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A semiclassical method of evaluating the path integral over collective (Bose) and independent-particle
(Fermi) fields is represented. As an illustration, the schematic two-level model is adopted. The semiclas-
sical calculation of the energy spectra is performed and the result obtained is compared with the exact one.
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with 0 =j+~. The operators a and 6 create the parti-

cle in the upper level and the hole in the lower level,
respectively. The quasispin operators satisfy the algebra of
SU (2):

[J+,J ] =2J„[J„J+]= + J+
The generalized coherent state is written as

lg) = Ulo) = (1+g"g) "exp((J ) lo)

The time-dependent Hartree-Fock (TDHF) method pro-
vides an intuitive understanding of various collective
phenomena in many-fermion systems. ' In the development
of this method, however, there are two main problems: one
is how to extract the collective subspace from whole fer-
mion Hilbert space, and the other is how to quantize the
TDHF equation, because the TDHF equation is the classical
equation. For these problems, Yamamura and Kuriyama
recently proposed an extended TDHF method which deals
with not only collective motion but also independent-particle
motion, and the quantization of the extended TDHF equa-
tion was performed by applying Dirac brackets. On the
other hand, the author has recently proposed the other pos-
sible quantization method6 of the extended TDHF equation
by using the fermion coherent state path integral. The exact
evaluation of the functional integral is, however, rather dif-
ficult because of the nonlinear structure of the extended
TDHF equation. The purpose of this paper is to investigate
the approximate quantization of the extended TDHF equa-
tion, and to obtain the approximate energy spectra of the
bound states of many-fermion systems. For this aim, we
use the semiclassical quantization method of Dashen,
Hasslacher, and Neueu who show how the WKB approxi-
mation is derived by using the path integral. Their work
was based on the ideas developed by Gutwiller, Maslov, and
Keller. The quantization rule, analogous to the Bohr-
Sommerfeld quantization rule, can be obtained by applying
a stationary phase approximation on the path integral. We
adopt the schematic two-level model as an illustration in
this paper, and show that the present method reproduce
fairly well the exact energy spectra.

Let us consider the following schematic Hamiltonian of
the two-level system with the same spin j:

H=eJ, —V(J+J +J J+)

lc) =exp X(j x —x'j )+ g(i) y —y'q ) I() . (6)
m

where (x,x") and (y,y') are Grassmann numbers which
satisfy the following relationships:
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The fermion coherent state (6) satisfies the completeness
relation

dp(c) lc) (c I
=1

where the invariant measure dp, (c) is given by

dp, (c)=, 2d(Re()d(lm()gdx dx gdy dy
m I+/(

Following the standard procedure of the path integral
with the use of completeness relation (g), we obtain the
path integral form of the time evolution operator
exp( iHt/t) between the —initial state lc;) and final state
Icf):

X(c~,tt Ic;,t;) = (ct Iexp[ —iH(t~ —t;)/ir] lc;)
f=

J~ D [p, (c ) ] exp(iS/it )

~here
~ tg

D[@(c)l=Qdp[c(t)], S= I. dt
t I

where U is an unitary operator defined by

U = exp(pJ+ —p, 'J )

and 0) denotes the particle-hole vacuum, i.e., a IO)
=b 0) =0. By using this unitary operator, the particle
and hole operators, with respect to I(), are expressed as

= Ua U = (1+('() ' a —(1+( () ' i;b

ij = Ub U = (I+('() 'i b —(1+('g) 'i ga

In order to obtain the classical image of the g and q, we
introduce the fermion coherent state '
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with

L = (c(t) lit ——Hlc(t))
6t

The Lagrangian L is explicitly written as
r 1
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where the Hamiltonian H is

H = (c IHlc&

2 I+( 5 1+5'( m
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(' X(1—x'x —y'y )+ g(x'y' —('2y x ) ( g(I —x'x —y'y )+ g(y x —( x'y') . (13)1+( (

Since we introduce the variables g and (', there occurs a
double counting problem of degrees of freedom. However,
this difficulty can be avoided by introducing the constraints
as follows

I

representation

K(E) =i JI exp(iET/t)K(T)dT (16)

where K(T) is the trace of the time evolution operator

gymxm = Xxmym = 0 (14) K (T ) = Tr [exp( —iHT/t) ]

The domain effect of the propagator (10) comes from a
path in which the action is stationary 5S = 0 under the con-
straints (14). The variational equation leads to the follow-
ing equations:

= JI dtA, (cp) (cplexp( —iHT/t) lcp)

By using the propagator (10), the Green's function K ( T ) is
expressed as

with

e=0,
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K"(T)~ JI D [p, (xy)] exp(iS't'/t) (18)

K (T) = JI D [p, (c ) ] exp(iS/t)

D [p, (c)]=d p, (cp)D [p, (c)]
where co denotes the end point of the path. By utilizing the
stationary phase approximation (SPA) about ( and (', we
obtain the classical propagator as follows:

A = (1——,
' cos8)e+ V(1 —cos8)' X(1—x'x —y'y )

where we used the other parameters 8 and P instead of g

and (' through (=tan(8/2) exp( —i&). These equations
are just the extended TDHF equations. Therefore we can
say that the present path integral (10) naturally involves the
extended TDHF equations (15) as a classical limit.

Now we consider Green's function in the energy
l

where the notation D[p, (x,y)] represents the Grassmann
functional integral. Here the variational principle 5&S =0
leads to the equations of motion (15a) and (15b). The
solutions of equations (15a) and (15b) are 8= n(const) and

Q = Qp
—put with

co= 2+/t —4V/t g(l —x'x —y'y ) cosu

Then K"(T) is explicitly written as

TK"(T) = J)D[@(xy)]exp —' J it X(x'x +y'y )+—(1 —cosa)cu g(1 —x'x —y'y )
m m

f 2

+—cosa g(1 —x'x —y'y )+—(1—cos n) g(1 —x'x —y'y )
rn m

2

where we used the relations d/dt (x'x ) = d/dt (y 'y ) = 0. If we introduce the functional Gaussian integral

J/d[a] exp —i/t ~[ o-+ [ V(1 —cos2n)]'i2 (1 —x'x —y'y )} dt =const,
0

(20)
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the functional integral (19) is written as
T

K"(T)~ exp(iSO') J D [@ (xy)]d I nl exp, —) it g(x'x +y'y ) ——(1 —cosn)co+ —cosa+ 2VQ (1 —cos'n)
2
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where

So' =tQ(1 —cos n)co+eQ cosn+2Q V(1 —cos2n)

——(1 —cosn )cu + —cosah
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After the integration with the Grassmann variables, the propagator (21) becomes

K"(T)~ exp(iSO'/t) g ',
, „d[o.] exp—

2Q —n !n! "

(21)

'I

+ 2Q V(1 —cos2n) + V(1 —cos a) a. n dt . (22)

Further, by integrating with the variable o-, we obtain the following result:
*

t

K' (T)~ '
exp, —2V(1 —cos n) Q —— +ecosn Q —— T, exp i (1 —cosn) Q ——r0T(2Q )! I 2 n n n
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Note that since ~T is 2m for one period T, the correct form of the Green's function is given by the multiple cycles of the
periodic orbit

r r r
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(24)
Then the propagator (16) turns out to be

K' (E)~ gc1 (2Q )! exp 2mi (1—cosn) Q ——n

(2Q —n )!n!
1 t

x 1 —exp 2vri (1 —cosn) Q ——n

2
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2 2
(25)

Clearly, K"(E ) has poles about

cosa= 1— tPl

Q —n 2

n'

Q —n/2
(26)

E= —2V(1 —cos n) Q —— —icosa Q —— . (27)n n

2 2

E = en'+2Vn' —2V 0 ——
2

(28)

On the other hand, the exact energy of the Hamiltonian (1)

Equation (26) is just the quantization rule. Using Eq. (26),
the energy (27) is written as

I

is given by
r

E = en'+2Vn' —2V 0 —— 0 ——+1 (29)
2 2

J

From the comparison between (28) and (29), we find the
error 2V(Q —n/2) which is caused by the factorization
(J+) (J ). This is the quantum correction of order
(1/Q). The approximate energy spectrum (28) becomes
accurate for large A. Conclusively, the semiclassical ap-
proximation of the path integral method reproduces well the
exact energy spectrum of the schematic two-level model.
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