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Energy levels and electromagnetic properties of the N =27 and 28 nuclei are studied systematical-

ly in terms of the shell model within the f2,, + 27 (p32,01/2.f5/2)

! configurations. The effective

interactons are made up of empirical matrix elements and phenomenological potentials superposed

with two and three central interactions.

Least-squares fitting calculations of selected energy levels

are performed to fix some of the matrix elements and the strength parameters of the potentials. It is
shown that some states with a collective nature appear in *'Cr and **Fe which are connected to each
other by the enhanced E2 transitions, whereas no such states appear in “’Ca and “’Ti. The
anomalously large B(E?2) values observed in the transitions between the intruder states can be
reproduced very well. The hindrance of the E2 transitions between the intruder state and the nor-
mal f7,, state is obtained in the present model, being in qualitative agreement with the experiments.
Both of the proton-neutron (p-n) interactions (1) among the f;,, nucleons and (2) between the f-,,
and the other fp nucleons are very important in order to obtain proper understanding of the nuclei

in this mass region.

I. INTRODUCTION

A great similarity between the sequences of the low-
lying negative parity states of 5!Cr and *3Fe has been ob-
served.!™* Those states can be divided almost completely
into two groups. One consists of a series with J"=~2",
2 -, %i ..., which can be accounted for by the normal
fin conflguratlons The other is made up of a series with
JT= R 2 , 2 , ..., which cannot be explained by the
fin model, and these states are often referred to as in-
truder states. The intruder states may be characterized by
the strongly enhanced E2 transitions between the
members of the same group and also by the highly hin-
dered E2 transitions from the member of one group to
that of the other. In terms of the Nilsson model, the in-
truder states are interpreted® as the members of a
K ”=%— band, while the other states are assigned as the
members of a K"=~ band. This.model works quite
well in explaining the hindrance of the interband E2 tran-
sition as a AK =3 forbidden transition as well as the
enhancement of the intraband E2 transitions. From a
shell-model point of view, there have been few interpreta-
tions based on systematic calculations, although it was
shown with the f7,,+ /7%, 2 'p3,» configurations that only
the 2~ state was predicted in the low encrgy region in the
odd-mass N =27 isotones, whereas the + and 5 states
were missing in the same energy region. Calculations in-
cluding the one-particle excitations into all the ps /., pi,,
and fs,, orbits were done,® but they were restricted to
33Fe only and were not applied to >!Cr. The purpose of
the present paper is to show how the intruder states
characterized by the enhanced E 2 transitions do develop
in the heavier mass N =27 isotones, *>'Cr and >*Fe, and do
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not appear in the lighter mass isotones, ’Ca and *°Ti, by
systematic calculations of the whole N ~28 nuclei with
the

Fin+f55" P3P0 f 520!

configurations.

Recently, several authors®™® performed shell-model cal-
culations in this mass region by allowing one-particle ex-
citations from the f;,, to the other three fp orbits. The
renormalized G-matrix elements'® deduced from realistic
nucleon-nucleon interactions were used together with
empirical matrix elements. The monopole corrections!!
were added to the diagonal G-matrix elements in their
analysis. Johnstone and Benson’ tried to understand in-
truder states generated by the one-particle excited configu-
rations, but they neglected configuration mixing between
two different configurations. Styczen et al.® took ac-
count of the configuration mixing by introducing the off-
diagonal G-matrix elements into the effective interactions
obtained in Ref. 7 with the slight modification of the di-
agonal matrix elements. The Utrecht group®® attempted
to introduce ‘“‘scale factors” by which the G-matrix ele-
ments were multiplied, and they determined these factors
by least-squares fitting calculations. It turned out, howev-
er, that the scale factors varied considerably in going from
one nucleus to the other. Therefore, one cannot expect
that the effective interactions which explain one particular
nucleus (or isotope) can be applied successfully to the oth-
er nuclei. Mooy and Glaudemans® have recently made a
calculation of 4 =52—60 nuclei by introducing mass in-
dependent scale factors. The scale factors in this case are
not uniform for all the two-body matrix elements but are
defined individually for each specific form of the matrix
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elements, i.e., they depend on the orbital angular momen-
tum of the two interacting particles. Some of the scale
factors have been determined in the least-squares fitting
calculations, and it turns out that the fitted values strong-
ly depend on the form of the two-body matrix elements,
suggesting that the phenomenologically adopted effective
interactions should deviate considerably from the original
G-matrix elements. Thus, the parametrization based upon
the G-matrix elements with monopole corrections seems
to be still unsatisfactory to provide an appropriate
description of the effective interactions for the

F3n+3n" P3p1 2520

space. The surface delta interaction (SDI) was also
tried®® instead of the G-matrix elements, but the results
were even worse than those with the realistic interactions,
especially in the M 1 properties. It is therefore needed to
obtain the effective interactions relevant to the assumed
model space in order to perform systematic calculations
of the whole nuclei in the N ~28 region. Since we do not
have enough experimental data available to make an
empirical determination of all the matrix elements com-
pletely, we have to impose some assumptions on the effec-
tive interactions. In the present work, we introduce partly
empirical matrix elements and partly phenomenological
potentials. By adjusting the matrix elements and the
strength parameters of the potentials to reproduce selected
energy levels in the least-squares fitting calculations, we
try to obtain the effective interactions relevant to the
model space of the

Fin+f35" b fsn)

configurations.

In Sec. II, we describe the assumptions imposed on the
effective interactions and also present the results of the
least-squares fitting calculations. The properties of the
N =27 nuclei are discussed in Sec. III. Concluding re-
marks are presented in Sec. IV.

II. EFFECTIVE INTERACTIONS

A. Parametrization

If one- and two-body forces are assumed for the effec-
tive interactions in the model space of the

Fan+f37" PampisaSssn)

configurations, four single-particle energies and 60 two-
body matrix elements are needed in the calculation of the
shell-model Hamiltonian. In order to reduce ambiguities
on the effective interactions, an empirical approach is
tried in our calculations. We cannot hope, however, that
all the single-particle energies and two-body matrix ele-
ments are treated as independent adjustable parameters
and are determined unambiguously by the least-squares
fitting procedure, since the number of adjustable parame-
ters is so large compared with that of available experimen-
tal data. Therefore, we are obliged to reduce the number
of parameters to make the least-squares fitting calcula-
tions manageable in size, by introducing partly
phenomenological potentials to calculate some of the

two-body matrix elements. For this purpose, we classify
the two-body matrix elements into three groups: (i)
Fip|VIfinde G {f120 |V | f1,20" )15, and (i)
f3,2 |V |f7/2J)1s, where j and j' represent one of the
P32, P12, and fs 5 orbits, and T and J denote the isospin
and the total angular momentum, respectively, resulting
from the coupling of the two interacting particles. Since
the eight matrix elements of type (i) play significant roles
in reproducing both binding and excitation energies, we
do not specify the form of these matrix elements, and they
are treated as adjustable parameters in the least-squares
fitting calculations. ’

The average interaction energies for type (ii) interac-
tions are defined by

V{f10)r= P 2T+ f100 |V | f1020 15

1

2j+1)
and can be estimated empirically by using the single-
neutron energies extracted from *'Ca, **Ca, and *’Ni. The
average interaction energies for the neutron-neutron (n-n)
interactions (T =1) are weakly repulsive and do not de-
pend on the orbit j so much, whereas those for the
proton-neutron (p-n) interactions (7'=1 plus 7 =0) are
strongly attractive and depend heavily on the orbit j. It
has been pointed out'? that only central interactions do
not work very well to reproduce the properties of the p-n
interactions, particularly the difference between those for
Jj=p3,, and p,,,. The noncentral interactions such as the
tensor force and the spin-orbit force might play a role in
the p-n interactions, but it is quite difficult to determine
all the parameters for each component unambiguously by
the least-squares fitting calculation. Therefore, for the p-
n matrix elements of type (ii), we employ the empirical p-
n interactions obtained by Horie and Ogawa'’? in the
analysis of the N =29 isotones. The p-n matrix elements
for type (ii) are given by

Von=Vy_1+Vr_0)/2,

and thus either the T=1 or T =0 part of the type (ii)
matrix elements remains unknown. In the present calcu-
lations, we assume phenomenological two-body potentials
to calculate the 7"=1 matrix elements of type (ii). Since
nothing has yet been known on the effective interactions
of type (iii), the phenomenological potentials are also as-
sumed to calculate both of the 7'=1 and T =0 matrix
elements.

The phenomenological potentials assumed in calculat-
ing some of the matrix elements are generated by super-
posing central interactions of the delta function, Yukawa,
and monopole types. The noncentral interactions are not
adopted for the sake of simplicity. In the singlet-triplet
and even-odd representation, the central interaction is
parametrized by

V(r)=(VsoPSC+ VipP T4+ Vg PSE4+ Vo PTO)f (r) .

Here, PSC, PTE, PSE and PT© are projection operators for
the singlet-odd, triplet-even, singlet-even, and triplet-odd
states, respectively. The radial dependence is denoted by
f(r), and its explicit form is given by 8(»)/#2 for the delta
function, by exp(—pur)/ur for the Yukawa, and by 1 for
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the monopole types, where 1/u=1.414 fm (one-pion ex-
change range). The radial integrals for the two-body in-
teractions are evaluated by using the harmonic oscillator
wave functions with the oscillator constant

v=maw/#=0.96XA4"13 fm~?,

where 4 =52, and we assume that the radial functions are
positive near the origin. The integration is performed in
momentum space by applying a method which uses a
Fourier transform.'3 .

The monopole interaction gives nonvanishing contribu-
tions for the radial matrix elements which are diagonal
with respect to the orbital angular momentum. Since the
spin exchange mixture is assumed for any central interac-
tion, the matrix elements, {f3,, | V | f1,2fs5/2 )1, for the
monopole interaction do not necessarily vanish, even
though they are nondiagonal in the jj coupling form. The
contributions from the even and odd states are not in-
dependent, however. They are the same size and have the
opposite sign. In calculating the 7T"=0 matrix elements,
singlet-odd and triplet-even components contribute, and
we choose only the triplet-even strength as an adjustable
parameter for the 7' =0 monopole interaction. For the
T =1 monopole interaction, we can still treat the singlet-
even and the triplet-odd strength as independent parame-
ters, since in calculating the type (ii) matrix elements they
are totally independent.

The f7,, and ps/, single-particle energies are treated as
adjustable parameters, whereas the p;,, and fs5,, ones are
fixed so as to reproduce the observed single-particle spec-
tra of ¥Ca:

BE(3+ )—BE(5 )=2.028 MeV

and
BE(—;-—)—BE(%—)=3-958 MeV (Ref.12) ,

zghere BE(J7) denoted the binding energies of the states in

Ca.

Four kinds of the phenomenological potentials are as-
sumed in the least-squares fitting calculations in order to
check the radial dependence of the short range interaction.
Since the range of the long range interaction is roughly
the nuclear size, we adopt only the monopole interaction
as the long range interaction. They are given by: A4, delta
plus monopole; B, even Yukawa plus monopole; C, Yu-
kawa plus monopole; D, delta plus Yukawa plus mono-
pole. In the potential B, even Yukawa means the interac-
tion with even components only.

B. Least-squares fitting calculations

The effective interaction parameters are determined by
fitting the 72 experimental data selected from the N =27
and 28 nuclei. In selecting the fitting data, we follow the
previous calculation® of the f%,,+f%;'ps,» configura-
tions with the 63 experimental data, and we further add 9
data which are newly known. The binding energies!* are
evaluated relative to that of *Ni and the Coulomb ener-
gies are excluded from the binding energies (BE) by using
the Coulomb displacement energies.!> The binding ener-
gies are used only for the ground states and the excited

states are fitted relative to their own ground states. The
energy levels which are adjusted in the least-squares fit-
ting calculation are tabulated in Table I. Only the result
with the potential D is shown in this table, however, since
there are no significant differences among the results with
the various potentials. All the fitted parameters are given
in Table II, and their properties are summarized as fol-
lows:

(1) When the Yukawa radial shape is used for the
short-range interaction instead of the delta function, only
a slight improvement is obtained. The odd component of
the Yukawa radial shape does not play an important role
in improving the quality of the least-squares fitting calcu-
lation.

(2) Both even and odd components of the monopole in-
teraction are indispensible in fitting the 7 =1 interac-
tions. It turns out that these components take the dif-,
ferent values as the result of the least-squares fitting cal-
culations. This means that the spin exchange force in the
monopole interaction is very important, whereas the spin
exchange mixture is included neither in the monopole part
of the modified surface delta interaction nor in the mono-
pole part added to the G-matrix elements.

(3) The potential D with the three different ranges does
not improve the quality of the least-squares fitting calcu-
lation. The assumption of the two-range central interac-
tions seems to work quite well as has been pointed out by
Schiffer and True.!”

In the following calculations, we will use the potential D
which gives the smallest chi-squared value.

III. RESULTS AND DISCUSSIONS

By using the matrix elements of the effective interac-
tion D and the single-particle energies obtained in Sec. II,
we have calculated energy levels, spectroscopic factors,
and electromagnetic transitions and moments of the
N ~28 nuclei. In the present work, we concentrate on a
detailed description of the N =27 isotones. The other
topics such as Gamow-Teller—type beta decay properties
will be published in a subsequent paper. In calculating
the electromagnetic transition matrix elements, we use the
harmonic oscillator wave functions with the oscillator
constant v=0.96XA4 !> fm—2 where A is the mass
number of a nucleus. The effective charges e, =1.5e and
e,=1.0e and the free nucleon g factors are assumed for
the calculation of the E2 and M1 matrix elements, al-
though a slight change is tried in some cases. The spec-
troscopic strength Gj; for the single-nucleon transfer reac-
tions is defined by

1

G=
b= 27,41

(T T, Iyl la (e D T T, 0 |2

A. Energy levels

Figures 1 and 2 show the calculated and observed'™
energy spectra of 5!Cr and >’Fe, respectively. The signifi-
cant feature in the present calculations is that the 5 and

% states appear in the low energy region in addition to
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the %_ states, in contrast to the previous calculations® levels consist mainly of several
with the p;3,, orbit only. The calculated excitation ener- WN=267' _0+ 2+)xyj
. . . = Xv
gies are, however, still higher by about 0.5 MeV than the | gnd> <1 72
experimental ones. The resultant wave functions of these components, showing deviation from the weak coupling

TABLE 1. Experimental (Refs. 1, 2, 5, 14, 15, and 16) and calculated energy levels adopted in the least-squares fitting calculation
with the potential D. Binding energies relative to that of **Ni are used for the ground states, while excitation energies are used for the
excited states. Both of them are given in MeV.

Nucleus Spin Experiment Calculation Nucleus Spin Experiment Calculation
41Ca - 143.546 143.799 sty - 81.545 81.371
3 2.016 2.058 3 0.929 1.106
3 2.409 2.592
2
= 0.320 0.311
2
48 —
Sc 6+ 127.025 127.109 _52_ 3.085 3.187
1t 2.520 2.737 - 1.813 1.865
2+ 1.145 1.209 é‘ 1.609 1.620
;: 227 2980 - 3.614 3397
3+ 2'190 2'284 27 3.387 3.209
. . 15 —
4+ 0.253 0.229 z 2699 2854
4+ 2.619 2.647 k2 R S
+
o 0.133 - 0056 2Cr o+ 62.974 63.002
5 2.064 1.847 + 43 1452
7+ 1.096 1.325 2 1434 :
' : 2+ 2.965 3.150
: 2+ 3.772 3.783
_ 3+ 3.472 - 3.427
497 7
Ti 7 108.267 108.405 o 5370 5371
T 1.382 1.306 4+ 2.768 2.533
2_
El 1.582 1.632 4+ 3.414 3.415
5+ 3.617 3.522
5+ 4015 4.203
6+ 3.114 2.970
Fe 7 43.924 43.932 8+ 4.750 4.803
9 — —
T 1.328 1.418 3Mn I 48.065 48.007
g~ 2.339 2.348 %— 2.672 2.521
P ;-ié: ;igi 3” 1.289 1.158
2 . ) 3=
- o T i 2.407 2.552
2 : 119 3 0378 0.269
> 1.621 1.782
T 1.441 1.594
- 2.697 2.860
13 —
'S¢ - 116.897 116.570 &~ e e
?_ - - > 3.426 3.555
7 3.084 2.769 L 2.693 2.699
2T 3.440 3.602
S4Fe o+ 30.542 30.608
2+ 1.408 1.390
Ty o+ 97.319 97.193 4+ 2.539 2.436
' 2+ 1.554 1.518 6+ 2.948 2.806
2+ 4.184 4,061 B
4+ 2.677 2.643 5Co I 16.519 16.427
4 4.158 3.860 3 2.186 2.199
6 3.201 3.131 3- 2 564 5855
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TABLE II. Values of the two-body matrix elements, the depth parameters of the various potentials,
and the single-particle energies determined by the least-squares fitting calculations (in MeV). The X? is
defined by X*=3""_(Ef-Ef™), and the rms deviation is given by [X?/(m —n)]'/?, where m is the
number of experimental data and n is the number of parameters. For the parameters of the delta and
the Yukawa functions, the weight is assumed to be 100 so as to make the sensitivity of the parameters
roughly equal to that of the others. The weight for the other parameters and for the fitting data is as-

sumed to be 1.

A B C D
(FiolVIfin), J=1 —2.0368 —2.0224 —2.0668 —2.0095
J=3 —0.5922 —0.6397 —0.6568 —0.6226
J=5 —0.4311 —0.4525 —0.4581 —0.4681
J=7 —2.1611 —2.1411 —2.1248 —2.1440
J=0 —2.6067 —2.5945 —2.6143 —2.5987
J=2 —1.0859 —1.0366 —1.0208 —1.0552
J =4 0.0286 0.0484 0.0614 0.0771
J=6 0.5203 0.4910 0.4806 0.4734
Vie(delta) —17.189 —41.818
Vso(Yukawa) —63.238 —108.93
Vie(Yukawa) —21.228 —20.786 24.896
V1e(monopole) —0.6689 —0.3617 —1.6285 —3.0244
Vse(delta) —45.273 15.410
Vse(Yukawa) —49.977 —50.073 —65.737
Vio(Yukawa) 0.540 1.144
Vse(monopole) 0.1348 0.9141 0.9033 1.1350
Vro(monopole) 0.4655 0.4616 0.4505 0.4372
€12 —10.4747 —10.4625 —10.4648 —10.4387
€3, —6.9028 —6.7533 —6.7129 —6.7289
X? (in MeV?) 1.519 1.468 1.464 1.449
rms deviation 163 160 163 165
(in keV)

picture. Here, W" =26 denotes the wave functions of the
even-even N =26 nuclei, calculated within the f7} /3’ con-
figurations, and j denotes the p3,,, py,2, and f5,, orbits.
The levels connected with these low-spin intruder states
by the relatively large E2 transition strengths are also
shown in these figures, and it turns out that the sequence
of such levels continues up to J"=3>" in 5'Cr, while it
terminates at J™=->" in >*Fe. These levels are all gen-
erated predominantly by the neutron excitations from the
f1,2 to the other fp orbits. Deviation from the weak cou-
pling picture is also found, and the admixture of various
components in the wave functions is essential to obtain
the coherent sum of the E2 matrix elements between the
intruder states. In the previous calculations® with the
Pz, orbit only, there appeared some intruder states con-
nected to each other by the appreciable E2 transitions.
The transition rates are, however, not so much enhanced,
and then, the sequence is not so clear, as compared with
the present calculations. Therefore, the inclusion of all
the p3,, p1s2, and f5,, orbitals is very important to ob-
tain the enhancement of the E 2 rates between the intruder
states.

High-spin yrast states, which may be populated by
heavy-ion reaction experiments, are also presented in Figs.
1 and 2. They are generated predominantly by the one-

particle excited configurations, and it turns out that the
neutron excitations are dominant in *'Cr, whereas in >*Fe
both the proton and neutron excitations contribute to the
J™< 2—27 " states. The f7/; 1p 3,2 components are not neces-
sarily the major ones in the wave functions and all the ex-
citations into the three fp orbits are important, in contrast
to the previous calculations.’ Although the present calcu-
lations predict several branches for the deexcitation pro-
cesses of those high-spin states, there are relatively strong
decay modes before decaying into the f7,, yrast states.
There are two sequences in °!Cr. One is
2727527 ,27(1), and the other is 2
—2 7 527(2)—>2"(1). The calculated branching ra-
tio for the 2~ — 27 (1) transition is 31%, and that for
the £ (2)—34 (1) is 35%. The £ state can also de-
cay into the £~ (2) state with a 31% branch. The other
branches are relatively small and therefore the levels with
JTS %_ below 6 MeV in *!Cr might be weakly populated
or could not be seen in the deexcitation processes. In *Fe,
the present calculation predicts that the main cascade is
27 527 527 527 and then the 5~ state decays
mostly into the isomeric %— state by the E2 transition
[B(E2)=21e%fm*]. The %~ state decays into the

isomeric - state with a 90% branch. Thus, the

72
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3 FIG. 2. Calculated and experimental (Refs. 2 and 4) energy
ot 7= 7 o 352 spectra of 3Fe. See the caption to Fig. 1.
2" Exp 2T T Cal 2J ( ?2)
efm

FIG. 1. Calculated and experimental (Refs. 1, 3, and 4) ener-
gy spectra of *!Cr. In each spectrum the f7,, levels are shown
on the left-hand side (lhs), and the intruder states are on the
right-hand side (rhs). The levels connected with the low-spin in-
truder states by the relatively large E2 transition rates are
shown, and the B (E2) values are presented by the arrows, being
proportional to the width. The number given in the parentheses
is that of the eigenstate counted from the lowest one with the
certain angular momentum J. The Q moments in e fm?, calcu-
lated with e,=1.5e¢ and e,=1.0e, are shown on the rhs of the
levels. The relatively strong transitions from the high-spin yrast
states to the f7,; states are shown by the arrow with the dashed
line.

JT< L7 states below 7 MeV in **Fe could not be seen in
the deexcitation processes.

B. E2 properties

The E?2 rates between the f7/, levels can be reproduced
very well by using the effective charges e,=1.5¢ and
e,=1.0e. For example, we obtain B(E2)=161 e*fm*
for the %_(1)—’%@(1 transition in *'Cr, which is compar-
able with the experimental value* 121732 e2fm*. On the
other hand, the E2 rates between the intruder states are
underestimated by about a factor of 2, as long as the same
effective charges are assumed. Since the intruder states
are generated mainly by the |WN=25(f721a'T'J") X vj)
states, we try to extract the effective charges for the in-
truder states so as to reproduce the B(E?2; 2,+—>0g;,d) in
the neighboring even-even N =26 nuclei within the f7 /'21
configurations. We increase only the isoscalar part of the
effective charges, and thus we have e,=2.0e and

e,=1.5e. The calculated B(E?2) values in >'Cr with them
are 315 e2fm* for the - (2)—3 (1), 411 e fm* for the
27(3)>< (1), and 311 e*fm* for the + (1)—+ (1)
transitions. They all are consistent with the experimental
values* 3201’{;8, 320f§(1,0, and 240fé3° e?fm*, respectively.
In *’Fe, we obtain 318 e?fm* for the = (2)—< (1), 373
e*fm* for the + (2)—< (1), and 287 e*fm* for the
3$7(1)—+ (1) transitions, which are comparable with
the experimental values* 510%319, 2507135, and 380713°
e?fm*, respectively.

Recent experiments of Kishimoto et al.* suggest that in
SICr the observed 5 (2) level is a candidate for a

member of the K ”———%_ band, since the observed E?2
1

transition rates from the 5 (2) to the + (2) level is
600758 e2fm* and is quite large. It is also suggested in
their expegiments that in 33Fe, on the other hand, the ob-
served 5 (2) level decays into the = ground state with
B(E2)=50%3) e?fm* and it cannot be considered as a
member of the K™=+ band. The present calculation
predicts that both in >!Cr and %Fe the 5 (3) levels are
generated almost [7)q_rely by the neutron excitations and are
connected to the 5 (2) levels by the strong E2 transition
strengths. The calculated E2 rates from the 5 (3) to
the = (2) levels are 242 e2fm* in 5'Cr and 268 e?fm* in
’Fe, where e,=2.0e and e,=1.5¢ are assumed. If one
considers that the calculated 5 (2) level in 5!Cr is gen-
erated mostly by the f %1/2 configuration and that the exci-
tation energies of the intruder states are estimated sys-
tematically higher by about 0.5 MeV, then it is plausible
to interpret that the calculated second and third 5 lev-
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els in °!Cr are interchanged by some effect not taken into
account in the present model, and the calculated 5~ (3)
level corresponds to the observed - (2) one. On the oth-
er hand, in 3Fe the calculated - (2) level is composed
of both proton and neutron excited configurations. Since
both the second and third excited 5~ levels in >*Fe are
generated by the one-particle excitations, the relative order
may not be changed. The calculated E2 rate from the
4 (2) to the 7 ground state is 29 e*fm* (with e, =1.5¢
and e, =1.0e) or 56 e?fm* (with e, =2.0e and e, =1.5e),
which is not inconsistent with the observed one,
50*39 e2fm*. It seems therefore that in **Fe the calculat-
ed 5 (2) level corresponds to the observed 5 (2) level.
It would be very interesting to observe the third excited
1.7 level in 3Fe, which is expected theoretically to be
slightly higher (300 keV) than the 5 (2) level and to be
connected to the = (2) level by the strong E 2 transition.
Calculated and experimental E2 transition rates and
the spectroscopic strengths concerning the low- -lying 3 5
states of the N =27 isotones are summarized in Table III.
The striking feature is that the E2 transition rates from
the (1) to the = ground states in *’Ca, *>'Cr, and **Fe
are strongly hindered, whereas that in **Ti is not hindered.
It is also interesting to note that the 3 (1) states in “’Ca,
“Ti, and *'Cr are populated strongly by single-neutron
stripping reactions. Although the hindrance of the E2
transitions is interpreted in terms of the Nilsson model as
a AK =3 forbidden transition, as mentioned already, it
would be quite interesting to see how the shell model de-
scribes the E 2 transition rates together with the spectro-
scopic factors systematically. It is shown in Table III that
the qualitative features can be reproduced very well by the

TABLE IIL. Systematics of the low-lying 3

I, =1 transfer reactions, and E?2 transition strengths from the 5 3 -

shell model, and the two calculations with the
Fin+r5n'psn
and the

Fin+F572" 03 p1 /2 52)!

configurations give almost the same results. The follow-
ing three basm functions are the main components in the
low- lylng state wave functions:

|1>_'f;l/—21 gnd XVp3/2>
12Y= /15" ) %),

and

13Y=1f72) -

This is the common feature in both calculations, and this
explains why the two calculations give almost the same
results. The hindrance of the E2 transitions comes from
the cancellation of the E2 matrix element from |1) to
the ground state and that from |2) to the ground state.
The coherent sum of these two E2 matrix elements
should occur in some state which is orthogonal to the
state producing the cancellation of the E2 matrix ele-
ments. Such a component is contained very much in the
27(2) states in “’Ca and >’Fe, and this explains the
enhancement of the E 2 transitions from the 5 (2) to the
ground states in these two nuclei. For the other transi-
tions, the third components | 3), inducing significant con-
tributions to the E2 matrix elements into the ground
states, play a rather complicated role. It should be no-
ticed that the deviation from the weak coupling picture is

states of the N =27 isotones. Excitation energies, spectroscopic strengths Gj; for the

states to the 5 ground states are calculated and compared with

experiments. The effectlve charges, ep—l Se and e, =1.0e, are assumed Calculation I; £%,, + f%73'ps,, configurations (from Ref. 5).

Calculation IT; £%, 4+ f%75" (93201725 f5.,2)

! configurations (present calculation).

B Calculation I Experiment Calculation II
No. of 3 E G B(E2) G B(E2) E G B(E2)
Nucleus level (MeV) (e?fm*) (MeV) (e2fm*) (MeV) (e2fm*)
YICa 1 2.066 3.70 8.2 2.016 3.6 <3d 2.058 3.80 7.3
3.520 0.30 26.8 3.297 <0.07 3.113 0.17 25.9
49Tj 1 1.361 1.73 90.3 1.382 1.87° 33.7+4.5° 1.306 0.97 108:5
2 1.636 1.02 27.2 1.585 0.06 53.7+95:5° 1.632 1.92 9.8
3 3.511 0.44 0.0 3.260 0.63 3.051 0.52 8.3
ely 1 1.119 2.63 16.2 0.749 1.45° 0.327+0.001f 1.058 2.50 10.7
2 1.998 0.03 85.3 1.899 0.64 60+13 1.859 0.01 89.7
90+ ah
3 2.747 0.19 0.0 2.892 0.37 2.545 0.14 2.3
SFe 1 1.188 6.7 0.741 0.040+0.001 1.135 3.9
2 2.823 56.8 2.043 67415 2.416 427
3 3.840 0.5 3.445 5.9
From Ref. 18. °From Ref. 21. hErom Ref. 23.
bFrom Ref. 19. fFrom Ref. 22. iFrom Ref. 24.

°From Ref. 1.

9From Ref. 20.

8From Ref. 3.

iFrom Ref. 25.
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essential to cause the interference of the E2 matrix ele-
ments.

C. Simple interpretation of systematics
of the intruder states

The reason why the sequence of the low-lying intruder
states in >3Fe terminates at J™=-" may be attributed to
the p-n interactions (1) among the f;,, nucleons and (2)
between the f7,, and the other fp nucleons. In spite of
the considerable deviation from the weak coupling pic-
ture, it is still instructive to use the weak coupling basis
functions |W(f%,;'a’T"J')Xj;aTJ ) in order to obtain a
qualitative interpretation of the intruder states. Let us
first examine the diagonal energies of these basis func-
tions, to which the interactions among the f;,, nucleons
are very sensitive. In °!Cr, the basis states with
T'=T—+=1 are much lower in energy than those with
T'=T+%=2 for any J' and J, and then the intruder
states generated by the 7'=1 components can develop up
to the maximum spin % In **Fe, on the other hand, the
T'=T—5= components are lower than the
T'=T++5=1 components only for J'<6 and J <.
1

1019

For J'26, conversely, the T'=0 components become
higher by about 1 MeV than the 7"=1 components. The
whole situation is presented in Fig. 3. The reason is that
the p-n interactions among the f,,, nucleons give larger
binding energies for the high-spin states of the odd-odd
N =26 nuclei (T"=T+ ) than they do for the high-spin
states of the even-even N =26 nuclei (T"'=T — %), as the
number of protons is increased. Since the states with
T'=T+ 5 cannot be connected to those with T'=T —+
by the strong E 2 matrix elements, and since the stretched
coupling states (J'+j =J), particularly j=2, play a sig-
nificant role, it is difficult to obtain a > candidate in
3Fe as a member of the intruder states with a collective
nature.

It has been pointed out’® that the quadrupole-
quadrupole (Q-Q) component in the p-n interactions be-
tween the nucleons in the different shells plays an impor-
tant role in the interpretation of collective phenomena in
nuclei. In the weak coupling picture, the core-particle in-
teraction may simulate such p-n interactions, and the Q-Q
part of that interaction also plays an essential role. The
matrix element of the Q-Q is given by

(T, j; IM | Q-Q | T j;dM ) =(— 1Y H=Iw (J'jJ7j;0 2’| Q|| TG |1 Q]1) -

This equation tells us that the two states are coupled
strongly, if the quadrupole matrix elements of the cores
and the particles are large. Since the (a'J'||Q]||a'J’)
varies considerably from one nucleus to another and from
one state to another, it governs the characteristic features
of the intruder states. According to the f%,, model,?’ the
(41711Q|16") of **Fe is smaller by a factor of 1.5 than that

E(MeV) )

° g T2 —9 " —

s} ) At ——-3: T % 1,2.

T T 10 :[ . o &

6 T fj,“ 7+ .Wq-s%z)

5 g -;:(z) :U:G. ¢
! TR ST

4 wg'(z) -Ws* U .+

3 ° ‘

2 2 J > 2

1 o o ¢ o

0 L AQT.TEZ ';/’;;,,d 51CrT,=1 'ijl’Zr';nd 53F b ';/;T;nd

| e

FIG. 3. Diagonal energies of the weak coupling basis states,
| W25 'a’T'J' )X psp;aT ). The energy of the core state,
W(---),is evaluated by using the f7,, model (Ref. 27). As the
core-particle interaction, we use the monopole interaction of the
type Vi=a+bt;t;. The parameters a and b are calculated
with  the  average  interaction  energies of  the
{f1/P32 | V | f12p3,2) 17 matrix elements of the effective in-
teraction D. The single-particle energies are also taken from the
fitted values. The E 2 rates shown by the arrow are taken from
the predictions by the f7,, model (Ref. 27).

[

of °Cr, and in 3?Fe the (4i"]|Q]|65") is almost the same as
the (4{||Q||61"), whereas in *°Cr the former matrix ele-
ment is smaller by about a factor of 3 than the latter. In
other words, the (4{"||Q||61") in °Cr almost exhausts the
sum 3, (41]|Q|(6; ), while that in *Fe does not. There-
fore, in °!Cr |*Cr(4{)Xvj) can be strongly coupled
with |%°Cr(6;)xvj), whereas in **Fe |2Fe(4{")Xvj)
can be coupled only weakly with |52Fe(67)xvj). These
E2 matrix elements are illustrated in Fig. 3. Considering
the diagonal energies together, as discussed ]i')re_viously, we
may suggest that there does not exist any —-25— candidate
in >*Fe as a member of the intruder states with a collective
nature.

IV. SUMMARY AND CONCLUSIONS

Systematic shell-model calculations of the N ~28 nu-
clei have been carried out within the

F3n+155" P31 72520

configurations. The effective interactions are composed
partly of empirical matrix elements and partly of a
phenomenological potential, and the matrix elements
among the f5,, nucleons and the strength parameters of
the potentials are determined by a least-squares fitting
procedure. It is shown that the sequences of the intruder
states characterized by enhanced E2 transitions result in
1Cr and *3Fe, whereas they do not appear in “’Ca and
“Ti. The calculated excitation energies of the low-lying
intruder states are, however, systematically higher by
about 0.5 MeV than the observed ones. The anomalously
large B(E?2) values for the transitions between the low-
spin intruder states in >'Cr and *3Fe can be reproduced
very well, if the effective charges are employed from the
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2i —>0;1d E?2 transitions of the adjacent even-even N =26
nuclei. The E2 properties of the low-lying = states in
the whole N =27 isotones are discussed together with the
spectroscopic factors for single-neutron transfer reactions.
Systematics of the E 2 rates, including the highly hindered
E2 transitions from the lowest 3 states to the +
ground states, can be accounted for rather well by the
present model. It is shown that the p-n interactions (1)

among the f5,, nucleons and (2) between the nucleons in
the f7,, and in the other fp shells play essential roles in
the interpretation of the intruder states in the odd-mass
N =27 isotones.

The numerical calculations were carried out with the
HITAC M-200H system at the Computer Centre of the
University of Tokyo.
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