicitly time rever-
sal symmetric and the multistep contribution correspond-
ing to the most complicated compound nuclear states has
the symmetric Hauser-Feshbach form.

The plan of the present paper is as follows. In Sec. II
we present our optical background representation in a
simple two-step doorway model. This model possesses all

the interesting features of the multistep model but yet is
very simple to treat algebraically. This section is divided
into various subsections which deal with various aspects
of the model. The generalization of this model to the case
of multistep compound reactions is presented in Sec. III
and finally in Sec. IV we present a brief discussion where
we compare the present approach with some other ap-
proaches.

II. OPTICAL BACKGROUND REPRESENTATION

A. Formulation in a two-step model

and

(2.2)

with the condition Pd =dq =Pq =0. The transition am-
plitude from the incident channel state P; to the final
channel state Pf is given by

~ —(yf ~

( V+ VGV)
~ yj ) (2.3)

where 6 =(E H+i 0) ' i—s the full resolvent operator,
H =(Ho+. V) is the full Hamiltonian, V is the channel in-
teraction, and Ho is the kinetic energy operator of relative
motion. Unless otherwise specified the initial (i) and the
final (f) channel indices will not be explicitly shown as la-
bels on transition amplitudes and cross sections in this pa-
per. Also, we shall not explicitly show the +i 0 part of
the resolvent operators.

In this section we consider strongly overlapping reso-
nances in the doorway (d) and compound nuclear (q)
spaces and calculate fluctuation cross sections correspond-
ing to these two classes. This two-step model of com-
pound reactions is physically as rich as the multistep
model we consider in Sec. III. The two classes of reso-
nances are denoted by 1 (d space) and 2 (q space) in Eq.
(1.1)—the corresponding average widths and spacings of
compound nuclear states being denoted by I ~, I z and
D&,D2. As in HM we introduce a nested sequence of en-
ergy averaging interval I„(n = 1,2) such that

J] ))~ ) ))~2 ))I 2 ~ (2.4)

The scattering amplitude T given by Eq. (2.3) is then
written as

T TQp + Tgg + Tg

where r,p
= (,T), is

(2.5)

the optical amplitude;

In Ref. 13 we presented an alternate optical background
representation for the. transition matrix when the entire
Hilbert space is divided into optical (P) and fluctuation
( Q) parts representing the projections onto the open chan-
nel and closed channel spaces, respectively. In the present
section we generalize the alternate optical background
representation to the case where the entire Hilbert space is
broken into three pieces; e.g. , the optical (P) part, the
doorway state (d) part, and the fluctuation (q) part. We
introduce the usual orthogonal projection operators P, d,
and q as in Ref. 14, such that

(2.1)
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Td =((T)I (T—)I, ) and Tq=(T —(T)I, ) are fluctua-

tion amplitudes corresponding to d and q spaces, respec-
tively. As usual ( )I denotes energy averaging with
respect to a Lorentzian function of width I. The separa-
tion (2.5) of the transition amplitude into its components
has the advantage that (T~)1,= (Tq)I =-0. Hence in the
corresponding multistep cross sections interference terms
can be avoided.

Next let us introduce the operators V„and G„ through
the recursion relations

+n V(n —1) + V(n —1)G(n —1) V(.n —1)

and

G„=d„(E d—„H„d„) 'd„, (2.6b)

T =
& 0I I

{Vz+ Vz Gz Vz )
I 4 & .

In explicit notation Eq. (2.7) reads

(2.7)

with n =0, 1,2. In Eq. (2.6) the projectors d„are defined
by dp ——I', d~ ——d, and d2 ——q, and Vp ——V is the channel
interaction and H„=(Hp+ V„). This notation is intro-
duced here for the sake of future convenience. In terms of
these operators the transition amphtude T of Eq. (2.3) can
be written as'

T=&WI
I
{V+VGpV) I4&+&II I(V+VGpV)Gi(V+VGpV)

I dc&

+ & 4I I 1 ( V+ VGp V) +{V+ VGp V) G i ( V+ VGp V) 1Gz f ( V+ VGp V) + ( V+ VGp V)G i ( V+ VGp V) l f p; & . (2.8)

Tq=&NI
l

Vz{G2 &Gz&I, )Vz ldi&, (2.9)

such that (Tq)I ——0 insofar as (Gz)I is unchanged by
reaveraging. In writing (2.9) we have noted that Vz is
slowly varying over the averaging interval I2 and hence
( Vz )I = Vz. Now the difference T —Tq given by

( )I = ( —
q ) = ((hI

~
( Vz+ Vz ( Gz )I Vz )

~ p; ), (2.10)

will contain the components T~ and T,„. By interchang-
ing the role of dz and d

& Eq. {2.10) can be written as

Equation (2.8) is essentially Eq. (3.9) of de Toledo Piza
and Kerman' and is easy to derive. In Eq. (2.8) the first
term on the right-hand side containing Gp represents fluc-
tuations in the optical space. The second term containing
6& represents doorway space fluctuations governed by
resonances of average width and spacing I

&
and D&. Fi-

nally, the last term containing G2 represents rapid q space
Auctuations governed by resonances of average width and
spacing I 2 and D2. The operators Gp, G~, and G2 are re-
sponsible for these fluctuations.

Now it is easy to separate Tq of Eq. (2.5) from the ex-
pression of T given by Eq. (2.7) for n =—2. By definition
Tq ——(T —(T)I ) is given by

T = &oI I
( V~+ V~G«V~) I o; &, {2.13)

with Q =(d+q)=(d~+dz), and G« ——Q(E
—QH&Q) 'Q. Then to find the energy average (T)I of
Eq. (2.13) we note that V& is a slowly varying function
over the averaging interval I& and that the energy averag-
ing should be done only on G« in Eq. (2.13). After per-
forming this energy average we have

(2.14)

Now making use of the identity

Vi + Vi & G«&I, Vi ={Vi + Vi & Gzz &I, Vi )

+{Vi+ Vi &Gzz &I, V»&GI" &I,

X ( V) + V( (Gzz )I V( ), (2.15)

Gzz =dz(E dzH)dz) —'dz,

Gqq dz(E ———dzHdz) 'dz,
Gp" ——dp(E —dpHp"dp) 'dp,

GI" di(E d——iHI 'di) —'di,
where Hp" ——(Hp+ Vp ') and H'I ' ——(Hp+ VI ). Now in
order to calculate T~ or T,~

w'e need to evaluate (T)I .
1

For this purpose we rewrite Eq. (2.3) or Eq. (2.7) as

& T&I, = &PI I
(VI"+ VI 'GI"VI")

I 0 & (2.1 1)

with

Vi =Vi+Vi&Gzz&I, Vi
(1)

=Vp +Vp Gp Vp
(&) (1) (1) (&)

(2.12a)

(2.12b)

one can immediately find out T& and T,~. Equation
(2.15) is basically Eq. (3.34a) of Ref. 8. In Eq. (2.15) the
average over I, guarantees that the states in d

~ are treat-
ed on the average on the right-hand side and since in
( V~+ V~(G«)1 V~) the states in q =dz are averaged
out, all states in Q appear only on the average in this
equation. Substituting Eq. (2.15) in (2.14) and using Eq.
(2.12) one has

where

V,"=V+ V&G„&,, V.

Here

(2.12c)
& T),, =(yI

~
( V',"+V', "(G',"),,

V', ")
( y, ) . (2.16)

From Eqs. (2.11) and (2.16) one immediately has
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Td: & T)I,—& T)1,

&pf ~

v (&G ) &G ) )v ~Ijk') ~ (2.17)

Finally, changing the role of do Pa——nd Q in Eq. (2.14)
we get

HM, appears to be different from that obtained in Ref. 8.
In the following subsection we show the equivalence be-
tween these two expressions for Td before calculating the
multistep cross sections.

B. Equivalence with the HM representation

T,„:&T—),=
& pf ~

( U + Ug, U)
~ p; ),

U= v+ v&Ggg)I, v

(2.18)

(2.19)

The doorway space contribution Td
—= ( & T )q

—
& T )I )

of Hussein and McVoy in the same model is given by '

Td= &pf ~
(1+Ug&»)vpd gdd vdp(1+gopU)

~ p ) (2.21)

where

g,p P[E ——P(HO—+ U)P] 'P, (2.20)

where Ggg ——Q (E —QHQ) 'Q. Equation (2.18) is the
usual expression for T,~ and is identical with Eq. (2.10) of
Ref. 13. Equations (2.9), (2.17), and (2.18) for Tz, Td,
and T,p constitute the generalization of the optical back-
ground representation of Ref. 13 when two types of fluc-
tuations are present in the transition amplitude. Substi-
tuting d ~

—=d =0 in our model one easily obtains the opti-
cal background representation of Ref. 13, which has been
shown to be equivalent to that of KKM. The present def-
inition of Td, though based on the same definition of

gdd
——d (E dH o"d— Vdp g,—p Vpd ) 'd,

Vpd =PVO d&[i (I& /2)& Gd )I ] d&

V =d, ['(I, /2)&G„' '), ]' d, V'"P,

~here

Gd" d, (E ——d, HO"d—, ) 'd, .

(2.22)

(2.23a)

(2.23b)

The equivalence between Td of Eq. (2.17) and of Eq.
(2.21) can be established by using the following easily veri-
fied identities:

(2.24a)

8—:Vpd gdd Vdp

=PV'"['(I, /2)&G„'") ]' (G„' '+g„„V g, V „G„' ')['(I, /2)&G„"') ]' V' 'P,

= PVO"i (I& l2) & Gd")I I Gd" +Gd" Vo"P[g,p' Pvo" & Gd")I i—(I, /2)Gd" Vo 'P] 'PVO"i (I)/2) & Gd")q Gd"
I VO"P,

=PVO 'i(I~ /2) &G d )I [Gd +Gd Vo gppvo (Gd —&Gg )1, )]vo 'P

=PV'"i(I, /2)&G„" ),6, '(V —vo Go vo &Gd )I, vo )P,

(2.24b)

(2.24c)

(2.24d)

where

gpp P(E PH o"P Pv——o"Gd" V—o"P)— (2.24e)

I

of both sides. Substituting Eq. (2.26c) in Eq. (2.21) one
arrives at Eq. (2.17) with the use of the identities

Equation (2.24b) follows from Eq. (2.24a) by considering
the Neumann series expansion of relevant resolvent opera-
tors of both sides. Equation (2.24c) follows by using the
following identity:

(1+Ug.p)gap'Go
' = VI"

Go"g,„'(1+g,pU)= VI" .

(2.27a)

(2.27b)

g,p' ——(E PHP PV&Ggg—)I VP)—
=(E PH P PV' 'P—PV" &G„' )—

,
V'"P) .—(2.25)

Finally, Eq. (2.24d) follows by using the definition of G'&"

given after Eq. (2.12). Using Eqs. (2.19) and (2.20), Eq.
(2.24d) can be rewritten as

8:—gap g pvo &Gd )I i (I) l2)GI Vo Go g~p, (2.26a)

=gap Go Vo &GI")I i (I&/2)GI" Vo"Go" g,p', (226b)

(2.26c)

Hence, the equivalence of the present optical background
representation with that of Ref. 8 is established. Though
these two optical background representations are
equivalent, the present one has some distinct advantages
over that of Ref. 8 in calculating multistep cross sections
as we see in the following.

C. Multistep fluctuation cross sections

In this subsection we calculate the multistep contribu-
tions to the fluctuation cross section. The amplitude Tq
given by Eq. (2.9) can be written as

where again Eq. (2.26b) follows by considering the Neu-
mann series expansion of the relevant resolvent operators

Tq = & 0f I V2[~ (I2/2) & G2 )I,]'"
XG ['(I /2)&G2)i ]' V2

~ p, ) . (2.28)
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Next we make an eigenfunction expansion of 62 in Eq.
(2.28) in terms of the biorthogonal basis states

I fz&& and
(gz& I

of the Hamiltonian dzHzdz corresponding to the
complex eigenvalue Fz& —=(Ez„—iI z&/2), and satisfying
(gz& I gz, & =5&„. Then one has

~ 8]fp RispTd= ~
p E alp

(2.36)

where

g),p
—(P, I vI '[i(I)/2)(E e—)„+iIi/2) ']'~

I g»&,

where

~ gzfpgzip

p E —62p
(2.29) (2.37a)

= (g» I
[i (I)/2)(E Ei~+—iIi/2) ']' vi"

I P, &,

g

zest

= & '(t'e
I

vz fzp «)
I PziJ, &

If «)v 14" &

(2.30a)

(2.30b)

where c represents either the initial or the final channel
level i or f. The function

f~~(E)= Ii (Iz/2)[E ez—„+i(Iz/2)] (2.31)

2~ I gzf, I

'
I gz;„ I

'
D I Ppil )

2 2p
(2.32a)

is a slowly varying function of energy E and because of
this weak dependence on E of gz, z one has (Tq &I, =-O

and hence (gzfp gz p &p I —0. It is because of this condi-
tion that one can employ average unitarity as suggested by
Kerman and Sevgen' and as a consequence neglect the
level-level correlation term, and obtain' ' the following
multistep cross section o.q.

= 2~ 2 . 2ird=
D I & Iglfp I lgii, I &,.I,

1 1

(2.38)

where (1/I » &~=1/I &
and Di is the average spacing of

states. In terms of the X matrix defined in this case by

(2.39)

the expression (2.38) for cross section becomes

= 2~
( (Xiff X/ij +X'ifi X]if) &I (2.40)

(2.37b)

where
I f» & and ( tP» I

are again the biorthogonal set of
eigenstates of the operator d &H'~ "d

& appearing in G &"

corresponding to the complex eigenvalue e»=(E»—iI »/2). Again using the arguments of average unitar-
ity and neglecting level-level correlation the d space cross
section o.d becomes

= 2~ 2 . 2=—
D ~ & lgzfpl lgz»l &pa, ,

2 2
(2.32b) which in the absence of direct reaction channel coupling

becomes (for many open channels)

where (1/I zz &&= 1/I z. Next following KKM we define
the X matrix by

= 2~
od = (Xiff &I &Xiii &I (1+&fi ) (2.41)

Xzc, = &gz„gzc„&„,1, ,

when Eq. (2.32) reduces to' '
2&

oq = & (Xzff Xzii +Xzfi Xzif ) &I)D2r2

(2.33)

(2.34)

Finally, defining (X«, &z =I «, n =1,2, the full fluctua-
tion cross section o"=(od+oq) can be written as

2rrl „; D„2~1„f
n 1 n Vr n n

Here I"2 is the average width and D2 is the average spac-
ing of q space states. In the absence of direct channel
coupling Eq. (2.34) yields the following simplified relation
in the limit of many open channels:

oq = &Xzff &I/ &Xzii &I/(1+~fi ) (2.35)
2 2

Before presenting a detailed analysis of the result (2.35)
we calculate the fluctuation cross section ~d correspond-
ing to the doorway space d ~. Again Td can be written as

In Eq. (2.42) the factor (2@I „f/D„) or (2~I „;/D„)
represents the probability of reaching the stage n starting
from the final channel f or the initial channel i

The main advantage of the present approach is its sim-
plicity and the special chaining property that (Xz„&I ex-

hibits. We shall see that it contains the direct transition
from channel c to the q space and a route via the d space.
In order to see this property of chaining we evaluate
(Xz„&i using the present optical background representa-
tion. For this purpose we rewrite the g as

gzcp = & 0'c
I

( vl + vl Gl vl )fzp«) I 4z„&

=&Pe I vl fz„«) I @z„&+&4.
I

van[i(ii/2)&Gi &I, ]' 'Gi[i( i/2)&Gi &I, ]'"vifz„«)
I 6„& (2.43)

where
v', =v, +v, (G, &, , v, . (2.44)

In the first term in Eq. (2.43) the di space has been aver-
aged out and it provides a direct transition from channel c

to the d 2 space. The second term in this equation
represents a transition from the channel c to the d2 space
via the doorway space d&. Moreover, the second term in
Eq. (2.43) averages to zero by construction. Hence, in X
the interference term will not contribute and one has
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2 2—&x „&,= & Ig„„I

2 2

'+
D D(21) I (2)

2 1 1

(2.45)

where

I 2c' = &
I

&(t" I
~') f2@(+) I P2p &

I
'&pa, (2.46a)

I')'."=
&

I &4, I
I') fI"«)

I
0')'&

I '&-I, (2.46b)

(2.46c)

In order to derive Eq. (2.45) we have employed eigenfunc-
tion expansion of the operator 6) appearing in Eq. (2.43).

I

The biorthogonal set of ei~enfunctions of the Hamiltonian
d(H)d) are denoted

I g),'& and &it)'I
'

I

with the cor-
responding eigenvalue e) = (E i —i 1 ), /2). Again f„(2 (2) ) (2)

represent the slow energy dependence corresponding to
the square root factor in Eq. (2.43); D) " is the average
spacing of states in this space and I"I "—1/& 1/I I,'&,.

In Eqs. (2.45) and (2.46) the index 2 on various func-
tions refer to the fact that these functions originated from
the optical background representation of the g's appearing
in Tq. For example, D')" of Eq. (2.45) is in general ex-
pected to be different from D) of Eq. (2.38) and the same
is true for the other variables with different superfixes. It
should be noted that none of these variables are appropri-
ate for the actual physical system but they represent a
convenient parametrization of the fluctuation cross sec-
tion in terms of these quantities. Though it is expected
that the variables with different superfixes will . yield
quantities of the same order of magnitude, they are not
expected to yield identical results as the eigenfunctions
employed in the calculation of g is different from that
employed in the calculation of multistep cross sections.

Using Eqs. (2.45) and (2.46), Eq. (2.42) for the fluctua-
tion cross section becomes ( i &f)

2mI 1; D1 2+I 1f
(1) (1) (1)

0
2 I, +

I-(1) I-(1)

D(2) I

D(2) D(21) I (2)
'+

2 1 1

rz, 2~r „r, 2 rzf(2) (21) (2) (2)

D(2) D(21) I (2) I (2)+ +
2 1 1 2

D 2 I zf 2 I 1f I(2) (2) (21) (2)

D(" I' '+~ 2 . 2 1 1

~2~1 ~ 1f(2) (21)

I (2) I (21)
2 1

(2.47a)

(2.47b)

where

D(z)
(2) = (2) 2I, , =r, ,

D1
(2.48)

Here D„'"'=D„and I '„"'—:I „, n = 1,2. The superfix is in-
troduced to remind that these variables belong to the
chain that end on class n and is added for future conve-
nience in notation. The first expression given by Eq.
(2.47a) is manifestly time reversal symmetric whereas the
second expression given by (2.47b) is more appropriate for
exhibiting the correct time evolution of the system. The
first term on the right-hand side of Eq. (2.47) represents
the multistep cross section o.d and shows the time evolu-
tion of the system through the d space which is the only
space existing as in this term the q space has been aver-
aged out. The last term in Eq. (2.47b) represents the four
possible time developments of the system symbolically
denoted by i ~q~f, i~d~q~d~f, i ~q~d~f,
and i~d~q~f. The HM formulation for multistep
cross section has denied this simple physical structure of
time evolution because of the complicated square root fac-
tors inherent in their approach.

The fluctuation cross section in this model given by Eq.
(2.47) is the principal result of this section. At extreme
low energies when only the elastic channel is open the
second term in Eq. (2.47b) obeys chaining properties if the
Hamiltonian H of the system obeys chaining, i.e.,

I

doHdz =—PHq =0, doVdz =—PVq =0. In order to establish
this claim one should note that under these conditions I z,

'

defined by Eq. (2.46a) reduces to zero as the d space in V'(

defined by Eq. (2.44) has been averaged out, and conse-
quently V'1 cannot connect the P and q spaces, i.e.,
PV1q =0.

Another advantage of the present formulation is that in
the absence of direct reaction channel coupling the q
space contribution to cross section o.

&
has a symmetric

Hauser-Feshbach form and hence the doorway component
and the compound nuclear component of the cross section
comes out of a unified whole. To prove this as in KKM
we introduce the Satchler's generalized transmission ma-
trix P by'

2&
Pz.c = g(X„, X2 +X„, X, - ).

D2I 2
(2.49)

Again in the absence of direct reaction channel coupling
and in the presence of many open channels

2KPz„——. Xz„TrXz, (2.50)

which has the following approximate solution in the
strong absorption limit: '

1/2

Xz =-
D2I 2

P2(TrP2)
—1/2 (2.51)

2m
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Substituting Eq. (2.51) in Eq. (2.35) one obtains the usual
Hauser-Feshbach expression

TqTq
oq ——(1+5fi )

Tq
(2.52)

where T, =P2„. Hence the present approach includes the
standard Bohr description of the compound nucleus for
the most complicated stage of resonances.

Finally, we conclude this subsection by calculating the
autocorrelation function defined by Eq. (1.2). The t ma-
trix autocorrelation function C is given by

C (6)= ([Td(E—)+Tq(E)][Td (E+~)+Tq (E+e')] )t, ,

III. GENERALIZATION TO
THE NESTED DOORWAY MODEL

I n )&I (n+ l) 7 I n »Dn (3.1)

where n =1,2, . . . , N. Equation (3.1) defines a well-
nested sequence of classes of compound nuclear (n =N)
and doorway ( n & N) resonances.

As in HM we introduce a nested sequence of energy
averaging intervals I„such that

The model of nested average approach assumes the
presence of a hierarchy of doorway resonances to be
grouped into classes according to their total widths. The
average width I „and spacing D„ in class n obey

l D„ I „+i@

I s.r» I

'
I g.;„ I

'
)1 D„ I n„+ie

2 2~ (
I gnfp I I gnip )p~r)

(2.53a)

(2.53b)

(2.53c)

I (n —l) »~n » I n-

The scattering amplitude T is written as
N

+ y Tfl
n=1

where To (T )t is th——e optical amplitude and

(3.2)

(3.3)

n=1

r„
"I„+is ' (2.53d)

=
I
C'(~)

I

'+2~"ReC'(~»

(2.54a)

(2.54b)

where C is given by Eq. (2.53) and O' "=
I
(T)I

I

is

the "direct" cross section. The study of the autocorrela-
tion function gives a useful way of finding out the pres-
ence of various classes of resonances in a reaction. '

where we again suppress the exit and entrance channel la-
bels on o. and T and where we again employ the usual ap-
proximations used in the calculation of the cross section.

Following Ref. 8 now we can easily evaluate the cross
section autocorrelation function given by Eq. (1.2). This
will give the useful generalization of Ericson's formula
and is given by

C(e') = (~(E)~(E+&))t, —(~(E))t, ((t(E +&))t, ,

T„"—= &»t, .„—& T)t (3.4)

are the multistep Auctuation amplitudes with I(N+l) ——0.
Let d s represent the projection operators for successive
doorway spaces i where increasing i denotes increasing
complexity, and dp represent the projection operators onto
the open channel space. %'e consider the following
decomposition of the full Hilbert space:

where

~(n —I) +dn +Q(n+1) (3.5)

(n —l) N

~(n —I) —g di » Q(n+1)
i=p I =(n+l)

This separation is similar to the separation (2.1) of the last
section. Here dp is the projector onto the open channel
space and Ql is that onto the closed channel space.

Let us now calculate T„. We introduce the operators
V; through the recursion relation

V;= V(; l)+ V(; l)G(; l) V(; l),
D. Summary i =1,2, 3, . . . , (n +2), (3.6)

In this section we have derived the present optical back-
ground representation in a simple doorway model and
mentioned its advantages. Firstly, the present formula-
tion is time reversal symmetric and includes the Bohr
description of compound nuclear reactions. In quantita-
tive language it means that the compound nuclear cross
section o q has a symmetric Hauser-Feshbach form.
Secondly, the present formulation exhibits chaining prop-
erty. This means that the system evolves first through a
succession of classes of nuclear states of increasing com-
plexities, and then escapes to the exit channel from one of
these classes through a succession of classes of nuclear
states of decreasing complexities. In the next section we
shall generalize the present formulation to the nested
doorway model where a hierarchy of doorways are
present.

with Vo ——Vthe full channel interaction. In Eq. (3.6) G s
are defined by

and

G;=d;(E d;Hid;) 'd;, i—=0, 1,2, . . . , n (3.7)

—lG(n+1) Q(n+1)(E Q(n+1)H(n+1)Q(n+1) ) Q(n+1)

(3.8)

where

H; =Ho+ V;, i =1,2, . . . , (n+1) . (3.9)

In Eq. (3.9) Ho is again the total relative kinetic energy
operator. In terms of these operators the transition ampli-
tude T can be written as
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T = (Pf I
( V(n+) ) + V(n+1)G(n+) ) V(n+) ) )

I &

Equation (3.10) is a generalization of Eq. (2.7) of Sec. II to
the case of nested doorways. Now we introduce the fluc-
tuation amplitude corresponding to Q(„+)) space by

TQ (0f I V(.+()(G(n+() (G(n+)) )I(„+)))V(n+() I 4'i & ~

(3.11)

such that (Tg )r ——0 insofar as (G(n+)) )r is un-fi

changed by reaveraging. Now the difference

T T& &—Py I
(
——v,„„+v(„

fl

Tf( (y I

V'( )[ (I /2)(G( )) ] j

XG(")['(I„/2)(G(n)) ])/2V(n)
I f ) (3.17)

We shall use representation (3.17) for the purpose of cal-
culating the nth multistep cross section and exhibit the
property of chaining. As the multistep component of the
transition amplitude given by Eq. (3.17) averages to zero
by construction, crossed terms are avoided. Next we use
Eqs. (3.16) and (3.17) in order to calculate multistep cross
section and exhibit the property of chaining. As in Sec. II
next we make an eigenfunction expansion of G„'"' of Eq.
(3.17) and rewrite Tnn as

+ (G( +)) )&,„„V( +() )
I 0

will contain all multistep components T;, i =1,2, . . . , n.
Using the definition (3.6) of V; we rewrite Eq. (3.12) as where

~ gn/pÃmp
n (3.18)

T —T =(P I(V„+V„G„V„)+(V„+V„G„V„)

x(G(„„)),, „(v„+v„G„v„)Iy, &,

(y I(v( )+v( )G( )v( ))Iy )

V = V~+ V~(G( ))( )) )s,„„v

(3.13a)

(3.13b)

(3.14a)

g.„—= & 4, I V.'"'f.,«)
I @.„& (3.19a)

= &4., If.„«)v.'"'
I 0, &, (3.19b)

and where
I g„&) and ( f„& I

are the biorthogonal set of
eigenstates of the Hamiltonian d„H„'"'d„appearing in
G„'"' corresponding to the complex eigenvalue en& and f„z
is defined by

—1G(+))(+()=Q(.+))« —Q(. +))H Q(.+))) Q(. +))

(3.14b)

G "'=d;(E d;II "'d; ) 'd—;, (3.14c)

with ~' ~0 + ~i and E 0, l, 2, . . . , n. Equations
(3.13) and (3.14) are generalizations of Eqs. (2.11) and
(2.12) to this case. The resolvent operator G„"' in Eq.
(3.13b) contributes to poles appearing at a rate D„as the
fluctuations of the Q(„+)) space have been averaged out,
and this is the most rapidly varying part in this equation.
Using the same arguments that led to Eq. (2.17) one ar-
rives at the following expression for the nth multistep arn-
plitude:

"=((()
I

'"'(G. —(G. ). ) "'I(() ) (3.15)

such that (Tn )q -—0. Equation (3.15) provides the repre-
sentation of the nth fluctuation amplitude we desire. The
present definition of T„" is identical with that of HM and
the equivalence between the present representation and
that of Ref. 8 can be established by following the analysis
of Sec. II 8.

Now using the definitions of V; and V "' given, respec-
tively, by Eqs. (3.6) and (3.14), one has the following iden-
tity:

fnz = [i (I„/2)(E enz+iI—„/2) ']'~ (3.20)

The function f is a slowly varying function of energy E
and because of this weak dependence on E of g«„one has
( T„)z ——0 and hence

( gn/p gn(p)per„—=0 . .

It is because of this condition that one can apply average
unitarity as suggested by Kerman and Sevgen' and as a
consequence neglect the level-level correlation term, and
obtain

ff 2' 2 . 2

n n

(3.21)

Xncc =&gncp'gric'p )pcI„

in terms of which o.„" reduces to

(3.22)

Q 2't7o.„=— ( (Xn// X„;;+X„,/ X„/; ) ) qD„I „
(3.23)

where I „ is the average width and D„ the mean spacing
of resonances in this space.

Next as in Sec. II we define the X matrix by

(n) {n) {n) {n) ~{n)~i —~{i—1) + ~{i —1)6{i —1) {i—1) (3.16)
In the absence of direct reaction channel coupling Eq.
(3.23) yields the simplified relation

Equation (3.16) can be verified by interchanging the roles
of Q(„+)) contained in G(;+,)(;+,) and d(; )) contained
in V, . In Eq. (3.16) G(";' )) contributes to poles appearing
at a rate given by D(; )) and as the fluctuations of the
Q(n+() space have been averaged out V(,"',

) is slowly
varying on this scale. As in Sec. II Eq. (3.15) can be
rewritten as

cr„—= (X„//), (X„;;),(1+t)/;) .n (3.24)

Now we would like to prove the chaining property of the
X's in Eq. (3.24), and in order to establish this, using Eq.
(3.16) recursively, we arrive at
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y(n) y(n) 1+ ~ G(n) ~(n)+ ~ ~ G(n) y(n)g(n) y(n)+ . +G(n) y(n)G(n) y(n) . G(n) y(n)
n 1 i I i i j j 1 1 2 2 (n —1) (n —1)

0&i &n 0&i &j&n
(3.25a)

'

1+ ~ y(n)G(n)+ ~ ~ y(n)G(n) y(n)G(n)+, + y(n) G(n) y(n) G(n) y(n)G(n) y(n)G(n) ' y(n)j j i i (n —1) (n —1) (n —2) (n —2) 2 2 1 1 1 ~

0&i &n 0&i &j&n

(3.25b)

Then we substitute expression (3.25a) in X„ff and expres-
sion (3.25b) in X„;; appearing in (3.24). In Eq. (3,25) the
most rapidly varying function is G(„"' () which contri-
butes to poles appearing at a rate D(n 1). Then comes the
functions G(„"'

~~
and V(„"' )) which fluctuate at a rate

slower than G(„" (), and so on. Equation (3.25) when sub-
stituted into Eqs. (3.19) and (3.22) provides all possible
time development of the system from the entrance chan-
nel to the stage of complexity n. First, one can have a
direct transition from the open channel space to states of
complexity n; then, one has the transition via m stages
with m varying from 1 to (n —1). For example, for n =4
one has the following possible routes: i~4, i +1~—4,
i ~2~4, &

—+3~4, i ~1~2—+4, i ~1—+3~4,
i ~2~3~4, and i ~1~2~3~4. But before evaluat-
ing X«, using Eqs. (3.19) and (3.22) it is necessary to in-
troduce the optical background representation of Sec. II A
to the operator V„'"' so that interference terms between
various pieces of V„'"' in the calculation of X„„can be
eliminated. Now it is obvious that this can be achieved by
applying successively the optical background representa-
tion to V„'"', though in practice the algebra could be tedi-
ous for a general n. Also it is intuitively obvious that this
will not change the possible time development of the sys-
tem from the open channel space to the stage of complexi-
ty n.

Let us illustrate these aspects for a particular n and
show how Eq. (3.25) gets modified after introducing the
optical background representation. Let us consider the
case n =3 which is sufficiently complex but still algebrai-
cally simple, - so that we can write the result for a general
n. In this case T3 is given by Eq. (3.17) with n =3,
where V3

' satisfies the following hierarchy of equations:

y(3) y(3) + y(3)G(3) y(3)
3 2 + 2 2 2

y(3) p (3) + y(3)G(3) y(3)
2 1 + 1 1 1

y(3) + y(3)G(3) y(3)
1 0 0 0 0

(3.26a)

(3.26b)

(3.26c)

V0
' ——V+ VQ4((F. Q4HQ4)—')I,Q4 V .

We can easily rewrite Eq. (3.26a) as

V(3) ( V(3) + V(3) ( g(3) ) V(3) )
2

+ V(3)(g(3) (g(3) ) )V(3)

(3.26d)

(3.27)

where we have separated the rapidly and slowly varying
parts so that the rapidly varying part given by the last
term in Eq. (3.27) averages to zero. Using this method of
separating the rapidly and slowly varying parts repeatedly
we have

V(3)
(

V(23) + V(23)g(23) V(23) )+ [( V(3) + V(3) ( g(3) ) V(3) )+ V(3)(g(3) ( g(3) ) ) V(3) ](G(3) ( g(3) ) ) V(3)
1 2

where V ' satisfies

y(23) y(23) y(23)G(23) y(23)
1 0 + 0 0 0

Vo V+ V(Q4+d2)([+ (Q4+d2)H(Q4+d2)] ~I (Q4+d2)V ~

(3.28)

(3.29a)

(3.29b)

and

GP '=d)(E d, HP 'd)) 'd(, — (3.29c)

V( )=(V( )+V' )(G' ') V( ))+[V( '(G( ' —(G' )) )V( )]+[(V( )+V' )(G( )) V( ))(G( ) —(G( )) )V( )]
1 1 I 2

+[V(3)(g(3) (G(3) ) )V(3)(g(3) (G(3) ) )V(3)] (3.30)

where Hp '=H0+ Vp '. In writing Eq. (3.28) we note that the first terms on the right-hand sides (rhs) of Eqs. (3.27)
and (3.28) are identical. Now separating the rapidly and slowly varying parts in this term again Eq. (3.28) can be written
as

This equation should be compared with Eq. (3.25a):
V(3) ( V(3) )+(V(3)g(3)V(3) )+( V(3)g(3) V(3) )

+ ( V(3)g(3) V(3)g(3) V(3) ) (3.31)

This V3
' should be used to calculate g„,z of Eq. (3.19a).

The first term on the rhs of Eqs. (3.30) or (3.31) represent
the direct transition to the n =3 space from the open
channel space c. The second and the third terms
represent the transition from the open channel space to
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the n =3 space via the n = 1 and n =2 spaces, respective-
ly. Finally, the last term in Eqs. (3.30) or (3.31) represent
such a transition via both the n =1 and n =2 spaces. By
construction, the last three terms of Eq. (3.30) average to
zero when averaged over appropriate averaging intervals
and hence in calculating g«& of Eq. (3.19a) or X of Eq.
(3.22) the interference terms between various pieces can be
avoided.

Before using Eq. (3.30) to construct X we note that the
first term on the rhs is slowly varying and is the optical
background term. The second term contains fluctuations
of the d) space contained in G') ", the third term contains
fluctuations of the d2 space contained in 62 '. Finally,
the last term contains a chain of fiuctuations of the d(
and d2 spaces contained, respectively, in 6'1 ' and 62 '.
Now it is straightforward to calculate X„ff using (3.30)

X ff I f I I 2f I 2 1 I 1f I 3 1 F f(3) )(3) (32) g(32) ){321) t(3) (31)

(3) I (3) I (32) p{32) I {321) p{3) I (31)I 3 3 2 2 1 3 1

where

3f &
I &4f I

(~'"' + ~'"' &G'("' &i,
~'"' )f~ (E)

I 6 & I
'& .I,

(,) &
I
&P2v'If2v'(E)~2"f~„(&)

I A„& I'&„,:I, ,D' '

(3.32)

(3.33a)

(3.33b)

1

I zf '=&
I &4f I

[v) '+I I '&G'( '&I) V') ']fr~'(&)
I

6'v'&
I

~3 ) D(&2) &
I

&|('1 IfI (+)~I f3+(+) I 43@& I'&P, a)
1

(3.33c)

(3.33d)

(3.33e)

IIf & I &4f I
~I' 'fI' (E)III & I'& .I, (3.33f}

I If'"=&1&If
I

I'I"fI".«)
I
0'("& I'&.a,

and I $ I 3 Equations (3.32) and (3.33) follow by the repeated application of the approximations needed to arrive at
Eq. (3.24) in the absence of direct reaction channel cou ling. In Eq. (3.33) D), D(, and Dz are the average spacing
of resonances contained in GI, G ), and G; and I(, I I, and I 2 are the corresponding average widths, respec-
tively, of these resonances. The functions

I
1t2&'& and &p2„' I

are the biorthogonal set of states used to expand G~ '. The
functions

I
1()() '& and &g )„'

I
are the biorthogonal set of states used to expand G') ' and finally,

I
g'(, '& and & PI,'

I

are
the biorthogonal set used to expand GI '. The functions f(E) in Eq. (3.33) are the square root factors arising from the
present optical background representation.

After having calculated Xqff we would like to calculate Xq;; in order to demonstrate the property of chaining. In this
case we should use the time reversed expression for V3 ', e.g. ,
y(3) ( V(23)+ y(23)

&
G(23)

&
V(23) )+ [ y(23)(G(23)

&
G(23)

& ) y(23)]+ [ /(3)(G(3)
&

G(3)
& )( y(3)+ y(3)

&
G(3)

&
y(3) )]1

(3.33g)

(3.34)

(3.35)

(3.36)

+[ V(3)(G(3) &G(3)
&

)y(3)(G(3) &G(3)
&

)y(3)]

Now we use g«& of Eq (3.19b) .in order to calculate X of Eq (3.22) a.nd using similar approximations we arrive at
T

D(3) D(32) D(321) I {32) I (3) D(31) p{3)
'+

3 3 2 1 1 2 1 1

where I q, I 2; ', I');", and I '); " are defined by Eq. (3.33) with i replaced by f; Dq ' =Dq, and D' —', D') ", and D'
are the average spacing of resonances contained in G2', 6') ', and 6) ', respectively; I I' 2

——12' )'DI '/DzI 2 g I $ 2D 2 /D 3 I ) p
—I 3 (D ( /D ~ . Again we emphasize that the various I"s appearing in Eqs. (3.32) and

l(3) t(3) (3) (3). l(3) t(3) (32) (3)

(3.35) are not the physically relevant widths but should be considered as parameters for expressing the cross section.
Now the nth multistep cross section in the limit of many open channels and no direct reaction channel coupling is

given by the product of the quantities appearing in Eqs. (3.32) and (3.35) and is given by
fl 277
3 X3ii X3ff

3 3

p(3)
3g

D(3)
3

(3)I 3fX (3)I3

I (32) 2 I (321) I g(32}
2i ~ li 1~2

D(32) a{321) I (32}
2 1 1

~3 2 ~2f ~2 1 ~1f
t(3} (32) t(32} (321)

+
I (3) I (32) p(32) I (321)

3 -'. 2 2 1

12&{3)

I {3) +
2

t(3)

+ I (3)
3

D(31} I (3)
1 1

1f
I (31)

1

(3.37)



1230 SADHAN K. ADHIKARI

cr„=H'"'(i ~n)P'"'(n ~f),
2&

(„) (Xnll )I) (Xnff )I)
n n

where

(3.38a)

(3.38b)

In Eq. (3.37) the chaining property of the system is expli-
citly exhibited. The possible chains to the stage n =3 are
given by i~3, i~1~3, i —+2—+3, and i ~1—+2~3.
After reaching the stage 3 the system decays via one of
the following routes: 3—+f, 3~1—+f, 3~2~f, and
3~2~1—+f. At extreme low energies when the elastic
channel is the only open channel the only route that sur-
vives in Eq. (3.37) is i ~1~2~3~2~1~f (i =f). At
higher energies, physically the P =do space is very large
and contains more complicated states and the system can
bypass some stages in the doorway-hallway space d„,
n ~ 0, through the P space. Then one has the possibilities
i~3, i~1~3, 3—+l~f, etc. Let us try to understand
how i~1~3 becomes physically allowed at higher ener-
gies. The system after coming to the d) space may pass
to the open channel P =do space which contains states
more complex than states in d1 and less complex than
states in d3. In the usual shell model language d„ is an
(n +1)-particle —n-hole state in the closed channel space.
At higher energies P =do will contain three-
particle —two-hole states in the open channel space.
Hence the system can pass from d) to d3 via these states
in the P space. As a result at higher energies strict chain-
ing hypothesis of FKK is supposed to be violated as was
pointed out ' in Refs. 6 and 13 and one has what we call
the "broken chaining hypothesis" as in Eq. (3.37).

The superfix on the I 's and the D's in Eq. (3.37) refer
to the chain to which this particular I or D belong. For
example, I 1' 2 belongs to the chain i ~1~2~3 whereas
r', "'3 belongs to the chain i~1~3. Similarly, I 1' 3' be-
longs to i ~1~3~4. The functions I I' '3 and 1 (' 3 are
both partial widths for decay from stage 1 to stage 3, the
former one appearing in 0.

3 and the latter one appearing in
o.4. The physical partial width for decay from stage 1 to
stage 3 I ( 3 is expected to be different from both of
these. All these three widths identified by the superfixes
are, however, supposed to have the same order of magni-
tude. The same comment is true for I 1' 2 and I 1' '2 or
for D', ",etc.

Now it is not difficult to generalize the present result to
the case of multistep cross section in the limit of many
open channels and no direct reaction channel coupling as

I (nm) I l(nm)

m)=
0 k I k"

(3.39b)

I (nmk) I g(nmk)

Dk 0&n &k
p(nmk)

(3.39c)

~(nmkl ~ ~ ~ p)( ~

1) 2 I {nmkl p)/D(nmkl ~ p)

(3.39d)

@(nmkl ~ . p)(1 ~) I (nmkl p)/I {nmkl ~ p)J 1f 1

(3.40b)

(3.40c)

etc. Equations (3.38)—(3.40) illustrate all possible paths in
the broken chaining hypothesis, which connect the initial
channel i to the final channel f via various doorway-
hallway stages. The total multistep cross section is given
by

o"—:g o„=g H'")(i n)P'"'(n f) . (3.41)

All the I"s and D's appearing in Eqs. (3.39)—(3.41) can
be defined as in Eqs. (3.32). But as this gives no new
physical insight we do not write them explicitly here. The
main result of this section is that in the limit of many
open channels and no direct reaction channel coupling the
multistep cross section can be expressed in terms of
several widths I and spacings D which depend on the
chain (or the multistep component) to which they belong.
This dependence of I and D on the width is expected, at
best, to be a weak dependence arising out of the process of
using the present optical background representation.
Once this weak dependence of the I"s and D's on the
chain is neglected, which may not be a poor approxima-
tion in view of our ignorance of these widths and spacings
at the present time, one has the following simple result:

I (n) I t(n)
Z{"'(n~f)= („) + g („) B'")(m ~f), (3.40a)

~n 0&m &n ~n

I (nm) I f(nm)

I (nm) I (nm)

H{")(i~n) =2m(Xn;; )I /D„'"'. o„"=H(i~n)B(n~f) .

In Eq. (3.42) M~ and P obey the recursion relations

(3.42)

B'"'(n ~f)= (X„ff )I /I '„"

where i and f refer to the initial and the final channels,
respectively. In Eq. (3.38) H{")(i~n) and &(")(n~f)
are constructed through the following recursion relations:

2~I'„",) I-""-''")(i~n)= („) + g H{")(i~m)
( )

Dn O&m &n
I' n'

(3.39a)

7TI niH(i ~n) = + g H(i~m)
0&m &n m

(3.43a)

B(n~f) = + g B(m~f),
0(m (n

(3.43b)

with the total multistep cross section again defined by Eq.
(3.41). Equations (3.42) and (3.43) are intuitively expected
results.
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IV. DISCUSSION

where H is defined by

(3.44b)

and

B(m~j)=H(j~m) . (3.44c)

Equation (3.44) can be easily verified using Eqs. (3.42) and
(3.43). Summing Eq. (3.44a) over n we arrive at the final
result of Agassi et al. , e.g. ,

N N
f}cr = g Q~, II

m =1 j=l
where

v. , =2m.D 'I, , c =i,f
and

D„II J = g H(m~n) Z(n~j) .
2+I „

n &m
ll)J

(3.45)

(3.46a)

(3 46b)

In this section we try to establish relations between the
present formulati. on and those already existing in the
literature, discuss their relative merits, and finally, estab-
lish the conditions, if any, under which the present formu-
lation reduces to the other formulations. Specifically, we
consider the formulations of Agassi, Weidenmuller, and
Mantzouranis; of Feshbach, Kerman, and Koonin; and
of Friedman, Hussein, McVoy, and Mello. The last of
these formulations exploits and elaborates the approach
first presented by Hussein and McVoy. The first two ap-
proaches (AWM and FKK) employ rnulticlass. models and
sort out levels of a particular model Hamiltonian into
classes which then define the various states of the reac-
tion. Both these approaches employ properties of statisti-
cal fluctuation of matrix elements of this Hamiltonian, as-
sume overlapping resonances in each class, and have a
large number of open channels. Over and above this
FKK makes the chaining hypothesis which is physically
expected to be violated in the limit of many open channels
and needs a condition stronger than (1.1) to have the self-
averaging property of their amplitudes. The present ap-
proach, like that of HM, is not based on a model Hamil-
tonian and is based on the nested averaging sequence (3.1)
and (3.2). These two latter approaches, however, deal
with overlapping resonances in each class and a large
number of open channels.

First, we would like to relate the present approach and
that of AWM. A connection can be established between
the present simple result given by Eqs. (3.42) and (3.43)
and the result of AWM. For establishing this connection
we rewrite Eqs. (3.42) and (3.43) as

2nl m D„2~I
H(m ~n) B(n ~j)

Dm 2nl „ DJ
n &j,n &m

(3.44a)

In Eq. (3.45) r, gives the sticking probability of reaching
the mth space from channel c, and II~ J represents the
propagation from stage m to j via all possible routes ex-
plicitly shown by Eq. (3.46b). Of course, one should
remember that this simple connection between the present
approach and that of Agassi et al. is approximate and
valid when the I 's and D's of the present approach are
independent of the chain to which they belong.

Next let us compare the present approach with that of
Feshbach, Kerman, and Koonin. If we impose the chain-
ing hypothesis on our result given by Eqs. (3.38)—(3.41)
and also assume that all the I 's and D's of the present ap-
proach are independent of the chain to which they belong
then the present result reduces to a form reminiscent of
the FKK result. At this point it should be recalled that
the chaining hypothesis should only be valid at extreme
low energies in the absence of exoergic reaction channels.
However, if we insist on the chaining hypothesis and
demand the I"s and D's be independent of the chain to
which they belong then Eqs. (3.38)—(3.41) yield

(3.47a)

where

I" l,y

„ IJ I )
(3.47b)

and I &=I"& ~~+&~ and I 1 =I 1 ~J ~~. Equation (3.47a)
has the familiar FKK form, where the factor 2mI ~;/D~
represents the sticking probability for the first stage of
doorway states from the entrance channel i; then the
product in the parentheses represents propagation to stage
n and the last term shown explicitly in Eq. (3.47b)
represents the escape to the final channel.

Apart from this apparent similarity between the two
approaches there are striking differences between the two.
First, as noted earlier the present approach is manifestly
time reversal symmetric and the Xth class contribution to
the cross section o.N has the symmetric Hauser-Feshbach
form. The same property does not hold good for the
manifestly asymmetric FKK formulation. Secondly, the
present approach is more exact and general than the FKK
one and does not possess the limitations of the FKK ap-
proach as commented in the Introduction. Attempts were
made in Refs. 13 and 21 to eliminate some of the limita-
tions of the FKK formulation.

Now we would like to compare the present formulation
with that of Friedman, Hussein, McVoy, and Mello.
While by construction the multistep amplitudes of the
present approach are identical to those of HM, the mul-
tistep cross sections of the two formulations have dif-
ferent forms because of the different paths followed and
different approximations made in calculating them. Their
o„has the approximate form given by Eq. (3.24) and the
correlation width I'„of the two formulations are expected
to be equal as has been emphasized by Hussein, Kerman,
and McVoy (in a different context). But the functional
forms of the function X of the two approaches are dif-
ferent. The function X of HM is especially complicated
because of the complicated square root factors in the
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Hamiltonian [see Eqs. (2.22) and (2.23)] and because of
this the formulation of HM resisted all attempts to yield
the simple physical chaining property, such as given by
Eqs. (3.38)—(3.41) of the present work. Otherwise these
two approaches are very similar and both are time reversal
symmetric and yield the symmetric Hauser-Feshbach
form of compound nuclear cross section under appropri-
ate conditions.

It is interesting to recall that the discussion related to
the autocorrelation function presented in Sec. II is also
valid in the case of general n and that the study of the au-
tocorrelation function provides us with a simple and easy
way of detecting the presence of various classes of door-

way resonances in a certain reaction. '

In conclusion, we have proposed a new statistical theory
of multistep compound reactions and have established
simple connections between the present approach and
those of A%M, FKK, and HM. We also indicate the ad-
vantages of the present approach over these approaches.
We hope that the present approach will be useful for fur-
ther understanding of the subject.

This work was supported in part by the Financiadora
de Estudos e Projetos and the Conselho Nacional de
Desenvolvimento —Cientifico e Tecnologico of Brazil.

'See, for example, J. M. Blatt and V. F. Weisskopf, Theoretical
Nuclear Physics (Wiley, New York, 1952).

V. F. Weisskopf, Phys. Rev. 52, 295 (1937); N. Bohr, Nature
(London) 137, 344 (1936).

3W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952); L.
Wolfenstein, ibid. 82, 690 (1951).

4W. Tobocman, Theory of Direct Nuclear Reactions (Oxford,
London, 1961); N. Austen, Direct Nuclear Reaction Theories
(Wiley, New York, 1970); F. S. Levin and H. Feshbach, Reac-
tion Dynamics (Gordon and Breach, New York, 1973).

5H. Feshbach, A. K. Kerman, and S. Koonin, Ann. Phys. (N.Y.)
125, 429 (1980), referred to as FKK in the text.

A brief account of this work has already appeared in S. K.
Adhikari, Phys. Rev. Lett. 51, 1834 (1983).

~M. S. Hussein and K. W. McVoy, Phys. Rev. Lett. 43, 1645
(1979), referred to as HM in the text.

8W. A. Friedman, M. S. Hussein, K. W. McVoy, and P. A. Mel-
lo, Phys. Rep. 77, 47 (1981).

D. Agassi, H. A. Weidenmiiller, and G. Mantzouranis, Phys.
Rep. 22, 145 (1975).

OM. Kawai, A. K. Kerman, and K. W. McVoy, Ann. Phys.
(N.Y.) 75, 156 (1973), referred to as KKM in the text.

' T. Ericson, Phys. Rev. Lett. 5, 430 (1960); Ann. Phys. (N.Y.)
23, 390 (1963).

2J. J. Griffin, Phys. Rev. Lett. 17, 478 (1966); Phys. Lett. 248,
5 (1967); M. Blann, Annu. Rev. Nucl. Sci. 25, 123 (1975).

~3S. K. Adhikari, Phys. Rev. C 28, 2013 (1983).
~4H. Feshbach, A. K. Kerman, and R. H. Lemmer, Ann. Phys.

(N.Y.) 41, 230 (1967).
' See, however, also, C. Mahaux and H. A. Weidenmuller, Shell

Model Approach to Nuclear Reactions (North-Holland, Am-
sterdam, 1969); Nucl. Phys. A91, 241 (1967); B. Block and H.
Feshbach, Ann. Phys. (N.Y.) 23, 47 (1963); A. K. Kerman, L.
Rodberg, and J. E. Young, Phys. Rev. Lett. 11, 422 (1963); R.
A. Ferrell and W. M. MacDonald, ibid. 16, 187 (1965); W. M.
MacDonald and A. Mekjian, Phys. Rev. 160, 730 (1967); A.
F. R. de Toledo Piza and A. K. Kerman, Ann. Phys. (N.Y.)
48, 173 (1968).
A. F. R. de Toledo Piza and A. K. Kerman, Ann. Phys.
(N.Y.) 43, 363 (1967).

A. K. Kerman and A. Sevgen, Ann. Phys. (N.Y.) 102, 570
(1976).
P. A. Moldauer, Phys. Rev. Lett. 19, 1047 {1967);Phys. Rev.
123, 968 (1961); 129, 754 (1963); 135, B642 (1964).

' G. R. Satchler, Phys. Lett. 7, 55 {1963);,Z. Vager, ibid. 368,
269 (1971).

2oL. Colli Milazzo, R. Bonetti, and A. Garegnani, Lett. Nuovo
Cimento 29, 496 (1980); R. Bonetti, L. Colli Milazzo, M.
Melanotte, and M. S. Hussein, Phys. Rev. C 25, 717 (1982).

'See, also, A. Sevgen, Phys. Lett. 1028, 102 (1981).
M. S. Hussein, A. K. Kerman, and K. W. McVoy, Phys. Lett.
8131, 8 (1983); S. K. Adhikari, ibid. 1488, 1 {1984).


