PHYSICAL REVIEW C

VOLUME 31, NUMBER 4

Interpretation of the Perey-Buck nonlocality in terms
of the relativistic optical model formalism

George H. Rawitscher
Physics Department, University of Connecticut, Storrs, Connecticut 06268
(Received 18 October 1984)

Under certain conditions the solution of a nonlocal, nonrelativistic Schrodinger equation is the
same as the upper component of a relativistic four-spinor which obeys a local Dirac equation. This
result is obtained by combining the observation recently made by Fiedeldey and Sofianos, that a
nonlocal Schrédinger equation can be transformed into a local one if a gradient term (or velocity
term) is added, together with the well-known fact that the upper component of the solution of a
Dirac equation also obeys a second-order equation which has a gradient term. For the case of a
nonlocality of the Perey-Buck—type, the gradient term is nearly equal to the Darwin term, and
hence the conditions for the validity of the relativistic-nonrelativistic equivalence are nearly valid. A
numerical example is presented for the case of 21.7 MeV neutrons scattering elastically from *°Ca,
for which a local relativistic optical potential has been recently obtained. The gradient term is given
in terms of derivatives of the Wronskian of two independent solutions of the nonlocal equation, and
numerical values for the latter are compared with the corresponding relativistic quantity. The
differences are not larger than 25%. Results for the nonlocality due to exchange are also shown,
and are found to be very similar to the Perey-Buck nonlocality. An implication of these results is
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that the relativistic optical potential may be less nonlocal than the nonrelativistic one.

I. INTRODUCTION

The relativistic formalism for the description of
nucleon-nucleus scattering has lately proved to be very
successful, both phenomenologically! as well as micro-
scopically,? and is beginning to supplant the traditional
nonrelativistic method. The potentials in either approach
are rather different both in radial shape and in energy
dependence, and although they should in principle be both
nonlocal, only local versions have been studied up to now.
One exception is the nonlocality introduced by Perey and
Buck® and also by Frahn and Lemmer? into the nonrela-
tivistic Schrédinger equation. Their intention was to ob-
tain an energy independent nonlocal potential whose
phase equivalent local form would have the same energy
dependence as the phenomenological potentials which fit
the scattering data.

The relativistic potentials contained in the second-order
equation which describe the upper components of the
Dirac spinor also acquire a kinematic energy dependence
even if the potentials in the first-order equation are con-
stant. Furthermore, the second-order equation contains a
gradient term — the Darwin term.> But, as Fiedeldey and
Sofianos have shown,® a gradient term can be interpreted
-as a nonlocal term in a conventional Schrodinger equa-

tion. Hence, the possibility arises that there exists a con- -

nection between the Perey-Buck nonlocal nonrelativistic
equation and the Dirac equation for nucleon-nucleus
scattering. It is the purpose of this paper to discuss the
conditions under which such a connection does exist, to
establish a relation between the respective wave functions,
and, in particular, to offer an interpretation of the Perey
damping factor as a renormalization of the relativistic
Dirac spinor.
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First, the gradient terms will be reviewed in Sec. II, and
in Sec. IIT the Perey-Buck nonlocality case will be dis-
cussed. The conclusions are presented in Sec. IV.

II. THE GRADIENT TERMS

The relativistic formulation will be reviewed first. The
upper and lower two-spinor components of the Dirac
four-spinor are denoted as ¢ and X, respectively. They are
connected by the time independent Dirac matrix equation
E-U, 0

0 E-U,

me2+ U, opc @

X

¢
X.

o pc —mcz—Us

(2.1

The o’s are the conventional Pauli spin matrices, U; and
U, are the scalar and 4th component vector potentials, p
is the momentum operator (#/i)V, E is the total relativis-
tic energy, and m is the rest mass. The kinetic energy is
denoted as T, i.e.,

E=T+mc?. (2.2)

According to Eq. (1) the lower component can be ex-
pressed in terms of the upper component as

X=(E+mc*+U;,—U,) Yo pc)p . (2.3)

Since the denominator contains twice the rest mass, which
is large compared to the momentum of the wave function
in the numerator, the lower component is traditionally
considered as being negligible. However, in the nuclear
interior the potentials U; and U, are large' (about —450
and +350 MeV, respectively) and of opposite signs, so
that U;— U, approximately cancels one of the two rest
masses and becomes enhanced. The quantity A4 (r),
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A(r)=(E +mc’+U;—U4) /(E +mc?) , (2.4)

can therefore differ from unity by 50% or 60% in the nu-
clear interior, and approximately 30% of the particle
probability amplitude (10% for the probability density) is
carried by the lower component in the nuclear interior
even at low incident kinetic energies.

Even though the lower component is non-negligible,
one can nevertheless eliminate it from Eq. (1) by applying
the matrix operator on the right-hand side in Eq. (1) once
again to both sides of Eq. (1), as is well known. One ob-
tains a second-order differential equation

[(p2/2m)+Ve+Vi,l'o+V,—Tlp=0,

which is exact and which is similar to the conventional
Schrodinger equation in that it is of second order, with
the exception of the presence of the gradient term V5.
The latter is the Darwin term,> and is of the form

Ve(r)=(#/2m)[(dA /dr)/A)d /dr .

(2.5)

(2.6)

Here it has been assumed that U, and U, only depend on
the radial distance r and that no other vector potential
components are present.

The central potential V¢ contains the sum U + Uy plus
an energy dependent term of the form

(U2—U%+2TU,) 2m

and the spin orbit potential contains the derivative of the
difference U,—U,. These expressions for V¢ and ¥V,
have been given many times before! and will not be re-
peated here.

Next, the nonrelativistic nonlocal equation will be
described. The nonlocal wave function ¥N(#) in its partial
wave form is given by

Uc(lLj;r)= {[du}(r)/dr] f Kyj(r,r (")

and the velocity potential is

Ug(l,j;r)=(ﬁ2/2m){[dWIj(r)/dr]/le(r)}d/dr . (2.13)
The formal similarity to the Darwin term, Eq. (6), is obvi-
ous. The potentials above have the property that not only
are the regular solutions of Eqgs. (2.8) and (2.10) identical
for all r, but also the irregular solutions are identical to
each other.
By defining the local phase equivalent functions u%,
ufi (N =[W;(r)/ W)~ 2u(r) (2.14)
and similarly for vL, one can show that both u% and v*
are the solutions of a local second-order Schrodinger
equation in which the gradient term is absent. The corre-
sponding central potential is called the phase equivalent
local potential (ELP), and it differs from Uc by terms
containing the first and second derivatives of the Wron-
skian. The relation between the ELP and Uc is given by

—[dv,l;’(r)
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,¢N(r)=2':ju1¥(r)\(%l)jmj) : 2.7

Lj

Each partial radial wave obeys the Schrodinger equation
[(p}/2m)+Ugl-o—Tuf(r)
+ [T Kytrruf(rhdr' =0
(2.8)

Here K is the nonlocal kernel and the |j)’s represent the
conventional two-component spinors in which the spin +
is coupled to the orbital angular momentum / to form the
total angular momentum j, and where p}/2m is

pt/2m=—(#/2m)[3*/3r2—1(1+1)/r?] . 2.9
As Fiedeldey and Sofianos have shown,® the partial radial
wave function u also obeys the local equation

(pt/2m 4+ Uc+ Uy + U, — Tu (1) =0, (2.10)
where Uc and U, are related to Eq. (8) as will now be
described.

As is shown in Ref. 6, one can only obtain expressions
for the potentials Uc and Uy, if two independent solutions
u and v of the nonlocal equation are known. The Wron-
skian for these two solutions
Wyi(r)=(dufj(r)/dr)v(r)

u,,(r (dv1,(r)/dr) (2.11)

is dependent on r for the nonlocal case, Eq. (2.8), and
since the solutions u# and v also depend on orbital and to-
tal angular momenta / and j, so also does the Wronskian,
in the general case. The central potential U¢ is given by

/dr] fowK,j(r,r’)uI?I(r’)dr' (2.12)
T
UL j;r)=U,(,j;r) +(#/2m)

X[ =W /W) +2(Wy /Wy Pl. (2.15)

The above relation corrects a misprint in Eq. (2.18) of
Ref. 6, where UcX(2m /#?) is denoted as UX. The ELP
is also unique’ because Eq. (2.14) holds for both the regu-
lar and irregular solutions of the equivalent local and the
nonlocal Schrodinger equations. The general Perey damp-
ing factor® which connects the local to the nonlocal wave
functions is the square root of the Wronskian, normalized
to unity at infinity, as can be seen from Eq. (2.14). The
normalized Wronskian also plays the role of a position
dependent mass, as is discussed in Ref. 6.

The connection with the relativistic equation is ob-
tained by identifying the gradient terms in each of the two
equations (2.13) and (2.6). The identification is possible if
A(r), Eq. (2.4), and the normalized Wronskian are the
same, or nearly so.

AP Wy (r) /Wyl oo) . (2.16)
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The rigorous identity between the functions A(r) and
W(r) is not possible in general, but is approximately
feasible for the case of the Perey-Buck type of nonlocality,
as will be discussed in the next section.

III. THE CASE OF THE
- PEREY-BUCK NONLOCALITY

In general, the Wronskian for a nonlocal Schrédinger
equation is angular momentum dependent, while the rela-
tivistic function A(r) is not. Furthermore, the Wronskian
goes to unity at the origin,’ while 4 (») does not. Hence
the identification of the Darwin term with the gradient
term in the velocity dependent local Schrédinger equation
is not rigorously possible. The Perey-Buck type of nonlo-
cality offers an exception where the / dependence can be
considered as “weak.” The nonlocality is of the form

K(r,r)=V[+(r+r))(#'?B) "2 exp[(r —r')?/B*]. (3.1)
Perey and Buck® succeeded in obtaining an approximation
for the ELP, as well as for the Perey damping factor, and
found both to be independent of the nucleon-nucleus an-
gular momentum /. The validity of Perey and Buck’s ap-
proximation has been examined by Horiuchi,” and more
recently by Fiedeldey and Sofianos.® They find that the
exact ELP as well as the corresponding Perey damping
factor are angular momentum dependent at the small ra-
dial distances, but near the surface of the nucleus the re-
sults of Ref. 3 remain valid. This angular-momentum
dependence is, however, not very drastic since it occurs
for distances smaller than the turning point for each par-
tial wave examined with the exception of the case for
1=0. This can be seen from Fig. 1 of Ref. 6 which
shows the ELP for n-“Ca scattering at 24 MeV for a
standard nonlocality range 8 of 0.85 fm. The turning
points for / =2 and 4 are 3.2 and 8.5 fm, respectively, and
a significant deviation from the Perey-Buck approxima-
tion occurs® only at distances less than 2.5 and 4 fm,
respectively. For /=0 the deviation sets in at distances
less than 2 fm, a discrepancy which may be significant.
For the purpose of the present discussion this type of
discrepancy will be ignored.

The relativistic potentials required to fit elastic n-*°Ca
scattering data'® at 21.7 MeV have been recently obtained
by the group at Ohio State University.!! The real and
imaginary parts of the two relativistic potentials have
Woods-Saxon forms with individually adjusted parame-
ters. The function 4 (r), defined in Eq. (2.4), was calcu-
lated from these parameters, and is compared in Fig. 1
with the normalized Wronskian, obtained in Ref. 6 for 24
MeV n-*Ca scattering. One sees that the two results are
quite similar, the relativistic one differing more from uni-
ty than the nonrelativistic result at the small distances by
about 25%, and being of shorter range.

The central part of the phase equivalent local potentials
for the two cases are compared in Fig. 2. The relativistic
potential is somewhat deeper (by about 25%) and of
shorter range. In order to determine whether this type of
disagreement is significant, it would be desirable to
reanalyze the 21.7 MeV data with the Perey-Buck formal-
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FIG. 1. Comparison of A4(r) and W (r) as a function of radi-
al distance r. The relativistic function 4 is calculated from Eq.
(2.4) using the geometrical parameters given in Ref. 11 for
n-*Ca at 21.7 MeV (lab), and is represented by the solid line.
The dashed line represents the Wronskian obtained in Ref. 6 for
the Perey-Buck potential which fits 24 MeV n-*'Ca scattering,
for the nucleon-nucleus angular momentum /=0. The dash-dot
line represents the original approximation to the Wronskian
given by Perey and Buck.
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FIG. 2. The central part of the phase equivalent optical po-
tential for n-**Ca scattering. The dashed curve represents the
nonrelativistic result and is taken from Fig. 1 of Ref. 6 for /=0
at 24 MeV. The dash-dot line is the corresponding result given
by the approximation of Perey and Buck. The solid line
represents the result obtained from the relativistic optical poten-
tials given in Ref. 11 for 21.7 MeV.
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ism, and also extend the comparison to other cases, such
as, for example, 26 MeV n->*Fe data!? for which the non-
relativistic optical potentials were found to be in good
agreement with nonrelativistic microscopic results. 2

IV. DISCUSSION AND CONCLUSIONS

The main point of this paper is to suggest that the pres-
ence of a Perey-Buck type of nonlocality in the nonrela-
tivistic Schrodinger equation serves the purpose of ap-
proximately simulating a relativistic local Dirac descrip-
tion. What makes this suggestion feasible is the fact that
the gradient term which occurs in the local velocity
dependent version of the nonlocal equation is only weakly
dependent on the angular momentum of the projectile,
and hence it can be approximately identified with the
Darwin term which arises in the second-order form of the
Dirac equation.

A comparison of the functions 4 and W for nucleon-
calcium scattering near 24 MeV, illustrated in Fig. 1,
shows that they are similar, which is encouraging. The
former is obtained from the relativistic approach, the
latter from the standard nonrelativistic Perey-Buck ap-
proach. The numerical agreement between these two
functions is not very good, however, and the correspond-
ing phase-equivalent central potentials, shown in Fig. 2,
are also not the same. This difference can be attributed to
a number of reasons, which need to be investigated in
more detail. For example, it is possible that the standard
Perey-Buck nonlocality simulates several effects at once:
(a) the nonlocalities inherently present in the relativistic
scalar and four-vector Dirac potentials, which manifest
themselves as an energy dependence in the phenomenolog-
ical relativistic local potentials, and (b) the energy depen-
dence which arises when one translates these relativistic
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potentials into the second-order Schrodinger-like form.

The nonlocality which is due to exchange effects in the
nucleon-nucleus interaction has been recently examined by
Bauhoff et al.!® in a microscopic study of the optical po-
tential in terms of density dependent ¢ matrices. These
authors obtain the Wronskian which corresponds to the
exchange nonlocality for p-**Ca scattering at various ener-
gies. Their result is compared with the Darwin function 4
in Fig. 3 at two energies.. At 30 MeV the Wronskian due
to the exchange is very close to the function 4 obtained
from the fits!! of n-**Ca scattering at 21.7 MeV, and is
even more similar to the Wronskian due to the Perey-
Buck nonlocality, shown in Fig. 1 by the dashed line. At
an incident nucleon energy of 100 MeV the exchange non-
locality is already smaller than at 30 MeV (Fig. 3), while
the relativistic function A has hardly changed.

From the above comparison it appears that a large por-
tion of the Perey-Buck nonlocality is due to exchange ef-
fects. The effect which such exchange terms have on the
relativistic optical potentials is not known as yet. By con-
trast, the nonlocality due to channel coupling appears to
be of a rather different nature. The nonlocality due to
channel coupling has been examined'* for the case of elas-
tic deuteron-nickel scattering at 21.6 MeV. The inelastic
channels in this case are the deuteron breakup channels,
which are strongly coupled to each other as well as to the
elastic channel.’> The Wronskian for this case! is shown
in Fig. 4. The imaginary part of the Wronskian is about
an order of magnitude larger than that for either the
Perey-Buck or the exchange nonlocality, and the / depen-
dence of both the real and imaginary parts is present over
the whole range of the radial interval.

To the extent that the Perey-Buck nonlocality does pro-
vide an approximate simulation of the Dirac formulation,
the solution of the nonlocal nonrelativistic Schrodinger
equation should be the same—or very similar to—the
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FIG. 3. The solid line represents the function A4 (r), calculated according to Eq. (2.4), from the relativistic optical potentials given
in Ref. 11 for 21.7 MeV n-**Ca scattering, evaluated at 21.7 MeV (left panel) and 100 MeV (right panel) neutron incident energies.
The dashed line represents the Wronskian which arises from the exchange nonlocality in the description of the p-*’Ca interaction, as
calculated in Ref. 13 for incident proton energies of 30 MeV (left panel) and 100 MeV (right panel).
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FIG. 4. Wronskians for a nonlocality due to channel coupling. This case corresponds to 21.6 MeV d—**Ni scattering. The “in-
elastic” channels represent deuteron breakup, as described in Ref. 15. Only the relative n-p angular momentum of zero is included in
the description of breakup space, and enough momentum bins are included so as to give stable results for the elastic scattering matrix
elements. As is described in Ref. 14, the interior (small distance) part of the elastic to inelastic coupling potentials has been smoothly
cutoff to zero so as to allow the calculation of the irregular solution to the coupled equations, and multiplied by a factor of 2 so as to
simulate the additional n-p relative angular momenta larger than zero. Each of the large division marks on the abscissa corresponds

to a distance of 2 fm. The last mark is at 12 fm.

upper component of the solution of the corresponding
Dirac equation. The phase equivalent local wave func-
tion, which obeys a local phase equivalent Schrédinger
equation, after it has been multiplied by the appropriate
Perey damping factor, should then be also nearly equal to
the upper component of the Dirac spinor. Indeed, the
suppression in the nuclear interior of the local optical po-
tential Schrédinger wave function, provided by the stan-
dard Perey damping factor, appears to improve the calcu-
lation of rearrangement reactions,!® at energies which are
not too high.!” However, the use of the Perey damping
factor is not rigorously valid since the operators which ap-
pear in the nonrelativistic transition matrix element
should be transformed into the relativistic ones so as to
also take into account the lower components of the Dirac
spinor. Work to establish a relativistic framework for a
rearrangement calculation is still in progress'® and is com-
plicated by the difficulty of obtaining a relativistic wave
function for a composite particle such as the deuteron.
The present arguments reinforce the desirability of carry-
ing out such a relativistic program.

Historically the need for a nonlocality in the
Schrodinger formulation arose from the study of satura-
tion of nuclear matter. In the 1950’s it was already
known that the Hartree description of nuclear matter, us-
ing local potentials, does not provide saturation.!® This
recognition led Frahn,* Perey® and Buck,’ and others,’ to
include a nonlocality into the optical model potential as
well. It later became known that the relativistic Hartree
description of nuclear matter does lead to saturation with

local potentials, which suggested, already at that time,
that the relativistic nucleon-nucleus potential is inherently
more local than the nonrelativistic one. The present paper
comes to the same conclusion by starting from the prem-
ise that if the Dirac equation is used to analyze nucleon-
nucleus scattering, then the equivalent nonrelativistic for-
mulation should be nonlocal.

A basic question raised by the present study concerns
the nonlocalities which should inherently be present in
both the relativistic and the nonrelativistic descriptions.
Is the deviation of the energy dependence of the relativis-
tic potentials from the theoretical prediction a manifesta-
tion of the fact that nonlocalities exist (for example, due
to exchange) which have not explicitly been taken into ac-
count, just as was suggested by Perey and Buck for the
nonrelativistic case? Furthermore, do the exchange nonlo-
calities reduce or enhance the channel coupling nonlocali-
ties? Also, given a particular nonlocality for the relativis-
tic description, how does it manifest itself in the nonrela-
tivistic case, given the fact that the energy dependences of
the potentials in the two descriptions are not inherently
the same? These questions have to await further investi-
gation.

In summary, an approximate correspondence between
the solution of a nonlocal Schrodinger equation and the
solution of a local Dirac equation has been suggested in
the present paper. This connection provides some support
for the use of the Perey-Buck damping factor in calcula-
tions of reaction processes which use local optical distort-
ed waves. This study also points to the need for investi-
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gating the presence of other nonlocalities in both the rela-
tivistic and the nonrelativistic nucleon-nucleus scattering
formalisms.
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