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Particle-hole calculation of the longitudinal response function of ' C
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The longitudinal response function of ' C in the range of momentum transfers 200
MeV/c &q &550 MeV/c is calculated in the Tamm-Dancoff approximation. The particle-hole
Green's function is evaluated by means of a doorway-state expansion. This method allows us to
take into account finite-range residual interactions in the continuum, including exchange processes.
At low momentum transfers, calculations agree qualitatively with the data. The data cannot be
reproduced at momentum transfers around 450 MeV/c. This discrepancy can be accounted for nei-
ther by uncertainties in the residual interaction, nor by more complicated processes in the nuclear fi-
nal states.

I. INTRODUCTION

Quasielastic electron scattering at high energy and
momentum transfer is dominated by the single-particle
degrees of freedom of nuclei. The first systematic experi-
mental results have been successfully described within the
nuclear Fermi-gas model. ' More recent experiments,
which allow for a separation of the cross section into
longitudinal and transverse response functions, indicate
the importance of processes which are beyond such a sim-
ple picture.

Extensions of this model by using realistic single-
particle wave functions and allowing for final state in-
teraction of the knocked-out nucleon do not qualitatively
improve the agreement with the data, as illustrated in Fig.
I for the longitudinal response functions of ' C and Ca.

Discrepancies between theory and experiment in the re-
gion of the quasielastic peak are particularly disturbing.
This is especially true for the longitudinal response. As
shown in Ref. 3, final state interaction effects cannot be
responsible for these discrepancies unless our understand-
ing of the nucleon-nucleus interaction at the correspond-
ing energies is qualitatively incorrect. Furthermore, con-
trary to the transverse response, neither meson exchange
corrections nor virtual isobar excitation are expected to be
important for the longitudinal response. Indeed, the mea-
sured longitudinal structure function is very small for en-
ergies above the quasielastic peak, while on the contrary
the transverse structure function exhibits appreciable
strength in the region between quasielastic and 6 peaks.

In the absence of any obvious explanation, these
discrepancies have stimulated interpretations in terms of
relativistic effects or modifications of the nucleonic
structure. The possibility of learning about such funda-
mental aspects of nuclear physics from the study of
quasielastic scattering is very appealing. However, the
treatment of the more standard many-body dynaniics in
the quasielastic process is not sufficient to rule out a
priori deviations from the single-particle description of the
order of 20%.

In this paper we explore the importance of these many-
body effects by investigating the contribution of particle-

hole rescattering to the longitudinal response in the
quasielastic region. These processes are well known to be
important at smaller energy and momentum transfers:
particle-hole rescattering is one of the mechanisms which
concentrates strength in low-lying collective states. How-
ever, in extending the calculation of these processes from
discrete excitations to the quasielastic region, we have to
keep in mind the changes in the kinematics. The much
larger momentum transfer involved requires one to ac-
count for finite range effects in the particle-hole force.
The much larger energy transfer, on the other hand,
makes a description of particle propagation in terms of
the nuclear ground state potential insufficient. Rather a
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FIG. 1. Longitudinal response function of ' C and "Ca at
constant momentum transfer. The curves are calculated in the
independent-particle model of Ref. 3; the data are from Refs. 2
and 6.
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II. LONGITUDINAL SINGLE-PARTICLE RESPONSE

The starting point for our investigation is the longitudi-
nal response function in the independent-particle model.
We define this response function by

S(q, co) = ——ImII (q, co) (2.1)

(in Appendix A we give a slightly different definition in-
cluding form factors for the sake of comparison with ex-
perimental data).

The quantity II (q, co) is the polarization propagator in
the independent-particle model and is given by

II (q, co)= g (0
~

Ot(i)G(i)O(i)
~

0), (2.2a)

with
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description in terms of the optical potential is required.
At the same time we have to expect an energy dependence
of the residual particle-hole force coming from the energy
dependence of the (in-medium) N-N interaction which is
the origin of both the optical potential and this residual
force.

The technical difficulties encountered in performing
such a calculation are related to the necessity of account-
ing simultaneously for the particle propagation in the con-
tinuum and the finite range in the particle-hole force.
This required a new method for solving the corresponding
equation for the polarization propagator. In the method
which we employ the polarization propagator is calculated
in a doorway-state expansion. This method neither re-
quires discretization of the continuum nor truncation to a
subspace of the lp- lh space. Moreover, it allows for a
description of discrete excitations, giant resonances, and
quasielastic scattering on an equal footing.

In our calculations we use parametrizations of the resi-
dual interaction which have been determined from low en-
ergy nuclear structure studies.

We have not been able to circumvent the difficulties as-
sociated with the energy dependence of the residual in-
teraction. In principle, a model is needed which provides
energy and momentum dependences of both the optical
potential and the residual force. For the optical potential,
both theoretical calculations and phenomenological
parametrizations are available. For the residual interac-
tion, on the contrary, no such information exists. For this
reason we are not able to predict, for high momentum
transfer, the detailed distribution of the strength as a
function of the excitation energy. However our results
provide the scale for the importance of these many-body
corrections to quasielastic scattering.

The detailed derivation of this form of the operator and a
discussion of its validity are given in Appendix B. Here
we only note that it eliminates completely the giant iso-
scalar dipole c.m. excitation at small momentum
transfers. Equation (2.2b) might thus be interpreted as a
momentum-transfer dependent effective charge operator.

The hole wave functions (y; ) are generated in a
Woods-Saxon potential and the Green's function G(i) is
given by

2

G(i)= ~i ') co;—
2Am

p 2

—Vc(i) —U(i) (2.2c)

with

=CO —6

and ei are the hole energies, m the nucleon mass, and p
the reduced mass

Vc(i) and U(i) are the Coulomb and optical potentials,
respectively.

In Fig. 1 we show the calculated longitudinal response
functions for ' C and Ca at q =400 and 410 MeV/c,
respectively, in comparison with experimental data. This
calculation differs from that of Ref. 3 only by some de-
tails like the use of the modified operator (2.2b) and of
Woods-Saxon rather than harmonic oscillator hole wave
functions.

As mentioned in the Introduction, we observe severe
discrepancies between theory and experiment in the
quasielastic region. We emphasize the importance of the
separation of the response into longitudinal and transverse
terms. In fact, the summed cross section agrees very well
with the predictions of Ref. 3 in the quasielastic peak re-
gion (the data shown in Fig. 8 of Ref. 3 were only prelimi-
nary, the final data agree with the calculation). Obvious-
ly, this implies that this independent particle model un-
derestimates by the same amount the transverse response.

III. PARTICLE-HOLE RESCATTERING
IN THE LONGITUDINAL RESPONSE

In this section we derive the basic formulae to calculate
the particle-hole rescattering contribution to the response
function. %e define the polarization propagator corre-
sponding to 11 (q, co) of Eq. (2.2a) in the particle coordi-
nate space by

II (r', r)= g ~i ')6 (r', r, co;)(i (3.1)

The operator (2.2b) approximatively accounts for the c.m.
correction to the standard operator

3
~ ++i iq. x-

2

(2.2b) which describes the propagation of a particle from r to r'
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in the presence of a hole state
~

i '). The indexes a,a'
denote the spin and isospin quantum numbers of the par-
ticle (due to the spin-orbit interaction in the optical poten-

I

tial, 6 is nondiagonal in the spin projection).
To lowest order in the particle-hole interaction V the

polarization propagator is given by

II ~ (r', r) =II ~ (r', r)+ g ~ j ') J dr&drz[ 6 p (r', r„coj)q&;(rz) Vp p(r&, rz)PJ(r, )Gp (rz, r, co;)
ij pp'

6—p (r', r,zcoj)y;(r)) Vp p(r), rz)gl(r))Gp~(rz, r, co;)](i (3.2)

Here we have assumed V to be a local interaction. In the
actual calculation we have used the following form:

V(1,2)= V(r& —rz)(ao+a&P +azP +a3P P, ) .

(3.3a)

—px
V(x)= Vp

px
(3.3b)

In Fig. 2 we show the diagrams corresponding to the
I

The coefficients a; determine the relative weight of the
various spin and isospin exchange operators. In Eq. (3.2),
Vp p is the matrix element of V(1,2) in the spin-isospin
space of the particle. The local interaction V is assumed
to be of the form

various terms in Eq. (3.2). This representation makes
transparent the difficulties associated with the evaluation
of the last (exchange) term in Eq. (3.2). Unlike the direct
one, the exchange term does not involve the particle prop-
agator and the hole wave function at the same point in
coordinate space. Only by neglecting the exchange term,
as is done in the ring approximation, or by assuming the
particle-hole force to be of zero range, the obvious techni-
cal complications associated with the presence of the ex-
change term do not occur. In the application to quasielas-
tic electron scattering at large momentum transfer neither
of these two simplifications is appropriate. In our ap-
proach the direct and the exchange term are treated on
equal footing.

The structure of Eq. (3.2) suggest introducing the
"wave operator" 0:

0 p(r', rz)= g ( j ') J dr~[6 p(r', r~, cubi)y;(rz)Vpp(r&, rz)yi(r~) —6 p(r', rz, coi)cp;(r|)Vpp(r&, rz)y1(r&)](i
EJJF

In terms of II, Eq. (3.2) is written as an operator equation

11=(1+0 )II

(3.4)

(3.5)

Successive iterations of the residual interaction in the particle-hole space are obtained from repeated applications of the
wave operator A . The resulting polarization propagator H therefore satisfies the equation

rr =rr'+n'n, (3.6a)

which has the formal solution

(3.6b)

The polarization propagator II(q, co) corresponding to the particle-hole propagator II of Eq. (3.6b) is given by [cf. Eq.
(2.2a)]

II(q, co)= g J drdr'(gi
i
0 (j)

~

r', ,a')(j '
i
II (r', r) ~i ')(r, a

~

0(i)
~ g;)

EJ
aa'

=g(0~o'(j) '„,11'0( ) lo& .
EJ 1 —0 (3.7)

(D
i
=(X ) 'g (0~ 0(i) (3.8a)

~

D 0& =(~0)-'110y O(i)
~
0& . (3.8b)

A. 0In our approach the inversion of the operator (1—Q )
is achieved in a doorway-state expansion. We introduce
the doorway states

The interpretation of these doorway states is straightfor-
ward. The state

~

D ) is the coherent superposition of
the particle-hole states formed by the absorption of the in-
cident photon, while ~D ), in addition, contains the
spreading of this coherent particle-hole state due to the
propagation of the system after the absorption of the pho-
ton.

The single-particle response determines the normaliza-
tion of the doorway states. The requirement
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k —1

N"(D"
i
=(D" 'in —g (D'i (D 'in iD'),

r, a (3.10a)
k —1

N" iD") =n'iD"-') —g iDJ)(D&in'iD"-'),
j=O

(3.10b)

(b) (c)

and the normalization conditions

(Dk~Dk)
FIG. 2. Diagrams corresponding to the first (a), second (b),

and third (c) terms on the right-hand side of Eq. (3.2). The dia-

gram (a) represents the independent-particle model polarization
propagator (3.1). Diagram (b) corresponds to the direct
particle-hole interaction, while diagram (c) is the exchange term.

are imposed.
In this doorway-state basis the operator 0 is, '

by can-
struction, tridiagonal. The matrix element (3.7) can there-
fore be represented in terms of a continued fraction:

(D iD )=1, (3.9a)

II( q, co) =

with

II (q, co)
0 0

AOiQ]O
1 —QOO— 0

1 —0]]—.. .

(3.11a)

in fact, implies
n,', =(D in'iD") . (3.11b)

N N =II (q, co) . (3.9b)

Starting from (D
~

and ~D ), a biorthogonal basis is
constructed by repeated application of the wave operator
Q . The recurrence relations are

We illustrate this procedure in the case of infinite nu-
clear matter. Because of momentum conservation it is ap-
propriate to use the momentum representation of the vari-
ous quantities. From the definitions (3.1), (3.4), and (3.8),
we obtain (for isoscalar response and Wigner interaction)

(D'~ =(N')-' f dk(k+q, k-' ~,
[»,k -') (»,k-'

~

2 ~2
e)+ + 2' 2%i

1

k'
CO + 2'

no= f dkdk'd»d»' , 5[»' —(k' —k+»)][V(» —k) ——, V(k' —k)]
~

»'k' ') (»,k

2m

(3.12a)

(3.12b)

(3.12c)

ere, sc and ~' are particle momenta, k and k' hole momenta; the momentum integrals are understood to be above or
below the Fermi surface and to include the sum over spin and isospin indexes.

In order to construct the next doorway state and to calculate noo we need to evaluate (D
~

n . Using the above-
mentioned definitions, we immediately obtain

(D in =(N )
' f dpdk

67 + 2'
[V(q) ——,

'
V(p —k) ](k+ q, k

(p+q)'
2'

=II (q, co)V(q)(D
~

—(N )
' f dpdk —,

'
V(p —k)(k+q, k

++ S' (I+q)'
2Pl 2111

(3.13)

It is now easy to see how, in this doorway-state formalism, the simple result of the ring approximation emerges.
Neglecting the second term in Eq. (3.13), which arises from the exchange process, makes (D

~

n parallel to (D
~

and
therefore [cf. Eq. (3.10a)]

N'(D'
~

=II (q, ) V(q)[(D
~

—(D
~

D ) (D
~

]=0 (3.14a)

because of the normalization condition (3.9a).
Consequently the continued fraction (3.11a) becomes
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~( )
II (qco)

1 —V(q)II (q, co)

i.e., in this case the doorway approximation is exact.
If we keep the exchange term, but stop the doorway-state expansion at lowest order, we get

~( )
II (q, co)

1 —V(q)II (q, co)

with

(3.14b)

(3.15a)

V(q)= V(q) —
~ V,„(q,co) .

The exchange contribution is given by

(3.15b)

V,„(q,co) =

f dpdk V(p —k)

p+q +u
2m ' 2m

(k+q) k
2m 2m

(3.15c)f dpdk
+ (p+q)' p'

2m 2m
(k+q) k

2m 2m

1V(D
I
r) =4m+'( i) YIM(q)XL (DIM l

—r),
LM

N (r
l
D ) =4m y (i) YIM(q)XI (r

l

D IM ) .

(3.16a)

(3.16b)

Qf course, an exact treatment of the exchange term leads
to a continued fraction expansion of infinite order even in
nuclear matter.

As it is evident from Eqs. (3.15), the particle-hole force
enters the direct and exchange terms in different ways.
While the direct process is given in terms of the residual
interaction at the momentum transfer corresponding to
the external photon, the momentum-transfer dependence
of the residual interaction in the exchange term is con-
trolled entirely by the nucleon momenta in the ground
state. This is a consequence of momentum conservation
in direct and exchange processes (see Fig. 2) ~

In calculating the response function for finite nuclei, we
use a partial-wave decomposition of the polarization prop-
agator and evaluate the contribution of each partial wave
in the doorway-state formalism. Here the doorway states
are coherent superpositions of particle-hole states formed
by the absorption of a photon with definite multipolarity
rather than definite momentum. The lowest partial-wave
doorway states are defined by

X ; (r) = g 9' , (r)R
m

(3 ~ 18a)

With

R, = f dx[9'~ I (x)]tS'J ((x)Y~M(x) (3.18b)

which contain the coupling of particle (j~,I ) and hole
(j;,l;) angular momenta to the incident photon angular
momentum (L). The angular integral is easily expressed
in terms of 3-j symbols.

The associated doorway state
l

D LM ) contains in addi-
tion the (partial-wave projected) particle-hole propagator
II [cf. Eq. (3.8b)]. This propagator is diagonal in the
hole quantum numbers and the particle propagation is
described by the radial Green's function

The radial dependence of (DLM
l

contains the Bessel
function corresponding to the absorbed photon and the ra-
dial hole wave function u; (here for simplicity we have
neglected the c.m. corrections). The definitions (3.16) and
(3.17) are appropriate for the isoscalar response, therefore
the isospin dependence of the doorway states is described
by the hole isospinor

l
r;). The angular and spin depen-

dences are factorized in the functions

From Eqs. (3.8) we obtain the following explicit form of
the partial-wave doorway states:

ja la
, g (r', r, co;)rr'

0 0 u;(r)
X, (D,

l
r& = y y (r, l J, (qr)

i j I

X [X.'; (")]'( (3.17a)

which is the partial-wave projection of the propagator
(2.2c).

The wave operator of Eq. (3.4) contains a direct and an
exchange term. We therefore define

(r~ l
0 (r', r)

l
~ ) = (rp l

h(r', r) —E(r', r)
l
r~),

g L(rDI'M&=gg li '& f dx g (rxco
jaIa

xjL(qx)u;(x)x; (r)
l
r; ) . (3.17b)

(3.19)

where ~ p denotes the particle isospin component. The
partial-wave decomposition of 6 and E then reads
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00 j u;(r)
(rp

~

b(r', r)
~
i~) =4m g ~ j ')5, ,5, , g g f dx ,—g ~ ~(r', x,coJ)uj(x)U~(x, r) [X~™(r)]"X~~(r')(i

SJ

(3.20a)

(~p~E(r', r) ~r )=4m. g ~ j ')5, , 5, , g g, g ~~(r', r, cof) I dxuJ(x)u;(x)U&(x, r)
SJ

~ y [Xlm(~)]t~ s (~i)~1m( ~

mp

(3.20b)

For simplicity, again we have kept here only the signer term in the particle-hole interaction, UI is the multipole com-
ponent of this interaction

V(x —x') =4m g UI(x, x') Y'i (x) I'i* (x') .
Im

(3.20c)

The partial-wave decomposed operator (3.20) can now be applied to the partial-wave doorway-state (3.17) and the
higher (partial-wave) doorway states are generated according to the recursion relations (3.10). In this way we obtain the
continued fraction representation for each multipole component.

In applying the wave operator to the doorway states, through the angular integrations over the X functions we obtain
the selection rules for direct and exchange particle-hole scattering. The integrals involved when applying the direct term
(3.20a) of the wave operator are

g J dx[Xp;(x)] X; (x)= g R~;R~; =5~I,5~M (J~;——,—, ~LO)4~(2L + 1)
(3.2 la)

and, when applying the exchange part (3.20b) of the wave operator

m;m
m

F (r')R™I dx[X™(x)]X (x)= g 5' (r')R' R'pRJp~p SJ A'P AS

m, m

m&m

, (2j~+1)(2j;+1) JP JJ
=Xp, (r')( —1)'+ +'

4m Js Ja

(3.21b)

By construction, the application of the wave operator
reproduces the angular dependence of the doorway states
as contained in the X functions [cf. Eqs. (3.17) and (3.18)].

In analogy with the nuclear matter result we recognize
the different angular-momentum dependence of the resi-
dual interaction in direct and exchange particle-hole re-
scattering. As follows from angular-momentum conser-
vation, the multipolarity of the interaction in the direct
term is that of the incident photon, while in the exchange
term the allowed multipolarities are determined by the
hole angular momenta [expressed in the 6-j symbol of Eq.
(3.21b)].

The formalism is straightforwardly extended to include
the more general form (3.3a) of the interaction, the c.m.
corrections, and the isospin dependence of the transition
operator (2.2b). Detailed formulae are presented in Ap-
pendix C.

IV. NUCLEAR MATTER ESTIMATES

We first discuss the main characteristics of the effects
of the particle-hole rescattering process in the longitudinal
response function. %'e start this discussion assuming a
spin-isospin independent interaction, i.e., we take

ao ——1, a~ ——az ——a3 —0 (4.1a)

Vo ———36 MeV, p=0.714 fm (4.1b)

Figure 3 shows the modification of the isoscalar longi-
tudinal response function for ' C due to particle-hole re-
scattering. Figure 3(a) displays separately the effects of

in Eq. (3.3a). The strength and range parameters are
chosen according to the standard parametrization of the
residual interaction'
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S (g, o))
5-

4-
p mpf 4m

2

II (q, co)= COq
—l 1—

4~q ~qpf graf

2
2

COq

3-

0
5-

4

2-

(4.3)

We now use Eq. (3.15a) to estimate the first-order correc-
tion due to particle-hole rescattering. We find for the
modification (assuming V to be real)

ImII'(q, co) =Im(II (q, co) I 1+[ V(q) ——, V,„(q,co)]

XII (q, co) I )

2
mpf

' 1+2[V(q)—
4 V,„(q,co)]

0
100 200 300

2mpf m
2 2 & 2

q pf
(4.4)

co(MeV)

FIG. 3. Isoscalar (a) and longitudinal (b) response function
for ' C at constant momentum transfer q =450 MeV/c. Full
line: independent-particle model; long dashed line: only direct
term in particle-hole rescattering; short dashed line: only ex-
change term; dot-dashed line: both direct and exchange terms
included. In the upper part of this figure the full and the short
dashed lines are appropriate also for isovector response (the iso-
vector direct contribution vanishes for a Wigner force).

direct and exchange particle-hole scattering for the iso-
scalar response, and Fig. 3(b) shows the total effect on the
longitudinal (summed isoscalar and isovector) response.
The total effect of particle-hole rescattering for this
kinematics and for this particular choice of the residual
interaction is very small. As can be seen from Fig. 3(a)
this small net effect partly arises from a compensation of
direct and exchange contributions. Both processes essen-
tially give rise to a shift of the distribution in energy; for
the attractive residual interaction (4.1), the direct process
shifts the peak position of the isoscalar response towards
low energies, while the exchange process has the opposite
behavior. We use the nuclear matter response function to
express this shift in the peak position in terms of the resi-
dual interaction and of the nucleon momentum distribu-
tion.

At momentum transfers larger than twice the Fermi
momentum the single-particle nuclear matter polarization
propagator II (q, co) is given by

II (q, co) = qpfmco~+ —,[(qpf ) —(mco~) ]
2 q

At the quasielastic peak the single-particle response is
purely imaginary and therefore, to this order, the
particle-hole force simply shifts the peak position by the
amount

3

5co=
2 [V(q) ——, V,„(q,q /2m)] . (4.5)

If we keep the direct piece only we find [cf. Eq. (3.3b)]
3

(waco) =—Vo
4 Pf
7T P

1

l +q2/ 2
(4.6)

which, for the parameters (4.1), the kinematics of Fig. 3
and with pf ——220 MeV/c takes the value

(6co) = —13 MeV . (4.7)

fdpdk . (p —k)

+ q'p q.k

This is in quantitative agreement with our full finite-
nucleus calculation [actually in practice at this kinematics
the continued-fraction expansion (3.11a) already converges
to the correct result after the first iteration].

In order to understand the influence of the exchange
term we need evaluate the effective momentum transfer
for this exchange process. As already emphasized, such
effective momentum transfer is primarily determined by
the nuclear Fermi motion rather than by the incident pho-
ton momentum.

We define the average momentum transfer in the ex-
change process by [cf. Eq. (3.15c)]

where

mcoq +qpf+
&& ln

m coq —gpf
(4.2a)

q.rr(q co) =2

fdpdk .

+ q'v
m

+ q.k
m

(4.8a)
+lE ~

+=
2m

(4.2b)
which, evaluated at the quasielastic peak gives

and pf is the Fermi momentum.
We expand II (q, co) in the energy co around the free

value cu=q /2m:
q,ff(q, q /2m) =pf 1+2 —' 32

9m
(4.8b)



PARTICLE-HOLE CALCULATION OF THE LONGITUDINAL. . . 1095

With this value we obtain for the shift in the peak posi-
tion due to the exchange process

3

(5co) = ——Vp
1 Pf 1

p 1+q,«/p, '
which yields [cf. Eq. (4.7)]

(5co) =+ 10 MeV,

(4.9a)

(4.9b)

—( —,
' ap+ —,

' a )+ —,
' a2+a3) V,„(q,cp),

and for the isovector response by

(4.10a)

V)(q) =(—,ay+ —,a3) V(q) —( —,
' ap+ —,

' a ) ) V,„(q,co) .

(4.10b)

We note that in the isoscalar response all four terms of
the interaction appear in- both the direct and exchange
terms, while in the isovector response the direct and ex-
change terms are affected only by those parts of the in-
teraction which do or do not contain the isospin exchange
operator, respectively. In the isovector response the in-
cident photon creates a T = 1 particle-hole state.
"Direct" scattering [Fig. 2(b)] of this T =1 particle-hole
state can occur only if the residual interaction is isospin-
dependent; therefore only a2 and a3 appear in the direct

which again agrees with our numerical calculation. The
comparison with Eq. (4.7) makes explicit the almost com-
plete cancellation for the particular case considered. The
comparatively large effect of the exchange term despite
the statistical suppression factor 4 [cf. Eq. (4.5)] ori-
ginates from the different kinematics of direct and ex-
change scattering, respectively. With increasing mornen-
tum of the incident photon, finite-range effects of the resi-
dual interaction suppress more and more the contribution
of direct scattering [see Eq. (4.6)], while the effect of ex-
change scattering (at the quasielastic peak) is independent
of the external momentum [Eqs. (4.8) and (4.9)]. Because
of the very different kinematics of direct and exchange
scattering processes, different properties of the residual
interaction are important. In the actual finite-nucleus cal-
culation of ' C response, the evaluation of the direct pro-
cess requires partial waves in the N-N interaction up to
L = 11—with the maximal contribution arising from
L =3—4 (q(r ) =7)—while the exchange process is deter-
mined by the N-N interaction in s, p, and d waves only,
irrespective of the incident photon momentum.

So far our discussion has been focused on the isoscalar
response with a spin-isospin independent residual force.
We now include the isovector response in our discussion
and use the more general form (3.3) of the residual in-
teraction.

For this purpose we use, once more, the nuclear matter
approximation to the response function. At the level of
the one-doorway-state expression (3.15a), the inclusion of
the spin-isospin exchange terms in the interaction is sim-
ple. Performing the appropriate spin-isospin sums the in-
teraction V(q) of Eq. (3.15b) is replaced for the isoscalar
response by

Vp(q) = (ap+ —,
' a &+ —,

' a2+ —,
' a3) V(q)

V. RESULTS

In Figs. 4—11 we present the results of our calculations
for the longitudinal response function of ' C at constant
momentum transfers ranging from 200 to 550 MeV/c.
The two curves in each figure correspond to the single-
particle response function and to the response function in-
cluding the particle-hole interaction, respectively.

The single-particle response is calculated with a
phenomenological optical potential as in Ref. 3. As
particle-hole interaction we have chosen the Kurath in-
teraction' '" which is of the general form (3.3) with the
following values of the parameters

RL

( Me V-']

12C

q = 200 M ev/c

0.04-

0.02-

0 'I

20
I

40
I

60
I

80
co (Me V)

FIG. 4. Longitudinal response function of ' C at constant
Inomentum transfer q =200 MeV/c. The dashed line corre-
sponds to the independent-particle model calculation, the full
line shows the result of including particle-hole rescattering via
the Kurath residual interaction (5.1). Data are from Ref. 7.

term of V~(q). "Exchange" scattering, combined with the
isospin exchange operator in the residual interaction, is,
with respect to isospin, equivalent to direct scattering via
an isospin-independent residual interaction. Thus only
the terms ao and a& appear in the exchange term of

For the particular case of the Wigner force already con-
sidered, only the exchange term contributes to the isovec-
tor response and, close to the quasielastic peak, it gives
rise to the same repulsive shift of 10 MeV as in the ex-
change term of the isoscalar response [Eq. (4.9b)]. Thus,
in the total longitudinal (summed isoscalar and isovector)
response the small attractive shift of —3 MeV [cf. Eqs.
(4.7) and (4.9)] in the isoscalar response cancels part of the
repulsive shift in the isovector response. The net effect is
a repulsive shift by a few MeV in agreement with the nu-
merical results shown in Fig. 3(b).

The nuclear matter relations (4.10) make explicit the
different effect of the residual interaction in the isoscalar
and isovector response functions. This difference leads to
differences between the longitudinal and transverse
response functions, which contain isoscalar and isovector
responses with different weights (cf. Appendix A). This
feature is absent in the single-particle models where (apart
from c.m. and Coulomb effects) the isoscalar and isovec-
tor responses are equal.
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p
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I
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\

i~C

q=350 MeV/c

0.04- 0.02-

0.02- 0.01-

'0 I
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I

100 co( MeV ) 0
I

100
I

200 co(Me V)

FIG. 5. Same as Fig. 4, q =250 Me&/c. FIG. 7. Same as Fig. 4, q =350 MeV/c.

&p= —36 MeV, p=0.714 fm
(5.1)

1

ap ——a2 ——0, a& ——4, a3 ———1.

Vo(q) = ——, V(q) +—', V,„(q,co), (5.2a)

&((q)= —
4 &(q) ——,

' v,„(q,co) . (5.2b)

Thus particle-hole rescattering in the isoscalar channel is
dominated by the exchange process and the interaction is
attractive. In the isovector channel the interaction is
repulsive.

At the lower values of momentum transfer
q =200—300 MeV/c, our calculations are in qualitative
agreement with the experimental results. In particular, in-
clusion of the particle-hole rescattering process signifi-
cantly improves the description by shifting strength from
the quasielastic region co=(q /2m)+e, (e, is the separa-

0.03-

r
I
I
t
I
I \
I

12C

q=300 MeV/c

The qualitative effect of this particular residual interac-
tion is most easily seen in the nuclear matter approxima-
tion. From Eq. (4.10) we obtain,

R„
(Mev ')

12

tion energy -20 MeV) into the resonance region around
20—30 MeV excitation energy and into the discrete excit-
ed states. This interplay of quasielastic, resonance, and
discrete-state excitations is very important at these low
momentum transfers. This is most clearly illustrated in
Fig. 12 for the I. =2 isoscalar excitation.

At q =200 MeV/c, the peak in the calculated response
function at co=26 MeV is due to an isoscalar quadrupole
resonance with a total width of 4 MeV, which contributes
up to 55% of the strength. This isoscalar resonance is su-
perimposed on a rather broad isovector dipole excitation.
Comparison with the single-particle response shows that
the attractive residual interaction in the isoscalar channel
shifts the quadrupole strength from the region above 30
MeV down in energy, and concentrates it to a large extent
in this resonance. The depletion of the quadrupole
single-particle strength above 30 MeV excitation energy
due to particle-hole rescattering is of the order of 70%
(see Fig. 12).

The peak at m=33 MeV with a total width of about 2
MeV arises from an isovector dipole excitation. This res-
onance receives its main strength from energies around
the threshold and from the discrete 1 single-particle ex-
citation which, with our choice of the single-particle po-
tential, is located just below threshold at 17 MeV. This
reversed effect of the residual interaction of course fol-
lows from the repulsive character of the particle-hole in-

0.02-

0.01-

/
I

I

I
I
I
I
I
I

I

0.02-

0.01-

MeV/c

'0 50
I

100
co (Me V)

150

,4
I

I

0
0 100 200 ~(MeV)

FIG. 6. Same as Fig. 4, q =300 MeV/c. FIG. 8. Same as Fig. 4, q =400 MeV/c.
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R,
(MeV ') 12
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0.01—

q =550NeV/c

0.01-

lg0, I'4
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100

1

200 30O e(Mev)

0
0

I

100
I

200 ~(M e V ) FIG. 11. Same as Fig. 4, q =550 MeV/c.

FIG. 9. Same as Fig. 4, q =450 MeV/c.

teraction in the isovector channel.
In order to determine the amount of strength which has

been shifted into the region of discrete excitations we have
calculated the response function for complex energies
co+i5. Thereby the sharp discrete excitation acquires a
finite width. The value used for 5 is 0.5 MeV.

In Fig. 13 we show the form factor calculated in this
way for the 3 T=0 excitation. With our choice of the
particle-hole force this state is located at 13.5 MeV excita-
tion energy, while the experimental value is 9.64 MeV.
The comparison with the single-particle form factor ex-
hibits the well-known enhancement due to particle-hole re-
scattering. ' The agreement with the measured form fac-
tor is reasonable at low momentum transfer. At large
momentum transfers apparently the effect of the particle-
hole interaction (5.1) is too strong.

Analyzing the other discrete excitations (L =0, 1,2) in
the same way, we can determine the fraction of the in-
tegrated single-particle response which has been shifted
from the continuum part of the single-particle spectrum
into the discrete excitations as a result of the particle-hole
interaction. At the momentum transfer q =200 MeV/c
we find a depletion of the single-particle strength in the
continuum by about S%%uo. The corresponding value at
q =300 MeV/e is 7%, and 5% at 400 MeV/e. As it can
be expected, this shift in strength from the continuum to
discrete excitations becomes less important with increas-
ing momentum transfer.

We note that in our treatment of the residual interac-
tion the energy integral of the response function is not

changed, provided that the discrete excitations are proper-
ly taken into account. This result follows directly from
completeness if the Hamiltonian is Hermitian. It can be
generalized to energy-dependent complex interactions as
follows. Consider the energy integral

X(q)= — disc I dao(0
~

Ot 0
~
0),1 . ~

g 1

2l 7T ~t —H
(5.3)

&(q)= . J dec(Oi Ot 0
i
0)

&Tl O
1

0) (5.4)

where the sum runs over the discrete eigenstates of the
Hamiltonian H. In order to calculate the contribution
from the circle C2, we can replace the Hamiltonian H by
any suitable model-Hamiltonian h since for any nonsingu-
lar interaction we expect the short time behavior of the
Careen's function, and, therefore, the large (complex) co

I I I I
I I I I

T=O, L=2

with the shell-model ground state
~
0), the single-particle

operator 0 of Eq. (2.2b), and the full many-body Hamil-
tonian H. The integral (5.3) can be written in the stan-
dard way as an integral along the upper and lower rim of
the unitarity cut. This integration contour can be closed
with a circle C2 at infinity, starting at co+i@ and ending
at m —ie. In this way we obtain

0.01—

q =500geV/c I

I

f

I

/
/

/

I

I
I

1

I

~.l i I

0 5 10 15 20 40 60 (d(Me&)

100

l~

200 300 4) ( Mev)

FIG. 10. Same as Fig. 4, q =500 MeV/c.

FIG. 12. Isoscalar quadrupole excitation in ' C at constant
q =200 MeV/c. The short-dashed line gives the independent-
particle model response, the full line gives the response includ-
ing particle-hole rescattering. Note the change in scale at low
energy. The two discrete peaks have been reduced by a factor of

so the areas in the two parts of the figure are directly com-

parable.
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'IO

'l0

behavior, to be controlled by the kinetic energy term in
the Hamiltonian. In this way we can express X(q) in
terms of o(q), where o(q) is defined by (5.3) with H re-
placed by h:

O
I
0& I'+ 2 I

(i
l
O

I
0&

(5.5)

In deriving Eq. (5.5), we have performed the same con-
tour deformations as in the preceding; this requires h to
satisfy the relation

(5.6)

Equation (5.5) thus shows that the value of the sum rule

S(q) =X(q)+ g ~
(i

~

0
~

0&
~

(5.7)

is independent of the Hamiltonian used in the calculation
of the intermediate states, provided that the corresponding
Hamiltonian satisfies the relation (5.6).

Since the one-body operator 0 in Eq. (5.3) acts on the
single-particle ground state

~
0&, it can generate only

1p-1h states. Consequently, we can take for h either a
single-particle Hamiltonian or the Hamiltonian including
particle-hole interactions; according to (5.5), both choices
lead to the same value of S(q), provided the single-
particle potential and the residual interaction satisfy the
discontinuity condition (5.6).

Thus, particle-hole rescattering may lead to a redistri-
bution of the transition strength, without changing, how-
ever, the total strength summed over both the discrete and
continuum part of the excitation spectrum. Changes in
the integrated strength are possible only if the ground
state is a correlated rather than a pure single-particle
state. We note however that in the presence of, for exam-
ple; 2p-2h admixtures in the ground state, the intermedi-
ate states contributing to (5.3) cannot be restricted any
more to the subspace of the lp-1h states.

I I 1 l

0.5 3.0 '|.5 2.0 2.5

q (fm ")

FEG. 13. Longitudinal form factor of the T =0, I =3
discrete excitation in ' C. Dashed curve: independent-particle
model; full curve: including residual interaction. Data are from
Ref. 13.

At the momentum transfers of 250 and 300 MeV/c, the
data show appreciably less strength in the quasielastic re-
gion than predicted by the single-particle model. As at
q =200 MeV/c, the particle-hole interaction reduces this
strength of the quasielastic process, in qualitative agree-
ment with experiment. However the data do not show
concentration of this strength in the resonance region as
predicted by the calculation. Furthermore, the strength at
large energy losses is underestimated by our calculation.
This is due partly to the effect of the attractive isoscalar
interaction.

These deficiencies becomes even more pronounced at
the higher momentum transfers 350, 400, and 450
MeV/c. At q =400 and 450 MeV/c the shape of the
response function calculated in the single-particle model is
actually in reasonable agreement with the data; however,
as noticed in the Introduction, the strength at the peak is
overestimated by 15—20% in this model. We note that
the residual interaction again suppresses the strength at
the high energy losses. This is in agreement with the data
of 450 MeV/c, but in conflict with the data at 350
MeV/c. Moreover, the data again show no concentration
of this strength at small energy losses as predicted by our
calculation. This calculated shift of strength from large
to small energy losses obtained for all the momentum
transfers considered is not a particular feature of the in-
teraction (5.1) used. Calculations with other parameteri-
zations (Rosenfeld, Serber) of the residual interaction lead
to similar results. As already noted, the interaction (5.1),
as well as other forms of the residual interaction obtained
from low-energy parametrizations, favors exchange pro-
cesses in the particle-hole rescattering [cf. Eq. (5.2)]. We
have seen in the previous section that the effect of these
exchange processes on the response function is, in the
peak region, approximately q independent [cf. Eq. (4.8)].
This is in contrast to the direct process which, due to the
finite range of the interaction, becomes less important at
higher momentum transfers. Actually in our calcu1ation
using a Wigner force of comparable strength (cf. Fig. 3),
only minor modifications of the single-particle response at
large q have been obtained. In particular, no concentra-
tion of the strength in the low energy region occurs with
this interaction.

Thus the comparison with the data indicate that the
particular residual interaction (5.1) is not adequate in the
entire range of momentum transfers considered. This
may not be surprising since this interaction has been ob-
tained from the study of low-energy spectra. The longitu-
dinal response data analyzed here rather favor a residual
interaction with a weaker exchange and a stronger Wigner
force. With such an interaction, the desired concentration
of the strength into resonance and discrete state excita-
tions at low momentum transfer can be preserved, while
finite-range effects will cut down this unwanted shift of
strength at high momentum transfer. By the same mech-
anism this would reduce the overestimate of the 3 form
factor at high momentum transfer as well.

However the major problem in reproducing the ob-
served longitudinal response function cannot be solved in
this way. With any form of the residual interaction, the
energy integral of the response function must reproduce
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3

V0 ——— f(0),
2m

(5.9)

where f (0) is the forward N-N scattering amplitude. Via
the optical theorem the imaginary part of V0 can be ex-
pressed in terms of the total cross section and of the nu-
cleon momentum p:

the single-particle value which is too large in comparison
to experiment. It is very difficult to imagine any form of
realistic interaction which would shift strength from the
quasielastic region by 150 MeV or more into the unob-
served high energy-loss region.

Furthermore, we cannot see any reason for the energy
dependence of the residual interaction to be so strong to
resolve the discrepancy. One such possible source of ener-

gy dependence would be one-pion exchange in the residual
interaction close to the pion production threshold. Al-
though this mechanism can give rise to rapid energy vari-
ations of the transverse response, this will not be the case
in the longitudinal response. Here, one-pion exchange can
contribute only via the exchange process in particle-hole
rescattering [diagram in Fig. 2(c)]. In the nuclear matter
approximation (4.10) we have

2

&0(q)=V((q)= (5.8)
qeff+7?l ~

i.e., in the longitudinal response one-pion exchange cannot
lead to either strong momentum-transfer dependence nor,
via retardation effects, to strong energy dependence of the
residual interaction. In the exchange process the energy
and momentum-transfer dependences are always con-
trolled by momenta of the order of p/ and by energies of
the order of the hole binding energies.

More generally, we note that the energy dependence of
the residual interaction is related to that of the optical po-
tential. For instance, the lowest-order exchange contribu-
tion to the response function is obtained by hole-line ex-
change in the (particle) self-energy diagram, i.e., the ex-
change process in particle-hole rescattering corrects for
the overcounting in the self-energy diagram which arises
from identifying the "Boptical potential with the ' C op-
tical potential. A similar argument applies to the direct
process in particle-hole rescattering. Therefore any
anomalously strong energy dependence in the residual in-
teraction would most likely be in conflict with the known
smooth energy dependence of the optical potential.

The same arguments already discussed also rule out the
possibility of an imaginary part in the residual interaction
strong enough and of appropriate sign to reduce substan-
tially the response function in the quasielastic peak region.

In order to illustrate further this connection of the resi-
dual interaction with the optical potential we consider the
process of particle-hole rescattering at very large energy
and momentum transfers. In this case we can identify the
residual interaction with the N-N scattering amplitude f
at the appropriate energy. Assuming dominance of the
direct term in N-N scattering at high energy [which corre-
sponds to our exchange diagram of Fig. 2(c)] we have for
the residual interaction at high energy:

Im V, = — o-...p
8m 'm (5.10)

By using the nuclear matter approximation (4.4), it is seen
that, to lowest order, the imaginary part in V0 changes
the height of the quasielastic peak without affecting its
position.

At high momentum transfer q =V'2m co =p, finite-
range effects make the direct contribution negligible com-
pared to the exchange contribution

1 1
2 ((

1+q /p I+q,rrlp
(5.11)

and we obtain, therefore, for the relative change in the po-
larization propagator at the quasielastic peak

(5.12)

With o.„,=43 mb and @=2 fm ' (corresponding to N-N
scattering at an incident energy of 750 MeV) we obtain,

=+3.6 10 (5.13)

Thus, in this high-energy approximation, the response is
slightly increased by the imaginary part of the residual in-
teraction. Evaluating in the same way the modification of
the response due to the nucleon self-energy yields (cf. Ref.
3)

H
, se1f-energy

(5.14)

Apart from the finite-range reduction, Eqs. (5.14) and
(5.12) just differ by a factor of 4. This shows explicitly
the role of the particle-hole rescattering process as the
hole-line exchange process of the nucleon self-energy.
Finite-range effects do not occur in the self-energy correc-
tion which, in nuclear matter, is a zero momentum
transfer process.

At the highest values of momentum transfer considered
in our calculation, q =500 and 550 MeV/c, the disagree-
ment between experimental data and the single-particle
value of the longitudinal response function tends to de-
crease. Thus a particle-hole calculation with a Wigner-
type force would also agree with experiment. The large
concentration of the strength into the low-energy region
predicted by the Kurath interaction is again due to the
unreasonably large amount of exchange force in this
parametrization.

Summarizing the discussion of our results we conclude
that, within our treatment of the longitudinal response
function, which takes into account particle self-energies
via the optical potential and particle-hole rescattering in
the Tamm-Dancoff approximation (TDA), it seems im-
possible to reproduce the observed longitudinal response
in ' C at large momentum transfer.

Obviously the discrepancy in this region of momentum
transfer could still arise from more complicated many-
body processes which have not been included in our treat-
ment. Actually in calculations performed within the
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framework of the random phase approximation (RPA),
very good agreement has been obtained with the data at
large momentum transfer. ' The results of Ref. 14 there-
fore seem to indicate an important role of such more com-
plicated processes even at momentum transfers as high as
400—500 MeV/c. However we note that in obtaining this
agreement with the data the energy interval of the longitu-
dinal response function has been reduced appreciably with
respect to the single-particle value (by about 20% at 400
MeV/c). According to our previous discussion this large
change in the integrated response indicates that ground-
state RPA correlations included in this specific model are
very important even at high momentum transfer. This re-
sult is very surprising; it may, however, be due to certain
unrealistic aspects of the particular model adopted for the
residual interaction. In the RPA of Ref. 14, the interac-
tion used is a Skyrme force with a parameter set SK3.'
The dominant terms in this interaction are given by

& k
~

U)2
~

k') =to(1+&oP )+ t (Ik +k' ), (5.15)

where k and k' are the relative two-nucleon momenta. At
q &&pf, we have approximately

I '=k'=q'Z4 . (5.16)

To estimate the effect of this force we use the nuclear
matter Eqs. (4.10) and obtain for the effective interaction
in the isoscalar channel

Vo(q) = —.(to+ —.
' t I q'), (5.17)

which affects the response function in the same way as
finite-range Wigner force of strength

3

&o= (1+q /p )(to+ —t q ) .
4m.

(5.18)

With the values of to and tI used in Ref. 14, we find at
q =400 MeV/c (with @=0.7 fm ')

Vp= —185 MeV .

Thus probably the large effects found in Ref. 14 are due
to the use of such a strong residual interaction.

Furthermore, we note the rapid momentum-transfer
dependence of the effective interaction (5.18), arising from
the momentum dependence of the interaction (5.15).
Since the parameters tp and t& are of opposite sign, the
two terms in (5.18) cancel each other at q =670 MeV/c,
i.e., the strength parameter Vp changes by 200 MeV if q
changes from 400 to 700 MeV/c.

Thus these estimates indicate that the zero-range
parametrization becomes unrealistic for momentum
transfers appreciably larger than the Fermi momentum.
The use of such a strong zero-range force for calculating
the nuclear response at high momentum transfer ap-
parently generates very large short-range components in
the RPA correlations. However, explicit treatments of
short-range correlations' ' show that neither the sum
rule value nor the intensity at the quasielastic peak are
modified by these correlations by more than 5%%uo.

VI. SUMMARY

We have presented a calculation of the longitudinal
response function of ' C for momentum transfers ranging
between 200 and 550 MeV/c. The calculation has been
performed in the TDA, using a Green's function ap-
proach. The ingredients of our calculation are a
phenomenological optical potential for evaluating the par-
ticle self-energy and a phenomenological finite-range resi-
dual interaction for evaluating particle-hole rescattering.
We have applied a doorway-state method to the treatment
of finite-range residual interactions. In this method the
(interacting) response function is given in terms of a con-
tinued fraction, starting from its single-particle value.
Our calculation treats quasielastic, resonance, and discrete
state excitations on an equal footing. We have found
rapid convergence of the doorway-state expansion in the
various regions of the excitation spectrum.

As can be expected, the simultaneous treatment of the
different types of excitations already mentioned is particu-
larly important at low momentum transfers. We find at
q =200—300 MeV/c large shifts of strength from the
quasielastic region into the region of bound states and
giant resonance as a result of particle-hole rescattering.
These results are in reasonable agreement with experi-
ment.

At large momentum transfers we find the standard
"low energy" parametrizations of the residual interaction
to be inadequate. In fact the large exchange components
in the interaction shift, even at large momentum transfers,
the strength towards lower excitation energy, in disagree-
ment with the data.

At 400 and 450 MeV/c, calculations and data disagree
in the energy-integrated strength. This disagreement is
practically independent of the choice of the interaction,
unless very strong repulsive residual interactions which
would shift the strength into the unobserved high-energy
region are allowed for. There is however no other evi-
dence for such a strong. repulsion.

Within a standard many-body description, the only way
of possibly explaining the large deviations in the energy
integrated response from the single-particle value is to in-
clude ground-state correlations. Because of the large
momentum transfer involved, these correlations must
modify the pair distribution function at distances of the
order of 1 fm or less. However estimates of the effect of
short-range correlations in quasielastic electron scattering
do not indicate that such correlations are important
enough to account for the discrepancy between experi-
ment and the theoretical single-particle value.
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APPENDIX A

When comparing our calculations to experimental data
we used the following definition of the longitudinal
response function:

system of only four nucleons. The final result can be im-
mediately extended to the case of A nucleons.

If we omit spin and isospin factors the g.s. wave func-
tion of "He in the harmonic oscillator model is

RL (q,a))=
G

2
gp

4m

1——ImlI;, (q, co)

1——ImII;„(q,co)
7T

(A 1)

( 773/2b 3
)

3 /2 g exp[ x~2/( 2b 2) ]

where b is the oscillator parameter and A =4.
If we introduce the intrinsic coordinates x,':

x; =X+

(81)

with

AX=——22
gp

18.24 fm
(A2)

the wave function (81) factorizes as

Here, q„=(q,co) is the four-momentum transfer and GE
the electric nucleon form factor

The polarization propagators H;, and II;, are calculated
with the isoscalar and isovector components, respectively,
of the operator (2.2b).

At the quasielastic peak the definition (Al) agrees with
the approximation in Eq. (17) of Ref. 3 for the unseparat-
ed cross section. Within the same approximation (i.e.,
neglect of convection current and spin-orbit terms) the
following expression for the transverse response function
can also be obtained:

2

RT(q, co}=2GE " (pp+p„) ——ImII;, (q, co)
4m

40=4.
with intrinsic wave function

A ~ 2

( ~3/2b 3
)
—( 2 —1 ) /2expintr

~ 2bl

and c.m. wave function

—(m b )
' exp

AX
2b

(83)

The translation-invariant wave function equivalent to
(81) may be written as

+(p~ —p„)'
dy 5(y X)—exp(i K y)P;„„,

1

V
(84)

1
X ——Im II;,(q, co )

7T
(A3)

This approximation is valid only for large momentum
transfer and for I;Sclosed shell nuclei.

We note that while the longitudinal response function
(Al) at large momentum transfer has roughly equal iso-
scalar and isovector components, the transverse response
function (A3) is almost entirely isovector since

[(p~+p„)/(p~ —p, )]'=o o4

APPENDIX 8
The description of the nucleus in terms of a mean po-

tential field [Hartree-Fock (HF) or shell model] artificial-
ly binds the nuclear c.m. in an unphysica1 potential weH.
This violation of translation invariance can give rise to a
spurious strength in the nuclear response which should be
removed in order to get the intrinsic response. In this ap-
pendix we briefly illustrate the method followed here to
correct, at least partially, the lack of translation invari-
ance of the model used to calculate II . Our approach is
based on the following remarks:

(a) for the harmonic oscillator potential the c.m. prob-
lem can be solved exactly;

(b) the main spurious strength shows up in isoscalar di-
pole excitation.

To keep expressions as simple as possible, we consider a

where K is the c.m. momentum and V is the normaliza-
tion volume for c.m. motion.

The intrinsic wave function (82) can be further factor-
ized into the product of a wave function describing the
relative motion of, say, particle 1 with respect to the c.m.
of the remaining (/I —1) particles so that Eq. (84) gives

g; =N f dy 5(y —X)exp(iK. y}y;(x&—Y)g„&, (85)

where N is the appropriate normalization factor,

Y= gx,1

j&1

is the c.m. coordinate of the (/I —1) cluster,

(x) —Y)
qr;(x; —Y)=exp

A
(86)

is the (unnormalized) wave function describing the rela-
tive motion of particle 1 with respect to the cluster of the
remaining (A —1) particles, and

(x;—Y)
A —i =exp

2b
(87)

describes the ( A —1) cluster.
We note that the wave function (86) is a solution of

the Schrodinger equation with a reduced mass

p =[(2 —1)/A]m.
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Of course the factorization (85) is exact only for the
harmonic oscillator. However, since for light nuclei more
realistic single-particle ground-state (g.s.) wave functions
are rather well approximated by harmonic osci11ator wave
functions, it is reasonable to replace (86) with a more real-
istic (in our case Woods-Saxon) wave function. Of course,
such a wave function should be a solution of the
Schrodinger equation with a reduced mass p.

Now we assume that the factorization (85) holds true
also after that particle 1 has absorbed an external photon,
thus we write for the resulting nuclear excited state

1/Jf —N f dy 6(y —X)exp(iK' y)qi (x, —Y)g„

Here, N' is the appropriate normalization factor, y& is the
wave function describing the excited relative motion of
particle 1, and Pz ~ always describes the (A —1) cluster,
which in this model has been assumed to remain un-
changed in the process.

The assumption (88) clearly is not exact even for har-
monic oscillator wave functions; however, rather than
worrying about the neglected terms, we shall check it at
the end by comparing the exact result with the conse-
quences of approximation (88).

In Coulomb excitation the transition matrix element for
the absorption of an external photon of momentum q by
particle 1 will be

tfi (0f I
exp(iq xI)

I 0 )

=NN' f dyexp[i(K —K') y] f dz f dx~ . dxq6(y —X)6(z—Y)yi(xl —z)q&;(xi z)e—xp(iq xl)
~

t/i~ (89)

%'e introduce coordinates with respect to the c.m. of
the ( A —1) cluster,

tg; = NN'(A —1) (~3mb ) (2m) 6(K+q —K')

y;=x; —Y=x; —z,
then

6(z —Y)=(A —1) 6 g y~

1
6(y —X)=6 y —z ——y,

(810) . q'yi
&&F.-I(q) f d»qf(»)exp —

~ f'(yl»

(812)

where F„&(q) is the intrinsic form factor of the (A —,1)
cluster normalized to 1 when q ~0. In our example ( He
with harmonic oscillator wave functions),

Fz &(q)=exp( qb /6) . —

Now we can replace the integration variables x; in (89)
by the new coordinates y;. Then integration over the
cluster coordinates y2 yz gives just a number; in our
case, using (87) we get

Q2f dy2' ' ' dy~6 g yj
j&1

The integration over the variable y gives the correct
overall momentum conservation, and we obtain

I
'

tI; = NN'(A —1) (2m) 6(K+q —K')
v'3

The matrix elements tj; and t~ must be taken in dif-
ferent combinations, depending on the process considered.
For example, for isoscalar response we need to take

tp+(A —1)ty;,

while for isoscalar response

is the right combination.
%'e can reassume our prescription for c.m. correction in

Coulomb scattering as follows.
%'hen calculating the isoscalar amplitude replace the

single-particle [shell model (SM)] matrix element

X f dying(y, )exp(iq'. y, )q), (y, )

(y (xl)
~
exp(iq x~)qr; (x~))

by the matrix element

(q&i(y&)
~

exp(iq' y&)+(A —1)F»(q)

(813)

with q'=[(A —1)/A]q. That is, in order to calculate the
desired transition matrix element, in our approximation
we still need to evaluate only a single-particle matrix ele-
ment, but in terms of re1ative-motion wave functions and
with an effective reduced momentum transfer.

Of course we also have to consider the amplitude for
the process in which the external photon couples to the
particles in the (A —1) cluster. If we do this then we are
led to calculation of transition matrix elements similar to
(89) but with, say, exp(iq x2) replacing the quantity
exp(iq x, ). Denoting this matrix element by tI;, we have

.q y&
Xexp i

~

p—;(y~) ); (814)

when calculating the isovector amplitude, replacing the
single-particle matrix element (813) by

.q yi
&qi(y» I

exp(iq' y» —F~ i(q)exp —~

In other words, the one-body operator exp(iq xl)
should be replaced by the effective one-body operator
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. A —1 ~
~exp i q y, +5F»(q)exp i— y&

A

with

'He
q=200 MeV/c

3 —1 isoscalar response5=' —1 isovector response,

while the shell-model single-particle wave function should
be replaced by the corresponding relative-motion wave

function y(yi)[qr™is a solution of the Schrodinger equa-
'

tion with the full nucleon mass m, while y is a solution of
the Schrodinger equation with reduced mass

p =((A —1)/A }I].
It can be easily checked that for harmonic oscillator

wave functions the above-mentioned prescription gives the
exact intrinsic elastic form factor. Moreover, the effective
operator in (814) always vanishes in the long-wavelength
limit, thus giving no spurious isoscalar dipole excitation.

For the harmonic oscillator, we can also compare our
procedure with the exact calculation. In Fig. 14 we com-
pare the intrinsic response given by the prescription with
the exact response' and with the shell-model (no c.m.
correction) response. It can be seen that in spite of some
discrepancies in the low-energy limit, on the whole the
prescription does rather well. For this reason we feel con-
fident in applying it also to our Woods-Saxon calculation.

q=450 MeV/c

1 2 3 4 5 6 7 8

FIG. 14. Intrinsic longitudinal response for He in the har-
rnonic oscillator model; black: no c.m. correction, white:
present prescription, shaded: exact. The energy loss is in units
of Ado.

APPENDIX C

aL ——jL
A —1 L 1

A
qr +( —) (A —1)F~ &(q)j —qr

for isoscalar response, and by

(C 1a)

In order to include the c.m. correction arid the isospin
dependence of the transition operator, the expressions
(3.17) of the doorway states are modified according to the
replacement jL (qr)~a&, where the quantity aL is given
by (see Appendix 8)

3 —1 1
i(qVi qr—

A

(C lb)

for isovector response. Moreover the hole wave function
u;(r) has to be a solution of the radial Schrodinger equa-
tion with reduced mass p.

In order to give the partial-wave decomposition of the
exchange operator (3.19) for the general residual interac-
tion (3.3a), we introduce the following radial quantities
corresponding to the direct and exchange term, respective-
ly:

&Jp (r', r)= 1 drdr'[O'J I (r')]t(j '
i (~pi b(r', r) ir ) ii ')+ (r)

8'Jp (r', r)= I dr'dr[9'J I (r')] (j '
i
(rpiE(r', r) i

z )
f

z ')&. (r) (C2b)

Rather than the explicit expressions for the quantities W and 8', we give the following linear combinations which arise
when performing the angular integrations:

IM Jg i ~ 1
QRpj &p (r', r)=4mdx , g P. P(r', x,co/)u/(x—) UJ (x, r)
71k ~

0 p'
J

m&

)& I5, 5 [ao+ —,'aiFL, (Pj,a,i)]+5 5 . .[a2+ —,'a3FI (pj a, i)]IA2(L,pj)R (C3a)
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oo

g R~pMS'~p (r', r) =4m. , g s s(r', r, coJ ) dx u~(x)u;(x) g vt(x, r)
m ~

m&

)& I5, , 5, , [aoA3(L, l,pj, a,i)+a ~Aq(L, l,pj, a,i)]+5, , 5

X [a2A3(L, l,pj, a,i)+a3A4(L, l,pj, a,i)]]R

where the coefficients A2, A3, A4, and I'L, are defined as follows [see Eqs. (3.21)]:

g R;R ™=5t 15~ MAp(L, a, i),
m ~

m

R(~j~Ra™PRa(~=A3(L,I,a,i,Pj )RP~
m, m

m

(C3b)

(C4)

(C5)

/~ l;
l /; I 0 0

A4(L l P j a i)=( ) (2l+ 1)
lp /J

0 0

[l;(1;+1) l (l +—1)—j;
Fg(Pj, a,i }=I+(I—5L p)

0 0 0 0

(j;+1)+j j(+1)][lz(lj+1)—lit(lit+1) jj(jJ+1—)+j it(j it+1)]
L (L +1)

(C6)

Both the coefficients A3 and A4 should be taken to be zt„ro if the denominators happen to vanish.
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