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A marked variation of the analyzing power A (0) with incident proton energy for the ground-state

(0g ) transition of Zr(p, t) Zr(0g+, ) was observed over a proton-energy range from 17.0 to 28.S MeV
in the angular region around 0=20' where the corresponding (p, t) cross section o.(0) yields the first
minimum. On the other hand, no such an energy variation was observed at all in the analyzing
power for the ground-state transition of ' Ba(p, t)' Ba(0g+, ) over the same energy range. The form-
er analyzing power shows an "anomalous" angular distribution which deviates essentially from the
derivative rule [ A(8) = [do(8)/d8]/o(8) ], while the latter analyzing power shows a "normal" an-

gular distribution. In contrast to the analyzing-power angular distributions, the cross-section angu-
lar distributions of the two reactions are quite similar and do not show any remarkable energy varia-
tion. All these characteristic features of the two reactions are explained by taking account of strong,
sequential (p,d) (d, t) two-step processes in addition to a {p,t) one-step process in terms of the first-
and second-order distorted-wave Born approximation. The nuclear-shell orbit dependence (j depen-
dence) of the analyzing powers for the (p,d) (d, t) two-step process plays an essential role in producing
the distinguished difference in the energy dependence of the observed analyzing powers for the two

reactions. %hen two neutrons are picked up sequentially from a j& ——I+ 2 (j =I—
2 ) orbit, such

as a d5q2 ld3q2) orbit in the case of the Zr(p, t) Zr ['"Ba(p,t)" Ba] reaction, the two-step analyzing

power is quite different from (similar to) the one-step analyzing power so that the total analyzing
power shows a completely different (similar) angular distribution from (to) the one-step analyzing
power in the forward angles. The interference effect between the one- and two-step processes is thus

quite, sensitive to (quite stable against) the relative phase between the transition amplitudes of the
two processes. Therefore ~ Zr(p, t) ['"Ba(p,t)] analyzing power shows a marked (no marked) change
with incident energy. The nuclear structure involved in the reaction ' Ba(p,t) ' Ba is calculated on
the basis of the monopole-pairing vibrational model. The cross section of the (p,d) (d, t) two-step pro-
cesses is as large as that of the one-step process, so that the resultant total cross section obtained
from the coherent sum of the two processes can reproduce the absolute magnitude of the experimen-
tal cross sections for the 0~, ~0g, (p, t) reactions well. The derivative rule for Og, ~0+g, (p, t) reac-
tions is derived within the framework of the first-order distorted-wave Born approximation.

I. INTRODUCTION

After introducing a completely new type of experimen-
tal probe, the understanding of a phenomenon which has
been assumed to be already complete can sometimes turn
out to be by no means complete and even short of essen-
tial points. Contrary to differential cross sections cr(8) for
reactions with unpolarized beams, analyzing powers A(8)
for reactions with polarized beams can be regarded as
such a probe. Realizing that analyzing powers A (8) are
much more sensitive to interferences between various
competing reaction processes than the corresponding cross
sections tr(8) (Ref. 1), we have extensively utilized analyz-
ing powers as a powerful probe not only for the investiga-
tion of reaction mechanisms' " but also for the study of
microscopic structures of nuclei and of effective nu-
clear forces. ' '

It should be emphasized that because of the high sensi-
tivity to interference effects between various nuclear tran-
sition amplitudes, analyzing power measurements are
quite useful for solving problems which are not related

directly to a spin-dependent interaction. Actually,
"anomalous" analyzing powers for strong (p,t) ground
state 0+(Os, ) to Os+, transitions, which have been first
observed by the Tsukuba group using a 22-MeV polar-
ized proton beam, provide direct experimental evidence
for strong, sequential, two-step (p,d) (d, t) transfer process-
es in allowed (p, t) reactions. In addition, an analyzing
power measurement of an almost 'forbidden" unnatural-
parity transition Pb(p, t) Pb(3+, 1.34 MeV), which has
been carried out also by the Tsukuba group, provides a
definite conclusion on its reaction mechanism: the
predominance of the (p,d) (d, t) two-step mechanism over
the one-step (p, t) mechanism. ' '

The above-mentioned (p, t) analyzing powers for the
Os+, ~Os+, transitions have been found to exhibit a
marked nuclear shell effect which results from their
(p,d) (d,t) two-step processes. " Indeed, the observed
analyzing powers can be classified into two types with
respect to whether the picked-up neutrons belong to a nu-
clear shell of j& ——l+ —,

' or j& ——i ——,
' (Ref. 16). In the

first case of the j=j& shell an anomalous (p, t) analyzing
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power which does not satisfy a derivative relation
(&(8)=[do(8)/d8]/o(8)) appears, while in the second
case of the j=j& shell no such anomalous analyzing
powers appear.

In the present paper we investigate the energy depen-
dence of the (p,t) analyzing powers on the basis of the
above-mentioned nuclear shell effect which arises from
the two-step processes. Actually we measured the analyz-
ing powers and cross sections for the Os+, ~0s+, transi-
tions of Zr(p, t) Zr and ' Ba(p,t)' Ba over a wide re-
gion of incident proton energy from 17 to 29 MeV, The
reason why we chose these two targets is the following:
In the Zr(p, t) Zr(0s, ) transition of N=52~50, the
picked-up neutrons belong mainly to the j&

——d5 fp shell,
while in the ' Ba(p, t) ' Ba(Os+, ) transition of
X =82~80, the neutrons belong mainly to the j&

——d3/2
shell. A preliminary report on the reaction

Zr(p, t) Zr(Os+, ) [' Ba(p, t) ' Ba(0s+, )] for E~=20
22. 5 (18.5—21.0) MeV was given in Ref. 4 (5).

II. EXPERIMENT AND RESULTS

The experiment with polarized proton beams of ener-
gies from E~=17.0 to 22.5 MeV was made at the Tan-
dem Accelerator Center, University of Tsukuba by using
the UTTAC 12 UD Pelletron, while the one at E~ =28.5
MeV was carried out at the Institute for Nuclear Study
(INS), University of Tokyo by using the Sector Focusing
Cyclotron.

The polarized proton beam at UTTAC was produced
with a Lamb-shift —type polarized ion source. The typi-
cal beam intensity on the target and the beam polarization
was 100 nA and (80+1)%, respectively. Emitted charged
particles were analyzed with a magnetic spectrograph
and were detected with a single-wire proportional counter
(SWPC). The experimental procedure was the same as
that of the previous papers, ' thus no detailed description
about it is given here. %'e measured vector analyzing
powers A(8) and differential cross sections cr(8) from
O~,b ——5' to 65 in 5 or 2.5' steps with an angular accep-
tance of the magnetic spectrograph b, 8&,b

——1.5 or 3.0', ex-
cept for the case of the reaction Zr(p, t) Zr at E~ =22.0

MeV, where the measurement was made from 8~,b ——5 to
115'.

The polarized proton beam of E~=28.5 MeV at INS
was produced with an atomic-type polarized ion source.
The typical beam intensity on target and the beam polari-
zation was 10 nA and (40+3) %, respectively. A ' C po-
larimeter (the analyzing power A =0.58. at 8~,b ——62' for
elastic scattering of 28.5-MeV protons) was placed
upstream the scattering chamber. Emitted charged parti-
cles were analyzed with a QDD spectrograph and were
detected with a multiwire proportional counter system.
The analyzing powers and cross sections for the reactions

Zr(p, t) Zr and ' Ba(p,t) ' Ba were measured from
8&,b

——5' to 55' in 2.5' steps with an angular spread of the
spectrograph of b,8~,b ——1.8'.

%'e made the experiments on the reactions
Zr(p, t) Zr(0s+, ) and ' Ba(p,t)' Ba(0s+, ) by using the

targets of which characteristics are given in Table I. The
energy resolutions obtained were mainly due to the target
thicknesses. Measured angular distributions of the
analyzing powers A(8) and the cross sections o.(8) for the
reactions are shown in Figs. 1 and 2. Error bars where
uncertainties exceed the size of the circles, etc. , indicate
statistical and systematic uncertainties. In addition to
these errors, the absolute values of the cross sections cr(8)
are estimated to have an error of 20%, which is mainly
ascribed to an uncertainty in the target thickness.

The analyzing powers A (8) and the cross sections o(8)
for the reaction Zr(p, t) Zr(0s+, ) [' Ba(p,t)' Ba(0&+, )]
were measured at E~=17.0, 18.5, 20.1, 21.0, 21.5, 22.0,
22.5, and 28.5 MeV (18.5, 20.2, 21.0, 22.0, and 28.5 MeV).
Characteristic features of the observed analyzing powers
and the cross sections are the following:

(i) The analyzing powers for the reaction Zr(p, t) Zr
show a drastic change with incident proton energy in the
angular region around L9=20 where the corresponding
cross sections yield the first minimum.

(ii) The analyzing powers for Zr(p, t) Zr around
0=20' show anomalous analyzing powers which deviate
markedly from the derivative rule 2 (8)= [der(8 ) /
d8]/o. (8).

(iii) In contrast to characteristic (i), the analyzing
powers for the reaction ' Ba(p,t)' Ba do not show any
pronounced variation with incident proton energy even

TABLE I. Characteristics of targets used in the reactions Zr(p, t) Zr(0~+, ) and ' Ba(p,t)' Ba(0~, ).

Target

92Zr
138Ba
138Ba

Target
thickness
(mg/cm2)

1 97d'
1.50d

2.82'

Chemical
form

Zr"
8aCO3'
BaCO3'

Isotopic
purity

(%)

95.1

99.7
99.7

Energy
resolution

(keV)

50d, e

60d
100'

g.s.
Q value'

(MeV)

—7.353
—7.035

'Reference 37.
"Self-supporting metallic foil.
'Centrifugal settling method and on an aluminum backing of 7 pm thickness.
For the E„&22 MeV experiment.

'For the E~ =28.5 MeV experiment.
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around 0=15' where the corresponding cross sections give
the first minimum.

~ ~ ~ ~

J
~

(iv) In contrast to characteristic (ii), the ana yzmg
powers for a p,B ( t) Ba around 8= 15' do not show any
anomalous analyzing powers.

cl(v) In contrast o erast to the above-mentioned distinguis e
difference between the analyzing powers for the two reac-

t) Zr and ' Ba(p, t)' Ba, the cross sections
for the two reactions show quite similar osci a ion p
terns with each other in angular distributions. Both cross
sections do not exhibit any marked change with inci ent
proton energy in their angular distributions.

Target

S(2n)
S(n)
Q(p, t)

Q(p, d)

Q(d, t)

92zr

15;835
8.641

—7.353
—6.416

"Zr(g.s.)

7.195

—0.937

3sBa

15.517
8.611

—7.035
—6.386

Ba(g.s.)

6.907

—0.649

TABLE II. Two-neutron separation energy S(2n), one-
neutron separation energy S(n), reactio

'
n values for the reac-

tions (p, t), p, , an, ( d) d (dt). All are in units of MeV (Ref. 37).
.225 andS(2n) = —Q(p, t) + 8.482, S(n) = —Q(p, d) + 2.225, an

S(n) = —Q(d, t) + 6.258.
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FIG. 1. ( Continued).

III. ANALYSES IN TERMS OF
THE FIRST- AND SECOND-ORDER DWBA

A. Zr{p,t) Zr{0~+, ) reaction

In order to reproduce the data of the analyzing powers
and cross sections for the reaction Zr(p, t) Zr(0s+, )

shown in Fig. 1, we first made a first-order distorted-wave

Born approximation (DWBA) calculation ' in the zero-
range approximation. We reasonably assumed that the
nuclear structure involved in the one-step N =52~50
(p, t) transition is the (d5/2) ~(d5/2) configuration. The
form factor for the (p,t) transfer is calculated by the
Bayman-Kallio method with use of the single-particle
neutron wave functions. The integration is performed nu-
merically and the correct asyinptotic behavior of the
form factor is obtained by giving the neutron binding en-
ergies, the sum of which equals the experimental two-
neutron separation energy S(2n) (Table II). We employed
the optical potentials with parameters determined so as to
reproduce both the cross section and polarization data of
the elastic scattering of protons by Becchetti and Green-
lees ' and of tritons by Hardekopf et al. (Table III).
The energy dependence of the optical potential parameters
for protons ' is taken into account as shown in Table III,
while the parameters for tritons are fixed at E,= 17
Me/ because there is no systematic study for the energy
dependence of the optical potential parameters of tritons.
It should be noted that the energy of the tritons in the re-
actions Zr(p, t) Zr(0s+, ) and ' Ba(p, t) ' Ba(0s+, ) at
Ep 24 MeV is nearly equal to E,= 17 MeV.

The first-order DWBA calculations thus obtained are
shown by dash-dotted curves in Fig. 1. The experimental
analyzing powers are not reproduced at all by the one-step
DWBA calculation, especially for the angular range
around 0=20' where the corresponding cross sections give
the first minimum. The experimental analyzing powers
around 0=20' show a marked variation with incident pro-
ton energy, while the one-step DWBA calculation always
predicts a sharp negative dip at 0&20 and a successive
sharp positive peak at 8 & 20, both of which yield a large
discrepancy with the experimental analyzing powers. The
discrepancy between the experiment and the calculation is

TABLE III. Optical-potential parameters used in the first- and second-order DWBA calculations for the reactions
Zr(p, t) Zr{0g+, ) and ' Ba(p,t)' Ba(0g+, ). An energy E is the laboratory energy in MeV.

QR

8'V
O'D

rv, D

QVD

V„
r„
QS0

rg
Ref.

Proton
(92Zr 138Ba)

54.0—0.32E +0.42A
1.17
0.75
9.1 —0.03E + 12(N —Z)/A
11.8 —0.25E + 12(N —Z) /A
1.32
0.51+0.7{N —Z)/A
6.2
1.01
0.75
1.25
31

Deuteron 1

("Zr)

91.13+2.2ZA
1.05
0.86
0
218A
1.43
0.50+0.013A ~

3.5
0.75
0.50
1.3
35

Deuteron 2
( 'Zr, ' Ba)

86—0.285E +0.88ZA
1.15
0.81
0
15.9—0.9 exp{ —E/91. 7)
1.31
0.495+0.064A '"
4.865/(1+ 0.0095E)
1.10
0.55
1.30
36

Triton 1
(90Z

165.0
1.2
0.66

13.8
0
1.6
0.80
6.0
1.10
0.40
1.30

32

Triton 2
("Zr)

166.7
1.16
0.752

23.3
0
1.498
0.819
0

1.25
33

Triton 3
(136Ba)

162.0
1.2
0.66

13.4
0
1.6
0.99
6.0
1.10
0.80
1.3

32

'Well 'depths in MeV and lengths in fm.

U(r}=—Vzf (xR) —$[~vf(xv} 4WDdf(xD}/dxD]+2(—h/m c}(V„/r}df(x„}/dr( 1.s )+ Vc,

where

f(x;)=(1+e ') ', x; =(r r;A'~ }/a; . —

V& is the Coulomb potential of a uniformly charged sphere of radius rcA '
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FIG. 2. Experimental and calculated analyzing powers 3 (0) and cross sections o.(0) for the reaction "Ba(p, t)' Ba(0g+, ) at five
proton energies in the laboratory system. The definition of curves are the same as that in Fig. 1. A factor of 10 is multiplied to both
the experimental and calculated cross sections in the cases of Ep 18 5 and 28 5 MeV.

found commonly over the whole energy range from
Ez = 17.0 to 28.5 MeV.

Can we recover the failure in reproducing the experi-
mental analyzing powers within the framework of the
first-order D%'BA by modifying some optical potential
parameters in the proton and/or triton channels? The
answer is no because a derivative relation between an
analyzing power 3(8) and the corresponding cross section
o(8)

A(8) =[do(8)/d8]/o(8) (&)

is valid in good approximation for the present
0+~0+(p, t) transition within the framework of the first-
order DWBA. The plus deriuatiue rule (1-) is derived in
the Appendix. According to this relation, a sharp oscilla-
tion with a negative dip and a successive positive peak in
the analyzing power angular distribution must appear
around 8=20' as far as the first-order DWBA theory has
once reproduced the first minimum in the cross section



31 ENERGY DEPENDENCE OF {p,t) ANALYZING POWERS. . . 125

Do(p, d)=1.53X10, Do(d, t)=3.37X10 (2)

in units of MeV fm . Actually the above values of
Do(p, d) and Do(d, t) have been successfully used in our
analysis of the (p,d) and (d,t) reactions on the target nuclei
of A =60—208 at E ~=22 MeV (Refs. 8 and 10) and at
Eq-17 MeV (Ref. 34). By employing these two values
given by Eq. (2), the zero-range normalization D 0(p,t) of
the one-step (p, t) term is determined experimentally. We
take the absolute value of D o(p, t) as an adjustable param-
eter of the one-step process to fit the experimentally ob-
served absolute cross sections of the Oz, —+Og+, (p, t) reac-
tions in our first- and second-order DWBA calculations,
since we explicitly include the (p,d) (d, t) two-step process-
es. Actually we fix the parameter value as

D o(p, t) =22 X 10" MeV fm (3)

throughout the present calculations; see Figs. 1 and 2.
Thus we have no adjustable parameters for the relative

angular distribution at 0=20; see the dash-dotted curves
in Fig. 1. This conclusion does not of course depend upon
the optical potential parameters of the both proton and
triton channels. Actually, we recalculated the analyzing
power by replacing the triton optical potential of Har-
dekopf et al. with that of Flynn et al. (Table III),
which has no spin-orbit term. The resulting analyzing
power is found to be quite similar to that given in Fig. 1

with the dash-dotted curves; see also Fig. 7 and Sec. IV B.
In the present paper we call an analyzing power for a
0+~0+(p,t) transition as anomalous when its angular dis-
tribution deviates essentially from the derivative relation
given by Eq. (1).

From the above-mentioned result it can be concluded
that other reaction mechanisms than the direct one-step
mechanism are essential to interpret the observed energy
dependence of the (p,t) analyzing powers displaying
anomalous angular distribution at 0=20'. Then we in-
clude sequential transfer (p,d) (d,t) two-step processes in
terms of the second-order DWBA calculation. We have
already succeeded in interpreting the anomalous (p,t)
analyzing powers for some Og+, ~0g+, (p, t) transitions by
taking into account the strong (p,d) (d, t) two-step process-
es. 1 4

We employed the zero-range approximation in the first-
and second-order DWBA calculations. Finite-range ef-
fect on the analyzing powers and cross sections is dis-
cussed in Sec. IVC. Throughout the present calculations
of the (p,d) (d,t) two-step processes, the deuterons in the
intermediate channel are assumed to be their ground state.
The effect of deuteron-unbound state channels is dis-
cussed in Sec. IV C. Also the effect of the nonorthogonal
term, which is neglected in the present calculation, is dis-
cussed in Sec. IV C.

We have three zero-range normalization constants
Do(p, t), Do(p, d), and Do(d, t) in our first- and second-
order DWBA calculations. Concerning the normalization

'constants of the one-nucleon transfer processes (p, d) and
(d, t), they can be experimentally well determined by utiliz-
ing the actual (p,d) and (d, t) reactions such as

Zr(p, d) 'Zr and 'Zr(d, t) Zr. The following values are
commonly used in the present analyses:,

amounts of the one- and two-step contributions in the
present calculations.

Again we reasonably assumed that the nuclear structure
involved in the two-step X=52~51—+50 transition is the

Zl[0g (d5yz) ] Zr[ g (dgy2) ]

Zr[0+, (d ) ]

configuration. We employed the deuteron optical poten-
tial of Lohr and Haeberli except for the case of
E~=28.5 MeV where the deuteron optical potential of
Daehnick et a/. was Used because the deuteron energy
involved in the (p,d) (d,t) process is beyond the applicabili-
ty of the potential of Lohr and Haeberli. The potential
parameters used are given in Table III.

The calculated analyzing power A (8) of the (p,d) (d,t)
two-step processes, which are shown by dashed curves in
Fig. 1, are quite different not only from the calculated
one-step A(8) but also from the experimental A (8), espe-
cially around 8=20 . However, the coherent sum of the
reaction amplitudes of the one- and two-step processes
improves the fit to the experimental A(8) drastically
around 0=20', see the solid curves in Fig. 1. The strong
incident energy dependence of the experimental analyzing
powers observed around 0=20' is explained quite well in
terms of a delicate interference effect between the one-
and two-step processes. It should be emphasized that the
interference between the one- and two-step processes is
essential to reproduce the anomalous analyzing power. In
addition to the analyzing power A (8), the experimental
cross sections o(8) are reproduced very well by inclusion
of the both one- and two-step processes not only in their
angular distributions but also in their absolute magni-
tudes; see the solid curves in the lower half of Fig. 1. It
should be noted that the contribution of the (p,d) (d,t)
two-step process is as much as that of the direct one-step
process in the strong (p,t) g.s. transition.

B. ' Ba(p,t)' Ba(0~+, ) reaction

Measured analyzing powers and cross sections for the
reaction ' Ba(p,t) Ba(0&+, ) at Ez ——18.5, 20.0, 21.0,
22.0, and 28.5 MeV are shown in Fig. 2. The observed
analyzing powers for ' Ba(p,t)' Ba always show a nega-
tive dip at 0 ( 15' and a successive positive peak at 0 & 15 .

We carried out the first- and second-order DWBA cal-
culation by assuming the similar reaction dynamics as in
the case of the reaction Zr(p, t) Zr(0+, ) with use of
the zero-range normalization constants Do(p, d), Do(d, t),
and Do(p, t) given by Eqs. (2) and (3). The nuclear struc-
ture involved in the reaction processes are assumed to be a
mixed configuration of the neutron orbits of d3/2 SI/2,
and h II/2. This is because the three states exist very close
with each other in the X =81 nucleus ' Ba as are shown
in Fig. 3. In comparison we show the level structure of
the N=51 nucleus 'Zr in Fig. 3. We calculated the con-
figuration mixing of the nuclear-structure wave functions
in terms of the monopole-pairing vibrational model. " ' '

The spectroscopic amplitudes thus obtained ' for the re-
action processes

Ba(p, d)" Ba(d, t)' Ba(0+, )
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FIG. 3. Level structure of nuclei 'Zr and ' Ba (Ref. 47).
The states which are taken into account as the intermediate
states in the (p,d) (d,t) two-step calculations are indicated with
bold lines.

and

138B ( d)137B (d t)136B (()+ )

are given in Table IV. We employed the optical potential
parameters for protons by Bechetti and Greenlees, ' for
deuterons by Daehnick et al. , and for tritons by Har-
dekopf et al. ; see Table III.

Calculated analyzing powers A(8) and cross sections
o(8) are compared with the experimental results in Fig. 2.
The calculated two-step A(8) (dashed curves) are quite
similar to the calculated one-step 2 (8) (dash-dotted
curves). In consequence the resultant total A (8) (solid
curves) obtained from the coherent sum of the two pro-
cesses are just like the one-step A(8). The theoretical
analyzing powers thus obtained are completely different
from those for the reaction Zr(p, t) Zr and consequently
can explain the characteristic features of the experimental
analyzing powers for the reaction ' Ba(p,t)' Ba given by
items (iii) and (iv) well, i.e., the analyzing powers with no
marked change with incident proton energy and those
without anomalous angular distribution.

In addition to the analyzing powers, the experimental
cross sections are reproduced in terms of the first- and
second-order DWBA calculation well; the final results are
shown by solid curves. The two-step contribution, which
is as large as the one-step one, interferes with the one-step
contribution constructiuely so that the final cross section
obtained by a coherent sum of the two processes becomes

large enough to reproduce the magnitude of the experi-
mental cross section; see the lower half of Fig. 2.

Contributions of the three neutron orbits d 3/2 $1/3 and
h ~~~2 to the two-step processes

138B (p d)137Ba(d t)136B (0+ )

are explained in Fig. 4 for the case of E~=22.0 MeV.
The behavior of the three orbits in the cases of the other
proton energies is similar to that shown in Fig. 4. The
contribution to the h»/z orbit, whose mixing amplitude

A~z, is the second largest as is shown in Table IV, is
much suppressed due to its large centrifugal potential bar-
rier for double I =5 neutron transfers in the

Ba(p d)' Ba(d t)' Ba(0 )

process. Indeed Fig. 4 demonstrates that the partial cross

10

0
1 =— ~~

~~/

0 20 40 60 80
e, ~(deg)

FIG. 4. Contributions of the three neutron orbits d3/p s//2,
and A, ~~/& to the two-step processes ' Ba(p,d)' Ba(d,t)' Ba(0g+, )

in the case of E~ =22.0 MeV.

section of the h11/q orbit is smaller than that of the d3/2
orbit by one order in magnitude. Since the s~/2 orbit is a
special case of l =0, i.e., j& ——j& ———,', the dominance of
the d3/p orbit in the two-step process of the reaction

Ba(p,t)' Ba(08+, ) tells us that the most active orbit in
this reaction can be considered to be a j& ( =d3/2) orbit.

IV. DISCUSSION

TABLE JV. Spectroscopic amplitudes A~, and Appt for the
one-step and the two-step (p,d)(d, t) processes, respectively, in

the reaction ' Ba(p,t)' Ba(0g+, ).

J3/2
& 1/2

~ I 1/2

0.666
0.373
0.646

0.942
0.527
0.913

A. J dependence of analyzing powers

In order to demonstrate the principle that the j depen-
dence of the (p,d) (d,t) two-step analyzing powers plays an
essential role in producing the marked change of the

Zr(p, t) analyzing powers with proton energy on one
hand and the nonvariation of the ' Ba(p,t) analyzing
powers on the other hand, we recalculate the Zr(p, t)
analyzing powers over the energy range from Ep = 17.0 to
28.5 MeV in terms of the first- and second-order DWBA
by changing the active neutron orbit from d&/2 to d3/2.
The result is shown in Fig. 5. A comparison of Fig. 5
with Fig. 1 tells us the following:

(1) The two-step 2 (8) obtained from d3/2 is quite dif-
ferent from that from dz/2, the two analyzing powers are
out-of-phase with each other in angular distributions at
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u) 10

10

j
0 20 40 60 0 20 40 60 0 20 40 60 80 100
FIG. S. Similar to Fig. 1, except for replacing the (d5,2)" configuration by the (d3/2)" one.

forward angles.
(2) The one-step /t (8) obtained from d3/z is very simi-

lar to that from d5~2.
(3) The total A (8) calculated from the coherent sum of

the two processes in the case of d3/2 is thus quite dif-
ferent from the total A (8) in the case of d5/2 at forward
angles of 0(30.

(4) In consequence, the d3/2 analyzing powers (Fig. 5)
do not explain at a11 the marked energy variation of the
observed analyzing powers for the reaction Zr(p, t) Zr;
the d3/2 calculation always predicts "normal" analyzing
powers in the angular region where the cross sections give
the first minimum.

The origin of the distinguished difference in the two-

step analyzing powers between the j& and j & orbits has
been discussed by Kubo' in the case of the analyzing-
power experiment ' Nd(p, t)' Nd done by the Tsukuba
group; a comparison of f7/z with f5/2 orbits has been
made. We now show, in Fig. 6, the difference in the two-
step /I (8) for the cases of the j & ( =d&/2) and
J ( ( —d3/2 ) orbits in the reaction Zr(p, t) Zr(0s+, ) at
E~ =22.0 MeV. Figure 6(a) shows shell-orbit dependence
of calculated two-step analyzing powers without spin-
orbit distortions for proton, deuteron, and triton channels.
The oscillations of the two analyzing powers A (8,j& ) and
/I(8, j&) are completely out of phase. Indeed it can be
easily proved' by using geometrical properties of the
transition amplitude that the analyzing power for the
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22.5 MeV 28.5 MeV

u) 10

cD 10

0 20 &0 60 0 20 40 60 80

8C~(deg)
FIG. 5. ( Continued).

A(8j) )

A(8,j() 1+ 1
(4)

two-step (p,d) (d,t) sequential transfer in the case of
0+~0+(p, t) transition changes its sign depending upon
picking up from the neutron orbit j&

——I + —, or

j& ——I ——,', and the ratio of the two analyzing powers is
expressed as

where I and j denote the orbital and the total angular
momentum, respectively, from which two neutrons are
picked up sequentially. In the case of Fig. 6(a), Eq. (4) be-
comes A (8,d5&2)/A(8, d3/2) = ——,'. lt should be noticed
that the j dependence of the analyzing powers expressed
by Eq. (4) is similar to that appearing in one-nucleon
transfer reactions. ' When spin-orbit distortions are in-
cluded as in the actual case (the potential set Proton,
Deuteron 1, and Triton 1 in Table III), such a simple rule
described by Eq. (4) is violated, as can be seen in Fig. 6(b).
However, the two analyzing powers show still opposite-
phase oscillations at forward angles 8 (20 where the dis-
tortion effect is negligibly small.

The j dependence of the two-step analyzing powers,
which is demonstrated by Fig. 6, can explain all the
characteristic features given by items (i) to (v) in Sec. II.
When two neutrons are picked up sequentially from a j&

orbit, the two-step A (8) is quite different from the one-
step A (8), so that the total A (8) shows a completely dif-
ferent angular distribution from the one-step A (8) in the
forward angles. The interference effect between the one-
and two-step processes is very sensitive to the relative
phase between the transition amplitudes of the two pro-
cesses. Therefore the (p, t) analyzing power shows a
marked change with incident proton energy. On the other
hand, when the two neutrons are picked up from the j&

orbit, the two-step A(8) is very similar to the one-step
A(8). The interference between the one- and two-step
processes is thus quite stable against the relative phase of
the transition amplitudes of the two processes. Therefore
the (p, t) analyzing power shows a quite stable behavior in
angular distributions with respect to the variation of the
proton energy.

B. Optical potential parameters

1.P
—(a)

0.5-

0

~so=0
2 step via

via
5I2

Of the optical potentials employed in the present calcu-
lations for the (p,t) and the (p,d) (d,t) processes, the triton
optical potential is the only case in which a systematic
and global study of the optical potential by means of elas-
tic scattering data is insufficient. Therefore, we need to
examine carefully the effect of the parameter values of the
triton optical potential on the (p, t) analyzing-power calcu-
lations. Actually we recalculate the energy dependence of
the analyzing power for the reaction Zr(p, t) Zr(0g+, ) by
changing the triton potential from the Hardekopf poten-
tial (set Triton 1 in Table III) to the Flynn potential
(set Triton 2). It should be noticed that the former poten-
tial has a spin-orbit term while the latter one has not. The
result is shown in Fig. 7 for the incident proton energies
of E„=16, 19, and 22 MeV. No appreciable change in
the analyzing powers is found between the two cases.
Therefore we can confirm the result of the first- and
second-order calculations described in Sec. III.

-1.0 I I I I

20 40 8~.~,(deg)

C. Effects of finite-range interaction, nonorthogonal term,
and deuteron-breakup channel

FIG. 6. Shell orbit dependence of calculated two-step analyz-
ing powers for the cases of the d5&& and d3/2 orbits in the reac-
tion Zr(p, t) Zr(0~+, ) at E„=22.0 MeV (a) without spin-orbit
distortion and (b) with that distortion.

All the present calculations have been carried out in
terms of the zero-range (ZR) DWBA by using the three
normalization constants given by Eqs. (2) and (3). Now
we have the following questions: Firstly, is the total
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(b)

Ep(I4eV)
&6
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predicted A (8,0s+, ) and a(8,0s+, ) in terms of the FR-
DWBA calculations including the unbound deuteron in-
termediate channels are quite similar to those obtained
from the ZR-DWBA calculations without including the
unbound deuteron channels. ' In addition, a large contri-
bution of the (p,d)(d, t) two-step processes in the strong
Os, ~0s+, (p, t) transition is confirmed again T.he contri-
bution from the unbound deuteron channels is found to be
rather small at E~ =22 MeV. We can thus justify the use
of the simple ZR-DWBA without including the unbound
deuteron channels in carrying out analyses of the (p, t)
data at Ez ——20—30 MeV.

The two step cross section due to the nonorthogonal
termz has been found much smaller than that due to the
interaction term by a factor of —,o (Refs. 15 and 46).
Therefore, the present calculations in which the
nonorthogonal term is neglected because of the simplicity
of the calculation can be justified.

I I I I I I

20 40 ec.~(deg)

FIG. 7. Incident energy dependence of the calculated analyz-
ing powers in terms of the first- and second-order DWBA for
the reaction Zr(p, t) Zr(0~+, ). {a) [{b)]employs the triton opti-
cal potential with [without] the spin-orbit term, i.e., set Triton 1

[Triton 2] in Table III.

analyzing power for the (p, t) reactions predicted in terms
of the first- and second-order finite-range (FR)-DWBA
calculations nearly equal to that obtained in the present
ZR-DWBA calculations? Secondly, can the first- and
second-order FR-DWBA calculations reproduce the abso-
lute magnitude of the experimental cross sections for the
(p,t) reactions without using any adjustable parameters?

Another important approximation which has been
made in the present calculations is that a deuteron exists
only in its ground state in the intermediate channels of
(p,d) (d,t) processes, i.e., unbound deuteron intermediate
channels or deuteron-breakup channels can be neglected.
However, Pinkston and Satchler have casted a doubt on
this approximation. They have pointed out by employing
the closure approximation that the analyzing power asso-
ciated with (p,d) (d, t) transitions could be completely
modified when the deuteron unbound (S=0, T = 1) state
is included in the two-step calculation.

In order to answer the above-mentioned questions, the
first- and second-order FR-DWBA calculations including
the deuteron unbound intermediate channels have been re-
cently carried out for the case of the (p, t) experiment on
the Pb target at E~ =22 MeV (Refs. 7, 21, and 46) and
Ez ——35 and 50 MeV (Ref. 21): the natural-parity transi-
tion Pb( p, t) Pb(0&, ) and the unnatural-parity transi-
tion

Pb( p t) Pb(3+, l.34 MeV) .

The FR calculation has explained both the experimental
analyzing powers and the cross sections very well. The
absolute values of the (p, t) cross sections have been repro-
duced quite well. It should be emphasized that the

V. CONCLUSION

Incident-energy dependence of analyzing powers A(8)
and cross sections cr(8) were measured systematically for
the Os+, ~Og+, (p,t) reactions on the targets Zr and ' Ba
which are around neutron-singly closed shell. A so-called
anomalous analyzing power which does not satisfy the
derivative relation A (8)=[der(8) ld 8]jrr(8) is observed in
the reaction Zr(p, t) Zr(0s+, ) and a strong incident-
energy dependence of the analyzing power is found. On
the other hand, neither the "anomaly" nor the distinct
incident-energy dependence is observed in the reaction
138B ( t)136Ba(0+

The above-mentioned phenomena are explained as the
nuclear-shell orbit dependence (j dependence) of the
analyzing power for a (p,d)(d, t) two-step process. The
analyzing powers for the Os, ~Os+, (p,t) transitions are
classified into two types according to picking-up neutrons
sequentially from a shell of j& ——l + —, or from a shell of
j& ——1 ——,'. In the first case, which corresponds to the

j& ——d5~2 in Zr(p, t) Zr, the analyzing power for the (p,t)
one-step process and that for the (p,d)(d, t) sequential
two-step transfer process show opposite-phase angular os-
cillations with each other at forward angles. Consequent-
ly, a delicate interference effect between the one- and the
two-step reaction amplitudes produces the anomaly and
then the strong incident-eriergy dependence can be ex-
plained from this interference. On the contrary, in the
second case, which corresponds to the j&

—d 3/2 in
Ba(p,t)' Ba, the a'nalyzing power for the (p,d) (d,t)

two-step process is quite similar to that for the (p, t) one-
step process. The total analyzing power is therefore nor-
mal and a marked incident-energy dependence of the
analyzing power does not appear.

The present study demonstrates that strong
Os+, —+Os+, (p,t) transitions are explained from the existence
of intense (p,d) (d,t) two-step processes which are as strong
as the (p,t) one-step process. The (p,t) analyzing-power
measurement enables us to obtain this conclusion.
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APPENDIX: DERIVATIVE RELATION

%'e now show that the derivative relation expressed by
Eq. (1) between the vector analyzing power 2 (8) and the

differential cross section cr(8) in the (p, t) transition of
0+~0+ is derived in terms of the first-order D%'BA
theory. This relation does not depend on whether the
zero-range or the finite-range interaction is employed. In
this appendix, we use the zero-range approximation.

First of all, the vector analyzing power A (8) and the
cross section o(8) can be expressed in the following way

in terms of the transition amplitudes BJ f ' (Refs. 27 and
38):

A(8) =—
[(s;+o;+l)(s; o;)]'—/ Im(BJ f 'BJ f '

)

jm 0&o;

s; g /B;
(Al)

PzPf kf 2Jf + 1 ftlctfcT

(2r/1)12)2 k; (2J, +1)(2s;+1) 1

) =Jf—J s=s' sf, 1= J —s (A3)

where the incident (outgoing) particle has a spin s; (sf),
and the target (residual) nuclear spin is J~ (Jf ). The mag-
netic quantum number of the spin s;, sf, J;, and Jf is o.;,
0f, M;, and Mf, respectively. In addition, we define the
transfer angular momenta as

(A2)

I

In the 0+~0+(p, t) transition, we have l =s =j =0 and
s; =sf ———,. Then Eq. (A6) becomes

p "(8)=( )-p— (A7)

where we drop the l, s, and j because they are unique. By
using the above relations, the differential cross section in
Eq. (A2) can be written as

m =Mf —M-+o.f—0- . (A4)

The p; and pf are the reduced masses of the incident and

outgoing channel, respectively, and k; and kf are the rela-
tive momenta of the respective channels. Usually the

mo. cr.
transition amplitude Bj ' is divided into a spectroscop-

J~J,. m o&o,.
ic amplitude A1,J

' and a reduced amplitude p(,J '(8):

(AS)
t?1 CTg CT ~

The reduced amplitude P~,~
' satisfies generally the

following relation:

P;Pf kf 2Jf + f

(2M2)2 k; 2J, +1
F«m Eq. (Al), the analyzing power is written as

2 Im[BO(1/2)(1/2)( g)B 1(1/2)( —1/2)( 8)e ]& (8)=
~

Bo( / )(1/2)(g)
~

2+
~

B1(1/2)( 1/2)(8)
~

2

(A9)

o(8)=«
I

B"'""'"'(»
I

'+
I

B"'""-'"'(8)
~

'], (Ag)

where

m~~~; m +j+1+s~—s;
p(,l

f '(8)=( —) f 'p),1 '(8) . (A6)
The explicit form of the transition amplitude is given

b 27, 38

i. &/2 j l s
m~f~,. Jf/. L L 1 (Lb —m )!

Jb Lbs

X+L(, ( cos8)IL~Jb, L J L b l s E,Jb (Js o'f mj m —of+o i I Ja—o1 )

X(L.O, ,-~J. , )(L,—m f f ~J$ f )(LbOlO~L 0), (Al 1)

where L, (Lb) and J, (Jb) are the orbital and the total
angular momentum of the initial (final) partial wave,
respectively, and x stands for (2x + 1)'/ . When
h =s =j =0, we have L,, =Lb =L„J,=Jb =—J because of
the property of vector coupling. In this case, the radial

t

integral Iz', Jb g J is reduced to the form of

2m'~2 8 ( )
IL~ —— —JXLJ rFO(r )XL~(r)d—r,

i f
(A12)
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where 3 and 8 are the masses of the target and the resi-
dual nucleus, respectively, and XLz is the distorted partial
wave. The Fo(r) is the radial part of the form factor of
the 0+~0+(p,t) one-step transition.

We consider the spin-orbit force (the L.tl interaction)
as a perturbation to the main central force. Thus we can
assume that the spin-orbit force affects only the phase
shift of each partial wave in such a way as

If we assume that the CI is effective only for a few L
values, we can take it outside the summation over I. and
thus replace it by its average value C. This procedure is
reasonable under the assumption of the direct-nuclear-
reaction mechanism where the nuclear reaction takes
place mainly around the nuclear surface. The above-
mentioned procedure is similar to that used by Johnson.
Then we have the following relation by comparing Eq.
(A18) with (A19):

where

XL exp(ECL (L CT ) ), (A13) d g+ &/2H &/2~(g) — g &~ &/2~~ —&/2~(g)
dO

(A20)

L for J=L+ —,

(L o&=.
L —1—for J=L ——,

' (A14)

because we know the following relation between a Legen-
dre function and an associated Legendre function:

Ir J exp——(iCL (L.o ) )IL, , (A15)

where It is the radial integral in terms of XL, and CL is
the sum of the two CL's for the incident and outgoing
channels.

From Eq. (A11), we have

and

B+'/ "'/ '(8) = g (2J+1)IL/Pr (cosg) (A16)
2 2 IJ

The JL is a partial wave in the case of non-spin-orbit cou-
pling and then it is independent of J. The CL is a small
parameter related to the sign and the strength of the
spin-orbit force. By inserting Eq. (A13) into Eq. (A12),
we obtain

1

dO
PL (cosg) = PI (cos—g) . (A21)

tT(g) ~
~

+0(1/2)(1/2)(g)
~

2 (A22)

By inserting Eqs. (A20) and (A22) into Eq. (A10), we ob-
tain the final result:

In the expression for the cross section of Eq. (A8), the
first term of the right-hand side is dominant because the
second term is proportional to C due to Eq. (A19) and
thus can be neglected in our first-order approximation. It
is well-known that the first (second) term corresponds to a
spin-nonflip (spin-flip) process. In this approximation we
have

pl{1/2)( 1/2)(g)= o
( —)J L (1/2)I p~ (cosg)

Ao

LJ

A (8)=C a(8)/o(8) .
d8

(A23)

(A17)

and

Bo"/2"'/ '(8)= g(2L+1)I P (cosg)
2

8"' " ' '(8)= Ap g Cl (2L +1)Ir PL (cosg) .
2

(A19)

where Ao denotes the spectroscopic amplitude. By insert-
ing Eq. (A15) into Eqs. (A16) and (A17), and applying a
Taylor expansion for the exponent in Eq. (A15), we obtain
the following result in the first-order approximation for
CI.

It should be noted that the derivative rule actually ob-
served in our 0+ ~0+(p,t) transitions is the plus-derivatiue
rule as expressed by Eq. (1), i.e., C&0 in Eq. (A23). This
can be explained in the following way. The spin-orbit
term in the optical potential both for protoris and tritons
is negative in the nuclear surface region as shown in
Table III. This means that the spin-orbit potential is at-
tractive" for both protons and tritons. Therefore, we ob-
tain positive (advanced) phase shifts for some effective
partial waves of both protons and tritons. Thus we have
the relation CI ~0 in Eq. (A13) for the partial waves,
which results in the relation C & 0 in Eq. (A23).

The plus-derivative rule expressed by Eq. (1) is well-
known in the case of polarization phenomena in elastic
scattering experiments, see, e.g. , p. 437 of Ref. 38.
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