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Proximity potential for deformed, oriented collisions and its application to 23sU+23sU
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The proximity potential for the collision of two deformed and oriented nuclei is rederived in a
completely simple and alternative method. Our method is applicable to axially symmetric nuclei ly-

ing in the same plane and we get an analytical expression for the shortest distance between two col-
liding surfaces. The method is applied to the calculation of U+ U interaction potential.

I. INTRODUCTION

Collisions involving deformed nuclei have been studied
experimentally and the deformation effects in fusion cross
sections have been established. ' A deformed nucleus,
however, can have many orientations in the ground state.
In view of this, many theoretical studies have been carried
out which are concerned with the effect of deforma-
tion and orientation of the colliding nuclei on the interac-
tion potential.

For the proximity potential, we know from Blocki
et al. ' that the essential point is the determination of the
shortest distance, so, between the colliding surfaces. Baltz
and Bayman were the first to give an iterative procedure
to calculate this distance so for interaction between two
deformed nuclei with orientation degrees of freedom in-
cluded. Recently, Seiwert et al. used a different iterative
procedure for determining this minimum distance so be-
tween two oriented nuclear surfaces. In this paper, we
give a completely alternative, simple derivation for this
shortest distance so between two deformed, oriented col-
liding nuclei.

We have applied our method to calculate the proximity
potential of the U+ U reaction, based on the "pock-
et formula" of Blocki et al. ' The proximity potential for
this system is also calculated by Seiwert et al. by using
their numerical iterative procedure in the pocket formula
of Blocki et al. ' and in the Bass-type (Ref. 11) potential,
with the principal radii of curvature calculated different-
ly. The deformation and orientation dependent potentials
for this system are also calculated by Munchow et al.
and by Rhoades-Brown et al. by using the double-
folding model. The interest in choosing this system lies in
the possibility, suggested by Greiner, ' of their forming a
very long-lived (lifetime of the order of 10 0 sec) giant

184 composite system, at an appropriate bombarding
energy. This necessitates the knowledge of the barrier
height and the presence of a deep pocket for the system to
stay together for a longer time and form a nuclear mole-
cule. ' The possibility of a deep minima in the interaction
potential and the lowering of its barrier height can arise
due to the inclusion of the deformation and orientation ef-
fects of the colliding partners. %'e look for such effects in
this paper.

In Sec. II, we give our derivation of the shortest dis-
tance so and the method of calculating the proximity po-
tential between two deformed, oriented nuclei. Applica-

tion of our method to the U + U system and the
comparison of our results with earlier calculations is
carried out in Sec. III. A summary and discussion of our
results is given in Sec. IV.

II. PROXIMITY POTENTIAL BETWEEN TWO
DEFORMED ORIENTED NUCLEI

As already stated in the Introduction, the essential
quantity required for the evaluation of a proximity poten-
tial is the shortest distance so between the colliding nu-
clear surfaces. Then, according to the "pocket formula"
of Blocki et al. ,

' the proximity nuclear potential is given
as

Vx =4~yRbe(ko»

where the surface energy coefficient y=0.9517[1
—1.7826(N Z) /3 j M—eVfm ', the surface thickness
b =1 fm; R is the mean curvature radius characterizing
the gap (defined later); and @($0), the universal function,
is of the form

C&(go) = ——,(go —2.54) —0.0852(go —2.54)

for go& 1.2511

= —3.437exp( —go/0. 75) for go) 1.2511 . (2)

Here go solb, i.e., so——is in units of b This func.tion is
defined' for negative (the overlap region), zero (touching
configuration), and positive values of so. However, for
negative so, the definition becomes somewhat arbitrary, as
will be discussed in Sec. III (see also Ref. 3).

Figure 1 gives the geometry for determining so, under

FIG. 1. A schematic configuration of two axially symmetric
deformed, oriented nuclei, lying in the same plane. This defines
the orientation angles Ol and 02, the shortest distance so, and the
related geometry.
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1( I+$2 ——(8l —al ) + (180—82 —az) (4)

or

81 82+ 1 80 el +ez+ a 1 +az ' (5)

For the special case of sp being parallel to R, condition (4)
splits into two equations:

the simplifying assumptions of the colliding nuclei being
axially symmetric and lying in the same plane. The nu-
clear radius parameter for each nucleus is then defined in
the usual way, as

R;(a; ) =Rp;[1+pz;Pz(cosa; )] (i = 1,2),
with Rp; rp——A, rp ——1.15 fm.

For a given relative separation R and the orientations
8l and 8z, we can write from the triangles ABC and CDE
in Fig. 1

CE+R, (a, )

sin(8l —al)
CD+R l(al)
sin(82+az)

R
sino

Solving equations (10) and (11), we get

R sin(8l —al) —Rz(az)sino'
Sp=

Sin/I

R sin(82+az) —R l(al)sino
Sln 7/lz

(12)

For the special case of sp being parallel to R, Eq. (12)
simplifies to

sp =R —R l(al)cosgl —Rz(az)cospz,

which also follows directly from the geometry of Fig. 1.
The mean curvature radius R in proximity potential (1)

is obtained' for two deformed nuclei as

fz 180———82 —az . (6b)

1 1 1 1 1+ + +
R R ))R )p R2)R2p R ()R2) R I2R22

sin g

Also, for sp to be the shortest distance, the line DE must
be perpendicular to both of the nuclear surfaces. Taking
DE as the perpendiculars at both points D and E (the nor-
mal vectors), we can write

R I (al) Rz (az)
tan/l ——— and tangz ———

Rl(al) Rz(az)
(7)

where R'(a) is the derivative of R (a) with respect to a.
An additional condition of sp being a minimum distance
is obtained from

Bs Bs=0=
Ba~ Ba2

(8)

and

CE CD so

sin/I sin/2 sina
(10)

Satisfying conditions (5), (7), and (8) [or (6) and (7) for
the special case] iteratively, we can determine al and az.
The iterative procedure is to choose o.

&
and a2, calculate

QI and 1(2 from (7), and check if (5) and (8) [or (6) for the
special case] is satisfied. Vary the initial set until the pro-
cess converges. Obtaining o,'~ and a2, we can determine
angle o'.

o =180—QI $2 al+az —8—l+8——2 .

Next, from the same two triangles ABC and CDE, we
can write

1 1+ +R ) )R22 R2]R ]2
cos p, (14)

where y is the azimuthal angle between the principal
planes of curvature of nucleus 1 and nucleus 2 (the angle
y=0' for the present case of coplanar nuclei); and the
four principal radii of curvature at the points D and E of
minimum sp are given by Baltz and Bayman,

R;) ——
IR;(a;)+[R (a;)) Iz~

R;"(a;)R;(al ) —2[RI' (a; )] —R; (al )
(15a)

Ri2 ——
R;(a;)sina;[R; (a;)+(R (a;)) ]'~

R (a;)cosa; —R;(a;)sina;
(15b)

V(R)=V„+Vo . (16)

Various prescriptions have been used ' ' ' for the
Coulomb interaction between two deformed and oriented
nuclei. Here we use the expression of Wong, ' obtained
by following Alder and Winther, ' for two nonoverlap-
ping charge distributions,

with i =1,2 for the two interacting nuclei, respectively.
Thus all the quantities required to evaluate the nuclear
proximity potential Vlv are defined. However, to calcu-
late the heavy-ion interaction potential V(R), we also
need to determine the Coulomb interaction Vc between
the two deformed nuclei, such that

Z&Z2e 9R, 20m

Zz8
R

2 3g Rp;pz;Pz(cosa;)+
. i=1 7'

Z] Z2e

R

2

g Rp;[Pz;Pz(cosa;)] (17)

where cz; is the angle between the radius vector and the
symmetry axis of the ith nucleus (Fig. 1). The
quadrupole-quadrupole interaction term, which is propor-
tional to pzlpzz, is neglected because of its short range
character. It is important to mention here that once again

I

we do not have a proper method to be able to calculate the
Coulomb potential for two overlapping (negative sp) de-
formed nuclei. Within the double-folding model,
Rhoades-Brown et al. have, in principle, given a method
for calculating the Coulomb potential for all values of sp,
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but for a low energy, this model is unrealistic in the over-
lap region since the overlapping nuclear densities get
compressed over the static equilibrium value. '

III. CALCULATION OF U + U POTENTIAL

238 238

P = P„=0.261
1. 8)=0
2. 8)=0
3. 8)= 90

O
~. 8,=~&

8, =~eo

82 =90

82= 90
O

82= 135

a) 700—

Figure 2 gives the scattering potential V(R) for the
U+ U system, calculated for four different orienta-

tions and using quadrupole deformations P2, ——P22 ——0.261
(from electron scattering data' ), for the simple case of the
shortest distance so parallel to the relative distance R.
Seiwert et a/. have also used this simplification of so be-

ing parallel to R in the overlap regions. The energy scale
in Fig. 2 is normalized to the binding energy Ez
(=3604.2 MeV) of the U+ U system at R =ao.
The arrows in this figure refer to the touching point
(so ——0) for each configuration. Since the proximity
model becomes less and less accurate as the overlap in-
creases (negative so), we have studied here three different
possibilities for the overlap regions: (i) The proximity po-
tential (1) is used as such for the negative so. The solid
curves beyond the arrow marks represent this calculation.
(ii) The curves beyond the touching points (arrow marks)
are all extrapolated to the ground state liquid drop energy
Er,D of the compound system (ELD+E~= —2772. 85
+3604.2=831.35 MeV), as is also done by Munchow
et a/. This is shown as dashed lines. (iii) The

U + U system is considered to make a single necked
system and the corresponding expression (A6) for Vz (de-
rived in the Appendix) is used instead of Eq. (1). The re-
sult of this calculation is shown as a dot-dashed line for

8~ ——0', 02 ——180' only, using the nuclear shapes calculated
by Zohni et al. ' on the asymmetric two-center shell
model.

We observe that the calculated potentials in Fig. 2 show
the effect of orientations in shifting the relative barrier
heights by about 110 MeV and the positions by about 4
fm, which is in general agreement with the earlier calcula-
tions of Munchow et a/. and of Rhoades-Brown et a/. ,
both using the double-folding model, and that of Seiwert
et a/. using the proximity function of a Bass-type poten-
tial" whose parameters are determined by fitting the
double-folding potential for spherical nuclei. The barrier
for 8, =O', 82 ——180 is shown to be the lowest and to be at
nearly the same position in all the calculations. As the
orientation increases, the barrier height increases but its
position decreases systematically. T'his result has impor-
tant consequences for the choice of incident bombarding
energy when other dynamical effects of friction and
viscosity are included. '

On the absolute energy scale, however, our calculated
proximity potential barriers are 10—15 MeV lower than
those of Rhoades-Brown et al. , whereas Miinchow
et t2l. obtain their calculated barriers about 75 MeV
higher than these authors. The above-mentioned proximi-
ty potentials of Seiwert et a/. were also lower by about
20 MeV, as compared to those of Rhoades-Brown et a/.
In other words, the proximity model predicts barriers that
are lower than the ones calculated on the double-folding
model, and the double-folding model ca'culations of
Munchow et al. give barriers that are higher than those
obtained in similar double-folding model calculations of
Rhoades-Brown et al.

In Fig. 2, we have also indicated an experimental beam
energy of 6 MeV/nucleon (E, =714 MeV). It is evi-
dent that for experiments with laboratory energy, E~,b, of
the order of 6 MeV/nucleon, only the lowest interaction
barrier with 8&

——O', Oq ——180' can be overcome to form a
long-lived giant compound system. Higher beam energies
are required at other orientations. The presence of "pock-
ets" is indicated in our calculations (see curve 1 with a
dot-dashed line beyond the arrow mark and curve 3, solid
line); this presence apparently should depend on the na-
ture of the nuclear interaction and the proper determina-
tion of the Coulomb potential for the overlap regions.

IV. SUMMARY AND DISCUSSION OF RESULTS

1812 14 16 20
R(fm)

FIG. 2. The nuclear proximity plus Coulomb potential of' U+ U for four different relative orientations 8~ and 82
with quadrupole deformation Pz~ =Pz2 ——0.261. For the overlap-
ping region (to the left of the touching configurations marked by
arrows) three different methods have been used (see the text).

We have derived the proximity potential between two
axially symmetric deformed and oriented nuclei, lying in
the same plane, by using an altogether different procedure
for estimating the shortest distance between the colliding
surfaces. As a first application of our method the pocket
formula of Blocki et al. ' is used. The expressions for the
principal radii of curvature are taken from the work of
Baltz and Bayman. Only the quadrupole deformations
are considered. Of course, our method can equally well be
extended to include hexadecapole deformations and be ex-
tended to other forms of the proximity model —like the
modified proximity formula of Blocki and Swiatecki'9
and the Bass"-type potential.

%'e have used our method to calculate the U+ U
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interaction potential. We find that for this system, our
proximity method yields results which are quite similar to
those obtained with the double-folding models. ' The
barrier is shown to be the lowest for O~ ——0 and Oz ——180'.
In all the calculations the value taken for the quadrupole
deformation is Pz ——0.261 for U, though in one of the
calculations a small hexadecapole deformation P4 ——0.087
is also -included. In complete analogy with our work,
Seiwert et al. have also used the proximity method of
Blocki et al. ' but with principal radii calculated dif-
ferently from those of Baltz and Bayman. For the

U+ U system, using a larger quadrupole deforma-
tion (Pz ——0.264) and with larger hexadecapole deforma-
tion (134——0.106), they obtained the minima in potential
energy surfaces corresponding to the orientations 0&

=02——55' and 0& ——115', 02 ——65', instead of 0& ——0 and
Oz ——180'. This difference has, perhaps, to do with the use
of different expressions for the principal radii of curva-
ture and the different deformation parameters. These au-
thors have already shown that for a fixed orientation
(O~ ——Oz

——50'), the use of different deformation parame-
ters lead to not only the radial shift of the minima (by
about 1 fm) but also its height changes by up to 50 MeV.
At this orientation, the increase in hexadecapole deforma-
tion alone (from 0.087 to 0.106) lowers the minima by
more than 20 MeV and shifts it radially by about 1 fm.
Effects of similar orders are observed at other orienta-
tions also. It is also relevant to remind the reader here
that the two double-folding model calculations, "' using
the same two-body interaction (the Gaussian type), result
in barriers differing by about 75 MeV.

We, therefore, conclude that further investigation is re-
quired for us to say when the proximity and the double-
folding potentials deviate in the case of two deformed nu-
clei. Our present calculations using the pocket formula of
Blocki et al. ' and another different calculation of
Seiwert et al. support the idea that there is good similari-
ty between these proximity potentials and the double-
folding model calculations of Rhoades-Brown et al.

This work was supported in part by the University
Grants Commission, New Delhi.

APPENDIX: PROXIMITY POTENTIAL
FOR A NECKED SYSTEM FORMED BY TWO

EQUAL COLLIDING NUCLEI

As the two colliding nuclei start to overlap, they form a
crevice (sp ——0) and in an adiabatic approximation the sys-
tem would adjust its shape parameters [the deformations
Pz; and the neck e; see Fig. 3(a)] such that it has a
minimum of energy. We assume that for collisions be-
tween two identical nuclei Pz& ——dgzz, as is shown' to be
the ease for U+ U. The two nuclei would thus form
a single indented body in the form of a single hyperboloid
of one sheet with a hyperboloidal crevice [Fig. 3(b)]. For
such a necked system, Blocki et al. ' obtained the prox-
imity potential to be of the form

Z

= ~/c
21 22

(b) (a)
FIG. 3. (a) A sample nuclear shape formed in the two-center

shell model during the collision of two identical nuclei. (See
Ref. 17 for the actual shapes of the U+ U system. ) (b) A
schematic representation of a hyperboloid of revolution in one
sheet.

g2
Vtv 4~yb —— @t(gp——0),

4C
(Al)

where C&&(gp) is the first moment of the universal function
(1) and for gp ——0, @&(gp——0)= —2.0306 (from Table 1 of
Ref. 10). B and C are the semiaxes of the hyperboloid
with C along the line of centers [Fig. 3(b)], and all other
quantities are as defined earlier.

The equation of a hyperboloid of revolution in one
sheet [Fig. 3(b)] is

X2 y2 Z2
2+ 2

—
2

=1 (A2)
C C B

or

x+y =C 1+ —=rg2 (A3)

the radius of the circle. For the geometry relevant to our
problem [Fig. 3(a)], r=e (the neck parameter) at z =0
and r =c at z=+Z. Then, it follows from (A3):

C =e2 2 (A4)

and

CZ
c —C2 2

Substituting for B and C. in (Al), we get

2
Z'

V~ ~yb @)(gp——0) .
c —E

(AS)

Knowing the shape parameters Z, e, and c, we can use
(A6) to calculate the proximity potential for the overlap
region (negative sp) forming a necked shape during the
collision of two equal nuclei. This formula is valid until
the neck disappears, i.e., for e&c. One could also use
(A6) for the symmetric fission of a fissioning nucleus.
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