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Theory of two-nucleon transfer reactions
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The two-step matrix element for two-nucleon transfer is evaluated by use of closure for the con-
tinuum intermediate states of relative motion of the transferred particles. Special assumptions that
the intermediate system is a deuteron, or is in a particular spin state, are avoided.

I. INTRODUCTION

Direct reaction theories of two-nucleon transfer reac-
tions with light ions remain incomplete, despite consider-
able effort to develop suitable approaches.!=® To under-
stand the previous work and to introduce our new pro-
cedure, we consider a schematic (p,t) reaction

one step

(4,1,2)4p — A+(p,1,2).

& two step f

(4,1)+p+2

Here the notation (A4,1,2) represents the target nucleus
state, with neutrons 1,2 bound to nucleus 4; (p,1,2)
represents the product triton bound state. The reaction
may proceed either by the simultaneous transfer of both
neutrons, as indicated by the first line above, or by succes-
sive transfer of the neutrons one at a time, as indicated in
the second line. In the two-step contribution, the system
formed by the transfer of the first neutron is understood
to contain one or more states of an intermediate bound
nucleus (4,1). Difficulties arise in the description of the
motion of the unbound particles p + 2 in the intermediate
system.

The relative motion of particles p + 2 is most frequent-
ly taken to be that of the deuteron ground state,2~% so the
intermediate system consists of the bound nucleus (4,1)
plus an intermediate bound deuteron (p,2). In this ap-
proach the transition through the intermediate system is
treated by two perturbative steps (two-step DWBA), using
a Green’s function for the motion of the deuteron center
of mass. One defect of this approach is that the deuteron
wave function is a very restricted representation of the
possible relative motion of p + 2. It is also unclear what
distorting potential should be used in the intermediate
Green’s function. As a more extended approach one
could introduce the resonant singlet state of the deuteron,
in addition to the ground state.” Unfortunately this exten-
sion has a further handicap, that the radial form factor to
be associated with the singlet state is unclear.

Another extended treatment of the intermediate system
supplements the deuteron ground state with a set of excit-
ed, breakup states.® In principle this allows a complete

31

description of the intermediate state of the p + 2 system.
However, thus far such additional states have been used
only in a two-step DWBA procedure, therefore this ex-
tended treatment still suffers from the inadequacies of the
DWBA. In particular it is known from nonperturbative
three-body treatments of the deuteron-nucleus system that
coupling between breakup states is strong™!® and it sig-
nificantly affects the three-body continuum. Although
this difficulty can be met by a discretized coupled chan-
nels treatment of the intermediate three-body system,>!! it
will be some while before such a complicated approach
can even be attempted numerically.

In the present paper we apply closure (the adiabatic
method) to the excited states of the intermediate deuteron.
By this means we deal with nearly all the problems men-
tioned above: We include the three-body continuum, we
include the effect of coupling among breakup states, and
we have a completely definite treatment of singlet inter-
mediate states. Coupled equation methods are not re-
quired. The potential in the intermediate Green’s func-
tion is not fitted to any asymptotic scattering channel.
The new approach can be applied to a variety of other
transfer reactions, as well as (p,t). We note, however, that
the closure theory has no bearing on the recent disagree-
ments”!? about phase relations in the interference between
one-step and two-step contributions.

II. THEORY

A careful direct reaction analysis begins with a choice
of a model space that describes the active degrees of free-
dom of the dynamical system. For simplicity let us as-
sume first that the intermediate system contains only one
state of (A4,1), with neutron 1 in a bound shell-model or-
bital ¢(1). We then define the model space in terms of a
wave function for the interacting system, of the form of a
linear combination

=X, (r,)05(1,2) +@(Dn(p,2) + XV (R)@(p, 1,2) ,
(1)

with an associated Hamiltonian
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H=K,+K+K,+Uy(r,)+U(r))+U,(r;)
Vor(rp1)+Vpa(rpa)+Vialry) (2)

Extensions of the model to include many states of (A4,1)
and antisymmetry with respect to the neutrons are con-
sidered at the end of this section. In the present discus-
sion the target nucleus is understood to be structureless
and fixed at the origin. The K; are single-particle kinetic
energy operators, the U; are shell-model potentials or op-
tical potentials, and the Vj; are nucleon-nucleon interac-
tions. The bound wave functions in Eq. (1) are ¢,(1,2)
for the (A4,1,2) bound target nucleus in the proton chan-
nel, @(1) for the (A4,1) state, and ¢, for the triton internal
wave function. R

We assume X;,*"(rp) to be a known function X (p‘L),
governed by some empirical proton elastic optical poten-
tial ﬁ (rp), due to nucleus 4. We now proceed to deter-
mine the 1ntermed1ate wave function 7(p,2) and the exit
channel wave function X! *

The X\*’ function is determined by the projection

where as usual the parenthesis ( | indicates integration
over only the coordinates of the wave function it encloses.
Equation (3) yields

[E—e—K,—UR)INTR,)
=(¢>le Vea | X pH(r,)
+(@|H—E | @(1)9(p,2)) , 4
with
UR)=(@| Up+U+U, | @) . (5)

In Eq. (4) ¢ is the internal energy of ¢, and K, is the ki-
netic energy operator for the triton center of mass. The
interaction operator in the first term on the right-hand
side (rhs) of Eq. (4) is obtamed by allowmg H—E to
operate to the right on cpp)( (+) A term U,— U is omit-
ted from this operator. The (p,t) amplitude is now ex-
pressed in terms of the standard tlme-reversed normal-
ized, homogeneous solutions X~ of the left-hand side
(Ihs) of Eq. (4) as

T(p,t)= (X~ (R)@ | Vor + Vo | oK 7
+(X {7 (RY@ | AU | @(1)m(p,2)) ©)
=74 T@ (7)

Here T'Y is the familiar one-step amplitude for the reac-
tion, and 7'? is a kind of two-step amplitude, defined in
terms of the intermediate three-body wave function
7(p,2). The interaction

AU=U,+U;+U,—U(R,) (8

in T'? is obtained by allowing H — E to operate to the left
onX i_

A modified version of T can be constructed by intro-
ducing the projection operators

Pt=’¢()(¢t|, Qt‘_‘:l"_Pt’ 9)

in Eq. (4) to yield the modified equation

(E—e—K,— U)X+ (@ | @n)]

=(¢t,Vpl+Vp2,¢p%:)+)>+((pt|H—Eth¢n> . @)

In this equation the lack of orthogonality between ¢n and
the exit channel is recognized, and the projection of ¢n on
the exit channel is incorporated on the lhs as part of the
(undetermined) exit channel relative wave function. This
modification is not a “correction” for nonorthogonality;
all linearly-independent nonorthogonal bases are
“correct,” even if they may be clumsy. Rather, at the cost
of some complication in the calculation of X, the modifi-
cation introduced in Eq. (4') may reduce the inaccuracy
introduced by our subsequent approximate calculation of
7n(p,2). This modification is not pursued further in the
present paper.

The intermediate three-body wave function 7( p,2) can
be derived from the projection equation

O=(p(1) |E~H|¥),
from which we have
[E—e—K;—K,—Vy—W(r,r,)1n(p,2)

=@ | Via l@X ")), (10)

with the distorting potential

W(r,r,)=U,+U,,
where

U,=U;+(p(1)| Vi | @(1)), an

for i =2 and p are the optical potentials due to the inter-
mediate nucleus (A4,1). For large A, it seems reasonable
to assume

Upy=~U,~0, and U,~T, (12)

in the matrix element. Equation (10) adopts a DWBA ap-
proximation, in that a small term due to coupling to X,
has been omitted. Also, a small term

(@D | Vo 4+Up— 0, | X )

is neglected; this term would be proportional to (_]p— U p
if ¢, were to have a factorized form, say, @,=@(1)@(2).
The eigenenergy € of the bound function ¢(1) appears on
the lhs of Eq. (10).

The two-step amplitude T'* of Eq. (6) is obtained for-
mally by substituting the Green’s function solution of Eq.
(10) for n(p,2) in Eq. (6). We have

T = (R (| AU | (1)
X[E(+)—'6-‘K2_Kp— pz—W(rz,rp)]—l
X(@(1)| Voo | @ X 7)) . 13

Let us transform the Kkinetic energy operator in the
Green’s function to relative and center of mass coordi-
nates, r;; and R, respectively, so that

(14a)
(14b)

K)+K,+Vy=Kr+hp ,
hpZ =Kp2+ sz .
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Previous approximations?~® of Eq. (13) simplify the
three-body Green’s function by projecting it on various
chosen intermediate eigenstates of the relative Hamiltoni-
an. However, as was noted in the Introduction, this is an
inadequate procedure.

In the present work we carry all the eigenstates of the
relative Hamiltonian 4., in Eq. (13), using a closure ap-
proximation in which the associated eigenenergies are

. treated as having a single, common value €. To insert this
approximation in Eq. (13) we merely replace h,, by €
Under this closure approximation the Green’s function be-
comes a local function of ry,, as if r,, were a classical pa-
rameter, whose value remains constant as the remainder
of the Green’s function is computed. Although such an

approximation is not valid throughout the entire configu-
|

T = (X {79 | AU | @(D)[EH) —e—&—Kg — Ups(R)] ™ Hg(1) | Vi | X 57))

Equation (16) is not more difficult to evaluate than previ-
ous two-step DWBA expressions. All the dependence on
I, is in the interactions and the channel wave functions
at the two ends of the above expression. Since the nor-
malized triton wave function is more compact than the
deuteron ground state wave function, its magnitude
within the range of the potentials in Eq. (16) must be
larger, and therefore it is plausible that the magnitude of
T from Eq. (16) will be larger than from previous
works. We also note the presence of the rather strong, but
weakly-absorbing Ujs distorting potential in the Green’s
function in Eq. (16).

The relation to previous two-step theories is easy to see.
For example, the intermediate deuteron model>~’ is ob-
tained if the Green’s function in Eq. (16) is multiplied by
a deuteron projection operator |¢4(ry)){da(ry)| and
Ujs(R) is replaced by a deuteron elastic scattering optical
potential.

The value of the closure energy € can be estimated by
examining the matrix elements of %, as it operates to the
left and right in Eq. (13). In general € must depend on the
triton wave function ¢,(p,1,2) and on the target nucleus
bound state @,(1,2). To operate on ¢,, hy, only en-
counters the rather smooth optical potentials in AU; how-
]

TP~ 3 (X {70 | AU | 9,(1)G {F@(1) | Vi | X ),
i

where

GPV=[EY) —¢—€—Kgr—Uj(R)]"!.

Equation (16") would be necessary, for example, if ¢,(1,2)

would contain pairing correlations.
|

V=X Mo+ 3 [@:(1)n:(p,2) — @i (20 (p, D]+ X {7 .
i
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ration space, it only deteriorates gradually in matrix ele-
ments like Eq. (13), in which the effect of nonlocality of
the Green’s function is fairly limited. It is probably a
much more plausible approximation for Eq. (13) than any
restricted choice of intermediate eigenstates.

A further simplification to make the Green’s function
easier to handle is to omit the parametric dependence on
1y, from the distorting potential W(ry,r,). At rp2=0 this
potential reduces to the Johnson-Soper potentiall3

W(rz,rp)r—>OUJ_s(R) (15)

2=

for the p + 2 system.
The two-step amplitude has now been reduced to

(16)

ever, to operate on @, it must encounter the short-ranged
potential ¥,. It seems plausible that & is controlled by
@{AU, and that it should have a value a little greater than
the average two-body energy in ¢,. We estimate

€~ —2 MeV, (17)

independent of the properties of ¢,. It might be desirable
to use different values for € for singlet and triplet inter-
mediate spin states.

Some generalization of the model wave function can be
considered. Let us allow a set of intermediate bound
states, so that the linear combination becomes

Y=X,"pp+ 3 @i (Dmi(p,2)+ X1 g, . (1)
i

New effects could occur if we would allow the operator
W in Eq. (10) to couple different ¢; states with each oth-
er. However, the inclusion of such couplings would be in-
consistent with our other approximations of W; therefore
we disregard them. On this basis the generalized inter-
mediate state in Eq. (1) gives a very simple generalization
of the two-step amplitude

(16"

r

We also need to pay attention to the Pauli principle.
The model Hamiltonian is already symmetric in the coor-
dinates of the two neutrons, and the bound wave functions
@p(1,2) and @(p,1,2) are antisymmetric. It is only neces-
sary to modify ¥ by antisymmetrizing the intermediate
state wave function of the two-step process:

1

This modification of W causes an interesting modification of Eq. (10), which now becomes
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[E—ej—g—KR—UJS(R)] n,(p,2)~2¢J,(2)(¢J,(1)|77,(p,1)) =(¢’i(1)lVp1+Vp2+Up_ﬁpl(Ppi/;+)>
J

~(@i(1) | Vi | @X $F)) (10”)

where the approximations related to closure are inserted already on the lhs, and approximation Eq. (12) is used again on

the rhs. Clearly the exchange term in Eq. (10”) interferes with the easy solution of Eq. (10”) for #;(p,2).

cedures are required.

Iterative pro-

Fortunately the overlaps of neutron bound state ¢;(1) with the continuum functions 7;(p,1) are likely to be weak. If
we disregard the exchange term in Eq. (10"), then the Pauli modification of the two-step amplitudes Eq. (16) or Eq. (16"
is simple. It is only necessary to symmetrize them for the intermediate neutron bound state, so that

T = (X7 | AU | [@:(1)G @i 1) | Vg +9;(2)G T @i(2) | Vo1 X ST

Equation (16"”) is now a matrix element of symmetric
operators taken between antisymmetric wave functions.
The rhs is exactly equal to 2X[rhs of (16)], as it should
be, because now there are two routes of equal weight with
bound ¥, @;(1) and ¥ ¢;(2) functions, instead of one

with ¥, ¢;(1) only.
III. PRIOR-PRIOR FORM FOR PRACTICAL USE

We have derived a new theory for the two-step term of
the (p,t) reaction, using a method that is applicable to oth-
er multistep direct reactions. Although the bound target
nucleus is pictured as going through a definite sequence of
energy eigenstates, the associated intermediate state
dynamical behavior of the projectile fragments in the con-
tinuum is allowed to be arbitrary. We use closure to sum
J

(16™)

up all possible intermediate motions of the projectile frag-
ments.

Equation (16”) summarizes the new results. It has the
structure post-prior, which is known to avoid nonortho-
gonality terms. On the other hand, the post interaction
AU (in this case) consists of long-range potentials, as seen
in Eq. (8), and it is not convenient for practical calcula-
tions. It may be worthwhile to produce an alternative ex-
pression in which AU is replaced by short-range poten-
tials, even if there are accompanying nonorthogonality
terms.

The interaction AU in Eq. (16) first appeared in Eq. (6),
when H —E was allowed to operate to the left on X! p,.
We may instead replace AU by H—E in Eq. (16) and
operate to the right. Consistency of approximation be-
tween H —E and the Green’s function leads to

T = (X {7 | Vor + Va1 | @G @) | Vi [ @,X 57— (X (T | @1 @(1) | P | @ X 7)) (18)

in which approximation (12) is used.

Equation (18) has the expected form of a matrix element with short range interactions, corrected by a nonorthogonali-

ty term.>'* A corresponding version of Eq. (16") is

TP A 0 [ [(Var + Vo) | 910G i@ 1) | Vg + (Vi 4+ Vi) | 920G {F(@i(2) | Vi 1] @pX 577D

A

— 3 X7 [ D@ (D) | Vi + @) @i(2) | Vo1 @ X 57 . (19)

i

which is exactly twice T'? given by Eq. (18). It should be feasible to perform practical calculations with Eq. (19).
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