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Delta resonance and nonlocal effects in pion photoproduction from nuclei
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The photoproduction of charged pions from light nuclei is investigated in a distorted wave im-

pulse approximation carried out in momentum space. This permits a straightforward inclusion of
nonlocal terms in the pion production operator such as that of Blomqvist and Laget. The interac-
tion of the outgoing pion with the residual nuclear state is described by the optical potential of
Stricker, McManus, and Carr. The cross section for pion production from p-shell nuclei is decom-

posed into partial cross sections labeled by transition angular momenta and spin which are almost
independent of nuclear structure. Using the reaction ' C(y, ~ }' Ng, , the effects of the delta isobar
in the production operator on these partial cross sections is investigated. The same reaction is used
to demonstrate the inadequacy of local coordinate space analyses.

I. INTRODUCTION

Due to a number of experimental improvements in re-
cent years and better theoretical analyses, ' the pho-
toproduction of charged pions from nuclear targets holds
the promise of becoming a major tool for investigating
three aspects of nuclear and intermediate energy physics.
These are pion production in the nuclear medium, nuclear
matrix elements, and pion propagation in the nuclear
medium. Of particular interest are pion production dif-
ferential cross sections for cases where the final nucleus is
in a definite final state. This final nuclear state is usually
the ground state, but it can be some weB-separated excited
state. A number of such experiments on p-shell nuclei
have been carried out in the past decade, ' and increas-
ing numbers of new experiments are being carried out or
being planned at electron accelerator laboratories. In
many cases the pions are produced not by real photons,
but directly by electron beams, and virtual photon theory
is used to extract the photoproduction cross section. The
validity of virtual photon theory for pion production
within 50 MeV of the end point from light targets has
been investigated theoretically, ' and been confirmed ex-
perimentally. '

Most of the experimental results obtained to date, par-
ticularly those near threshold, are in reasonable agreement
with various theoretical calculations ' which assume
a distorted wave impulse approximation (DWIA) model
for pion photoproduction from nuclei. In DWIA a pho-
ton penetrates the nucleus and interacts with a single
bound nucleon resulting in the emission of a charged pion
leaving the nucleon in some different shell model state.
The interaction of the outgoing pion with the remaining
nucleons in the nucleus is described by an optical potential
which is obtained from fits to pion elastic scattering.
There are three basic ingredients to a DWIA model: the
pion production operator from a free nucleon, nuclear
transition matrix elements, and the pion optical potential.

The various theoretical works referenced above have used
different forms of these three ingredients, and further-
more have made various approximations in carrying out
their calculations. There are some cases where the
discrepancies between experiment and theory are large,
but as stressed by Tabakin and co-workers, ' it is impor-
tant that all the ingredients of a DWIA analysis be han-
dled as well as possible before drawing any final con-
clusion on the validity of DWIA. A major difficulty with
applying the 0%'IA to pion photoproduction is that the
pion production operator depends strongly on various mo-
menta, and thus is a nonlocal operator in coordinate
space.

In this paper we report on a new DWIA analysis of
pion photoproduction from nuclei carried oui in momen-
tum space. Working in momentum space rather than
coordinate space permits a straightforward treatment of
all nonlocal effects arising from the production operator.
Apart from the recent paper by Toker and Tabakin, all
previous DWIA analyses of pion photoproduction from
nuclei have neglected portions of the momentum depen-
dent terms in the production operator. Toker and Taba-
kin include all nonlocahties in a mixed coordinate-
momentum space calculation, but at the cost of handling
various terms somewhat differently and having to intro-
duce phase shift equivalent "mock" pion wave functions
which can more easily be smeared by the nonlocal propa-
gators.

In Sec. II we give the formalism for calculating the
pion production differential cross section in momentum
space and in Sec. III we give a practical method for carry-
ing out the Fourier transformation of the pion optical
model wave function into momentum space. The plane
wave impulse approximation (PWIA) is derived in Sec. IV
and commonly used local approximations in coordinate
space representation are discussed. We also show in Sec.
V that in an LS-coupling scheme for the nuclear matrix
elements of the p-shell, we can define partial cross sec-
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tions which are characterized by the angular momentum
(L), spin (S), and total spin ( J) transferred to the nucleus.
Furthermore, these partial cross sections are almost in-
dependent of nuclear structure and hence universal for all
lp-shell nuclei. In Sec. VI we specify in more detail the
ingredients of our DWIA analysis which are very similar
to those discussed in Singham and Tabakin apart from
our handling of the nuclear matrix elements and working
in momentum space.

In the remaining sections we present our results by first
comparing the partial cross sections evaluated with our
full nonlocal calculation to investigate the importance of
the nonlocal contributions. As an application we study

the reaction ' C(y, m )' Ns, and coinpare our calcula-
tions to some older" and some preliminary data on this
reaction. Finally, we examine the delta isobar contribu-
tion to pion production from a nucleon as compared to
pion production from a nucleus and examine the role of
the delta isobar in the various partial cross sections.

II. DIFFERENTIAL CROSS SECTION IN DWIA

Following the conventions of Bjorken and Drell, the
differential cross section for the reaction y+ A —+m +A ' is
given by

d IIc.m. ~
& JfMfy TfNf jn

~

T
~
J~M;, TN~,'y &

~

where all kinematical quantities are given in the center of
momentum frame (c.m. ). The four-inomenta of the pho-

ton and pion are denoted by (Er, k) and (E~, q), respec-
tively. The masses of the initial and final state nuclei are
m; and mf, the total spins and spin projections are J;,M;
and Jf,Mf, and the isospin and isospin projections are
T~,N~ and Tf,Nf. To correct for the lack of translation
invariance of the shell model, the cross section is multi-
plied by the factor

d gc.m.

d IIlab

2
~e~a~

q'™[qi,i,(ki,i, +m;) —E"k)g, cos8" ]
(2)

which for the most applications involving p-shell nuclei
will differ from unity by less than 10%. In Fig. 1 we

=exp[b (k —q) /2A],

where b is the harmonic oscillator parameter and A the
nuclear mass number. 8' is the total energy in the c.m.
system, A, is the photon polarization, and a is the fine
structure constant. The Jacobian which transforms the
c.m. cross section into the laboratory frame can be writ-
ten

show the situation in the laboratory frame and introduce
an important quantity, the moinentum transfer Q= k —q
which equals the final nuclear momentum Pf.

In the DULIA, the nuclear pion production operator is a
one-body operator so that

T= g & a~t ~a&CtC
a,e'

where C ~ and C are particle and hole creation and an-
nihilation operators. Using the conventions of Ref. 25,

C =e(E. eF)a. +e—(e~ e, )S b'—

where a is the particle destruction operator for energies
e, above the Fermi energy ez and b is the hole creation
operator for energies below the Fermi energy. Here a
denotes a set of quantum numbers for orbit, spin, and iso-
spin of a single particle, a = {am; 1/2m, where

a ={njlI The p. hase S =(—1)J ( —1) ' is
necessary to maintain the transformation properties of the
irreducible tensors.

Evaluating the nuclear matrix elements for Eq. (1) we
obtain

&JfMf»gNf ~l T
I
JM. TN y&=g&JfMf TfNf IC C

I
JM T,N, &&a',~.

aa'
(4)

In Eq. (4) the nuclear structure and pion production
dynamics are already separated, but in principle we have
to sum over complete sets of single particle states a and
a'. In practice this is not possible and we restrict a and a'

~ ~ ~
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FIG. 1. Kinematics in the laboratory frame.

FIG. 2. Diagrammatic illustration of the DWIA process in

momentum space. The momenta p and q
' are integration vari-

ables, while p '=k+p —q
' is fixed by momentum conserva-

tion.
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to the outermost shell. In this work we consider the p-
shell nuclei from lithium through oxygen where the re-
striction to an open 1p-shell and a closed 1s-shell core has
been very successful for nuclear structure and describes
form factors adequately for momentum transfers up to
about 2 fm '. That is, we get all the necessary nuclear
structure information for nuclear ground states and some
low lying excited states from admixtures of 1@3~2 and
1p I~2 nucleons.

The nuclear structure will be specified in the form of
the double reduced one-body density matrix,

where x—:v'2x +1, C =S C, and J and T are the to-
tal spin and isospin transferred to the nucleus in the tran-

I

sition. For the p shell, these are J=0,1,2,3 and T=0,1.
Because of the negative parity of p-shell nucleons we find
that the electric multipoles EO and E2 and the magnetic
multipoles M1 and M3 can contribute to both isoscalar
and isovector transitions. However, since we only consid-
er charged pion production, the isoscalar mu1tipoles will
not enter. For p-shell nuclei undergoing isovector transi-
tions there are ten independent nuclear matrix elements
which can be taken to be real without any further approx-
imation. One source of these numbers are shell model cal-
culations such as those of Cohen and Kurath, while
another possibility is to use a phenomenological method
in which the nuclear matrix elements are constrained by
experimental information. ' Using the definition of Eq.
(5), the nuclear part of the transition matrix element in
Eq. (4) can be written as

(JfMf, TgNf i C~C~ i J;M;;T;N; )

( —1)j—m+(1/2) —m +J —M +T —NT I 2

J,M
T,N

Jf J; J Tf T; T
—Mf M M —Xf X X —m'm M

T1

2

%q. r(a'a) .
r

The dynamics of pion photoproduction in DWIA is included in the single particle matrix element (a';m
i
t

i a;y) of
Eq. (4). The elementary pion production operator has the general form

t=(L+icr K) = gi ( —1) u ~E~
2 S S

S,e~

where o =1 and X =L. For charged pion production t is pure isovector and p=+1 for m
+—. The operators L and K

depend on p, the photon polarization A, , and the four-momenta of the nucleons, pion, and photon. A general representa-
tion of the single particle matrix eleinent which is valid for any pion production operator based on diagrammatic tech-
niques can be given in momentum space (see Fig. 2).

(a', m it i ay)= I d Pd q'4'(P ')P' '*(q', q)tr (P, P ', k, q')qI (P),

where p '= p+ k —q
' and qI is a single particle wave function which can be written as

4'~(p)= g (lmi &ms I lYJm)k„t~(p)Yt (p)X~ r~
my mg

(9)

with P„tj. as the "radial" part of the wave function and X,r the Pauli spinors for spin and isospin. The wave function
with proper boundary conditions for an emitted pion with asymptotic momentum q is P ( q, q ) and is distorted by the
conjugate of the optical potential. However, it is related to the pion wave function obtained from the optical potential
itself, by P' ' (q ', q) =P'+'(q ', q).

A convenient form for evaluating the single particle matrix elements is the LS coupling scheme where the orbital an-
gular momenta I and I' are coupled to L, the spins to S, and L and S are finally coupled to J the total single particle
transition spin which, in a single particle model, is the transition spin of the nucleus. Inserting Eqs. (7) and (9) into Eq.
(8) we obtain

L,S,J,M
—p —m'mM

2 J
, ~(a'a)LSJ

where the integrals are,
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'= f d'pd'q'p. .(p',p)p'+'(q', q)[[ Y'(p') X Y'(p)] XK ]M .

The momentum overlap distribution p is given in general by

P. ..(P' P) =4'. I,'(P')4. i, (p) (12)

where we have made no approximation other than assuming a one-body operator. If we restrict ourselves to the lp shell
and use harmonic oscillator wave functions with oscillator parameter b, the momentum distribution becomes

p(pp)= pp exp (p +p )
8b, b

3 7r 2

which is independent of a' and a, and thus the integrals of Eq. (11)become independent of a' and a by replacing l' and l
by 1.

While both the momentum distribution and the pion wave function are independent of the specific nuclear transition,
the tensor operator determines the magnitude and importance of the various matrix elements. Compact analytic expres-
sions for these operators are given in Ref. 29 for J=O and 1. In general, we use the definition of the tensor product to
obtain

[[Y(p')XY(p)] XK ]M ——
, g (lm) lmz

~
11LML)(LMLSMs ~LSJM)p', p K~

4~&& m, ,m,

ML, Mg

(14)

where p~,p are given in the spherical basis, e.g.,Nl( ~ m2 where the Sommerfeld parameter g =aZ/v, and
Ui = Ui+'. We turn off the Coulomb potential by taking
g~O and find,

p cosOp 771 =0
+1/W2p sin8&(cosgz+isinPz) m =+1 (15) lim Ui+(qr) =hI"'(qr) .

g —+0
(2O)

with 0& the polar angle of p with respect to the incoming
photon beam, and (t)~ the azimuthal angle of p measured
with respect to the pion production plane.

Substituting Eq. (17) into Eq. (16), we obtain the follow-
ing expression for the pion wave function in momentum
space:

III. PION WAVE FUNCTION
IN MOMENTUM SPACE

For calculating the integrals of Eq. (11) we need a dis-
torted pion wave function in momentum space. Starting
from a standard solution of an optical potential in coordi-
nate space, we perform a Fourier transformation into
momentum space. Thus,

p(+)( i
)

1 f d3 i q "ry(+)(r —
)

(2m. )'
(16)

where the plus sign denotes the boundary condition for
outgoing waves. We can expand P'+ ' in partial waves by,

It)'+ '( r, q )=4m. g i 'Ui ( r ) Yi (r) Yi *(q),
lm

where the asymptotic form of Ui q(r) is,

Ui, q(r)- 2 [e
'

'UI (qr)+ UI ('qr)]

and 5l is the nuclear plus Coulomb phase shift. The
asymptotic expansion of the outgoing Coulomb function
is

P'+'(q ', q ) = g (2l + 1)PI(q.q ')
l

r jl q'r Ulq r dr . 21

The integral in Eq. (21) cannot be evaluated numerically
due to its behavior at infinity, so we separate it into two
terms by writing

Uiq(r)=Uiq(r)+Uiq~ (r)

where

Ui q(r) = Ui q(r) Ui q (r)—
The integral over Ul q' can be restricted to r (R where R
is the order of a few nuclear radii, while the Fourier
transform of the asymptotic wave function will be carried
out analytically. Furthermore, to reduce the l sum in Eq.
(21) we ad and subtract the term

ia'qr —g 1n(2qr) —Q l +1)/2]
Ui+(qr) =

1
&2FP l +1+i',—l +ig;'

2iqr
(19)

5(q —q ')= g (21+ I)/4nPI(q q ')5(q q')/q-
l

Thus we must evaluate
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R I

p~+ (q', q)=5(q —q')+ g(2l+1)P1(q q') f jl(q'r)Ulq(r)r dr+Il(q', q)
7T

I
O

I l, q I (23)

Il(q', q)= f r jl(q'r)Ul'q" (r)dr . (24)

For the simpler case without Coulomb (ran=0), the asymptotic wave function hl'"(qr) =jl(qr)+inl(qr) involves only
Bessel and Neumann functions for which we find the following Fourier transformations:

f Jg q 7' JI qf T =
2q

00

r jl(q'r)nl(qr)dr =

(25)

(26)

q' P
I +12qI2

where P denotes a principal value integration. For this case,

2i5I 2i 5I

Il(q', q;ran=0) = 5(q —q')+
4 q 2

(27)

Therefore the momentum space representation of the pion wave function is of functional form rather than a function as
in coordinate space. Substituting the wave function into Eq. (11) we have to integrate over q, so Il is properly defined.
To avoid numerical difficulties we perform the principal value integral using the following prescription:

I Il+1 2

(28)

For the g =0 case, these techniques allow for the Fourier transformation of the pion wave function and the subsequent
integration over d q'. Note that the terms Il —m5(q' —q)/2q in Eq. (23) are all proportional to (e ' —1) and therefore
go to zero for nonpenetrating pion orbits.

For Coulomb waves, the Fourier transformation is more difficult. Firstly, we cannot use the full asymptotic solution
given in Eq. (19) since the integrand diverges at the origin for the higher terms of 2FO. However, the Fourier transforma-
tion of the first i+ 2 terms of Ul+ is well defined. Consider

Il+ ——f e 'j"l(q'r) Ul+(qr)r dr, (29)

where e & 0 provides the convergence of the integral at infinity and

ei[qr —rlln(2qr} —n(1+1)j2] I+2 ($+ 1+i21) ( i+i~)
Ul+(qr) =

qr m!(2iqr)
(30)

Since jl is real, Il =Il+*. Writing jl —(hl "+hl ')/2, and using the finite term expansion for the spherical Hankel func-
tion, we can integrate Eq. (29) term by term to obtain

e —2 I'g 1n(2q) —(I + 1)m]I+=
2qq

1+» (I+1+i') ( —l+iq)
1 (1 i')—

0 (i'll) +„(—2iq) ( —2iq')"

(&+1).( —&)„,n rgm+n —1+iq+( 1)l-tn+lgm+n —1+iV~
J 7 (31)

is well defined. Thus, we write
I I

f F(q')Il+(q')q' dq'=lim f q dq
)1 iv +-[q'(6+6, )' 'vI1+(q')F(q') qF(q)El+(q))—

qF (q)El+(q)+ . l(q'.. q')'" q""e" ] . — —
2l 'g

where b, + E i (q+q') an—d—b,—=e i (q —q'). —
As in the q =0 case, the quantity II+ is singular when q'~q, but the quantity

El+ = lim (h~b, )' '"Il+ —— . I (1 ig)—+
(2 )1+2iv

a~0

(32)

(33)

The equivalent results for Il follow by complex conjugation for all but F(q').
Even though formally correct, a numerical application still is nontrivial. So far we have not included the Coulomb
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wave function into our calculations and all nonlocal results shown further on are obtained with the Coulomb potential
neglected. Since our calculations are performed at pion energies of 50 MeV and more this approximation is of minor im-
portance.

IV. PWIA AND LOCAL APPROXIMATION

At this point it is useful to discuss some approximations and simplifications of Eq. (11) that are commonly made.
Firstly, we derive the PWIA by replacing the pion wave function with a delta function, which is the free pion solution

P'+'(q ', q) =5(q ' —q)

which leads to the nonlocal PWIA result

I a a)LSJ y ~ y L~~S

(34)

(35)

Furthermore, if the operator K is local in that it does not depend on the initial nucleon momentum p, a Fourier
transformation into r space is possible and leads to the numerically simpler expression for the local PWIA

ll
I~ ——( i) v 4—ml'l 0 0 [Y (Q)XEC ]M f dr r p, ,(r)J'I (Qr), (36)

where Q = k —q is the momentum transfer to the nucleus and p, , is the transition density which for the harmonic oscil-
lator 1p shell is given by

p(r)=
5

r exp( r /b ) —. (37)

Finally we can use a partial wave expansion of the pion wave [see Eq. (17)] as well as the photon to obtain the local
DWIA result,

ly, l L l' l L
IM ' =4m g (i) ( —1) l&l l'1

0 0 0 [[Y~(k)X Y (q)] XE ]M J dr r p, , (r)Ui (r)J'i (kr) .
I„,l

The tensor operators appearing in this expression are most simply evaluated by

s M, (l —m)!
[[Y'(k)XY (q)]~Xmas] = l„l L Jg( —1)4m" ~ (1+m )!

S

g g I lz L
X M ~ 0 Pi ( cos0~)Egg

(38)

(39)

m
where Pi is the associated Legendre function of degree

l„and order m =M —Ms.
The four formulae of Eqs. (11), (35), (36), and (38) give

only the extreme ways of treating nonlocalities. In Eqs.
(11) and (35) they are treated exactly, while in Eqs. (36)
and (38) nonlocalities are ignored completely. In other
theoretical work ' nonlocalities have been partially in-
cluded by replacing p —+ —i V, acting on the single parti-
cle wave function, and q ~—i 7, acting on the pion wave
function. These calculations, however, ignore the energy
and momentum dependence of the propagators and
presumably their validity is somewhat between our local
and our nonlocal distorted wave calculations. Recently
Toker and Tabakin have investigated propagator nonlo-
calities and found them to be very important, especially in
pion photoproduction from ' N where the local Kroll-
Ruderman term (o"e) is suppressed. As noted in the In-
troduction, they include nonlocalities in a mixed coordi-

nate momentum space calculation. Our method of han-
dling nonlocalities by working in momentum space is
more straightforward, but does require extensive numeri-
cal integration to evaluate Eq. (11). However, any opera-
tor based on diagrarnrnatic techniques, nonrelativistic or
relativistic, can be used; and any pion wave function,
apart from Coulomb effects as of now, can easily be ob-
tained as a Fourier transform of the coordinate space
solution. Alternatively, direct use of existent momentum
space solutions for optical potentials could be easily in-
cluded in our framework.

V. PARTIAL CROSS SECTIONS

Putting our results together, we insert the nuclear ma-
trix elements of Eq. (6) and the single particle matrix ele-
ments of Eq. (10) into Eq. (4) and carry out the spin pro-
jection summations to obtain,
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M;,Mf, k,

where

1&JfMf TfNf ZITI J~ TN r& I'= g IFMI' (40)

FM ——

l'
T 1 T;

v6+pq. ~(a', a) g( —i) ( —1)'+'j j'L S' l
a'a LS

L,

~ - q(a', a)LSJ (41)

As discussed above, by using harmonic oscillator orbitals
the integrals IM become independent of a', a and we can
perform the summation over the single particle states
a,a'= 1p3/2 1p$/2 to obtain

Tf 1 T;
v 6 g ( i) gz—(l.g) tIM., (42)

LS

J
FM

where gj(Lg). T is the reduced density matrix element of a
specific nuclear transition in the LS-coupling scheme.
This representation has the great advantage that each
QJ(r5') corresponds to one pion production integral I
which has a specific dependence on spin and angular
momentum transfer. Later in this paper we will see that
these integrals show quite different behavior with respect
to nonlocalities, pion distortions, and the delta isobar term
in the production operator. To discuss these effects in a
more general way we introduce a new way of writing the
differential cross section by combining Eqs. (1) and (42) to
write

Thus apart from small nuclear structure effects which are
hidden in the integrals Isr in the form of the oscillator pa-
rameter b and the pion wave function, the partial cross
sections are the same for all pion photoproduction reac-
tions in the lp shell from Li to ' N.

The partial cross sections can be displayed in the form
of a 10X10matrix,

J=0 0 0 0
0 J=1 0 0
0 0 J=2 0
0 0 0 J=3

(45)

for J=0:
o i& oiz

0 o2~

where each transition spin J represents a matrix itself
since there is no interference between different J values.
For J=O, 1, 2, and 3 the submatrices are of dimensions 2„
4, 3, and 1, respectively,

d g C. IIl.

Tf 1 Ti

Nf —P N-;
2J, +1 a, a'

a'(a

a' aOa'a (43)
for J=1:

33 34 3S ~36

o 44 o4s LT46

oSS oS6

with a =
I (LS)J;T= 1 I as illustrated in Table I. The

"partial" cross sections o. ~ no longer depend very strong-
ly on nuclear structure and are given by

C.m.

M, A.

for J=2:

0 0 o-„

o77 o7s o79

oss os9

0 0 o99

(46)

X(2—5 ~ )&gg .

TABLE I. Reduced density matrix elements g =PJ(Ls);T= f

in LS coupling. Matrix elements which also contribute in a lo-
cal approximation are marked by an asterisk.

for J=3: Lr io, io

where only the underlined elements are nonzero in a local
calculation. From the parity three-j symbol

r

l' l L
000

1

2
3
4
5
6
7
8
9

10

pg

1

0

1

pg

1

in Eqs. (36) and (38) we can see that for the lp shell with
l'=l = 1 only L =0 and 2 contribute. Therefore all terms
o. ~ with a' or a equal to 2, 3, 5, or 8 vanish in the local
approximation according to Table I.

VI. MODEL INGREDIENTS

One of the basic ingredients of a DWIA calculation is
the elenmntary pion photoproduction operator of Eq. (4).
Three developments are in wide use, the Berends, ' the
Chew, Goldberger, Low, and Nambu (CCxLN), and the
Blomqvist-Laget amplitudes. All give a satisfactory
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description of pion photoproduction from the nucleon.
However, only the amplitude of Blomqvist and Laget is
suitable for using in a nonlocal calculation on nuclei. The
Blomqvist-Laget operator is a nonrelativistic reduction of
covariant Feynman amplitudes and can be evaluated in an
arbitrary reference frame. Furthermore, by treating ener-

gy and momentum components as independent variables a
straightforward off-shell extrapolation can be defined
which allows the study of off-shell effects in nuclei. In
the Appendix we give the formulae for the spin decom-

posed amplitudes L and K of Eq. (4) for both 7r+ and m

with the pseudovector Born terms and the b, (1236) excita-
tion term written out separately. The differential cross
section for both y+ p~rr++ n and y+ n +7r +—p in
this notation is given by

(47)

which shows the well-known fact that in the nucleon case
the spin transitions S=J=0 and S=J=1 contribute
equally to the cross sections. This is not the case for pion
production in nuclei, where the values of the nuclear ma-
trix elements determine this ratio. For example, in the re-
action ' C(y, m. )' Ns, the matrix elements favor S=O,
whereas in the ' C(y, 7r+)' Bs, the S= 1 transitions dom-
inate. Therefore a good fit of differential and total cross
sections for the elementary process does not necessarily
provide the same quality of fit for all nuclear physics re-
actions.

The second major ingredient of a DWIA calculation is
the pion optical potential. This has been studied most ex-
tensively by the group of Stricker, McManus, and
Carr. Their analyses provide good fits to low energy
pion scattering on light nuclei. ' For higher energies up
to T =220 MeV they give an extrapolation of the optical
potential parameters which also gives satisfactory agree-
ment with experimental data. We have followed the
method of Ref. 2 and obtain an energy dependent optical
potential from threshold up to 220 MeV by linearly inter-
polating the parameters. This gives smooth energy-
dependent pion wave functions which cover the whole
kinematical range of our calculations, from pion produc-
tion threshold up to photon energies of 400 MeV.

VII. RESULTS

To check our nonlocal code, the number of integration
points in the six-dimensional integral in Eq. (11) was
varied over a wide range. For the energies considered in
this paper, about 300000 integration points gave results
good to 2%. We checked the code further by inserting
numerically a plane wave pion wave function into Eq. (11)
and comparing the result to that obtained using Eq. (35).
In addition, we put a local K' operator into Eq. (11) and
compared the result to the simple result given in Eq. (36).
We always obtained excellent agreement.

Rather than examining a large number of specific pion
production reactions which depend strongly on particular
nuclear matrix elements, we want to study nonlocal ef-
fects and pion distortion effects on the partial cross sec-
tions defined in Eq. (44). As we mentioned previously,

the partial cross sections depend on nuclear structure only
through the oscillator range parameter b, which varies in
the ip shell from 1.57 to 2.03 fm, and slight changes of
the pion optical model wave functions from one nucleus
to another. For carrying out our study we chose the reac-
tion ' C(y, m. )' Ns, , but calculated all partial cross sec-
tions for EO, Ml, E2, and M3 multipoles, although E2
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FIG. 3. Partial cross sections o. for y, m on p-shell nuclei
at Q=1.25 fm ' as a function of photon energy. The full,
dashed, and dash-dotted lines are PWIA calculations with exact
Fermi motion (FM), local on-shell approximation (~=1), and
frozen nucleon approximation (~=0), respectively.
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FIG. 5. The same as Fig. 4 for the purely nonlocal partial
cross sections o.22, o33 0 55 and o.88, all with L= 1.

and M3 do not contribute for this specific transition. We
chose the harmonic oscillator parameter b= 1.73 fm.

First we consider the plane wave approximation [Eq.
(35)]. In this case nonlocal effects arise entirely from nu-
cleon Fermi motion. For light nuclei such as He, the ef-
fects of Fermi motion have been studied earlier, and were
found to contribute mainly in the b, resonance region.
Near threshold, Fermi motion contributed less than 5%
(Ref. 37). We find a similar result for p-shell nuclei. At
energies below the b, resonance the Fermi motion effects
are very small and at a typical pion energy of 50 MeV
they can be neglected. In the resonance region, the partial
cross sections show some interesting effects. In Fig. 3 we
show the six dominant diagonal elements of o ~ for a
constant momentum transfer Q=1.25 fm ' as a function
of the photon energy. The label a in the figure defines the
average momentum of our local approximation
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where re=0 is a frozen nucleon approximation, and ~=1
is an on-shell approximation which worked rather well for
He(y, n.+) H (Ref. 29). We find a similar result here. In

a11 cases, the ~=1 agrees better with the exact treatment
of Fermi motion than sc=O. For the partial cross section
crit (EO) the effects are the largest, with neither approxi-
mation reproducing the large broadening and the shift of
the resonance resulting from Fermi motion. The Ml
terms, o44 and cr66, are not very sensitive to Fermi motion
and neither is the M3 term o.

~o ~0. In the E2 terms, we get
only a small effect in cr99 while o.77 shows effects similar
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FICx. 6. Partial cross sections cr in the 6 region at Q=1.0
fm '. The dotted lines are nonlocal DWIA calculations with 5
excitation omitted. Everything else as in Fig. 4.
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to those in 0.
&&. These results have a simple explanation

since both a= 1 and 7 are S=O transitions which are pro-
portional to the L, part of the elementary amplitude which
is dominated by the 6 resonance. All other transitions are
proportional to K, and therefore are dominated by the
Kroll-Ruderman term.

In Fig. 4 we show the effect of pion distortion on the
partial cross sections at low energy. Except for minima,
the local DWIA calculations [Eq. (38)j are close to the
PWIA results, but the full DWIA [Eq. (11)] calculations
show substantial changes; for EO transitions in the mini-
ma and for Ml transitions for angles larger than 90'.
These nonlocal effects are totally different from Fermi
motion effects; they arise from the smearing of the pion
momentum by the optical potential. And except for ener-
gies very close to threshold, the pion momentum depen-
dence of the elementary operator is always important.

The role played by the purely nonlocal terms o with
u=2, 3, 5, and 8, shown in Fig. 5, is not very important
as long as there is no cancellation of the other larger con-
tributions due to nuclear structure. In general, they are
smaller than other terms by at least one order of magni-
tude, so their role is limited. The influence of pion distor-
tions on these terms is similar to those in Fig. 4.

When the energy of the photon increases and reaches
the 5 resonance region the nonlocal effects from both nu-
cleon Fermi motion and pion momentum smearing work
together. In Fig. 6 the six major contributions are shown
at a constant momentum transfer Q=1.0 fm ' as func-
tions of the photon energy. Here very large nonlocal ef-
fects arise in the EO cross section cr» where a big bump
with a peak around 240 MeV shows up in the nonlocal
calculation. Further nonlocal effects are very important
in both M1 cross sections as well as to some extent in M3
at high energies, whereas the E2 contributions are less
sensitive to nonlocalities. A plane wave impulse approxi-
mation is not compared in this figure but is qualitatively
the same as in Fig. 3. %'hile the shape is similar to the
S=O transitions (o|& and o77) but far too big in compar-
ison with the distorted calculations, in all other reduced
cross sections both shape and magnitude of plane wave
and distorted wave calculations are very different for en-
ergies above 250 MeV. In all S=1 transitions a small
peak around 200 MeV arises from the optical potential
and has nothing to do with the 5 resonance. This can
easily be seen by removing the b, excitation part from the
Blomqvist-Laget operator as demonstrated in Fig. 6.

!3$
f,7T

(MI, E

J,T =~ ~
(15.ll MeV}

y 77 (EQ, Mi)

~&C (&N

FIG. 7. Isobar diagram for A =13. Only the levels involved
in the reactions ' C(y, m )' N~, and ' C(y, m+)' B~, are
shown.
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10
b

suit by using radial wave functions with core-polarization
corrections. In both analyses the crucial point is that the
nuclear wave functions are changed to achieve better
agreement with the 15.11 MeV transverse form factor in
' C, the analog state of ' Bs, (see Fig. 7). In
' C(y, m )

' Ns, the harmonic oscillator model and
Cohen-Kurath wave functions again overestimate the elas-
tic Ml form factor, but in a somewhat different ap-
proach, constraining the reduced density matrix elements
to fit experimental information on form factor, magnetic
moments, and P decay could explain most of the
discrepancies between theory and experiment. In addi-
tion to nuclear structure effects which are very important
in ' C, we can expect large nonlocal effects. Because
J;=Jg —

2 there are EO and M1 transitions possible and
both show sensitivity to nonlocalities even at low energies
(see Fig. 4). In Fig. 8 we show, in an angular distribution
for ' C(y, w )' Ns, , the differences between local and
nonlocal distorted wave calculations and compare them
with preliminary data of Stoler et al. While the EO

VIII. APPLICATION TO ' C

While low energy pion production on hght nuclei like
Li, ' 8, and ' C has been described reasonably well by

theory, two experiments on ' C at 0„=90' and T" =18,
30, and 42 MeV have shown a large discrepancy between
theory and experiment. "' Using Cohen-Kurath matrix
elements and harmonic oscillator wave functions the
theoretical distorted wave calculations overestimated the
data by factors up to 20 (Ref. 11). For ' C(y, m+)' Bs, ,
Cheon found a reasonable description of the data by de-
fining effective charges for the p-shell protons and Sata,
Koshigin, and Ohtsubo (see Ref. 39) obtain a similar re-

0
I I I I I I I I I I I I I I I I I

0 50 60' 90 l 20 l 50 l 80

8 I a b
7r

FIG. 8. Differential cross section in nb/sr for
' C(y, m )' N~, at T =50 MeV. EO and EO+ Ml contribu-
tions are given separately, see Fig. 4 for the meaning of the
lines. The preliminary data points are from Stoler et ah. (Ref.
23).
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TABLE II. Reduced density matrix elements for the ' Cg, wave function. The numbers are given
both in jj couPling, tjIJ r(j j) and LS couPling, Pj(lg)

(Ls)
J T 1 1

2 2
1 3
2 2

3 1

2 2
3 3
2 2 0 0 0 1 1 0 2 1

0 0
0 1

1 0
1 1

1.612
0.652

—0.176
0.413

—0.406
—0.044

+ 0.406
+ 0.044

5.224
0.246
0.372

—0.051

5.196
0.577

—0.182 0.465
—0.158 0.186

—1.700
0.390
0
0

—0.5
0.343
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contribution is strongly dominated by o.~~, the M1 contri-
bution comes from a coherent sum of a =3, 4, and 6 tran-
sitions although the purely nonlocal a=3 does not play
an important role. The net effects of the nonlocalities in
this specific case is an increase of the cross section at for-
ward angles and a larger decrease (up to a factor of 2.5) at
backward angles. The nuclear wave function used is given
in Table II for both jj- and LS-coupling schemes. While

$0(00), $1(10), QI(0)), and p)(21) are taken from set II in Ref.
20, the missing $0(1)), which cannot be determined from
electron scattering at all, is taken from the shell model
calculation of Ref. 40. However, the influence on y, n at
this low energy turns out to be very small, less than 4% of
the EO contribution. Finally, $1(»)=0 because of time-
reversal symmetry. %'hile the data points at backward
angles of 100' and 125' are in good agreement with our
nonlocal calculations, the experiment at 65' shows an in-
teresting suppression of the cross section which neither
our plane wave, local nor nonlocal calculations can ex-
plain. However, since it appears in a region where the EO
contribution dominates, a plausible explanation could be
an overestimate of EO in our model. We will discuss this
point further in Sec. IX.

A very interesting experiment could be performed in
the minimum of the Ml form factor which would expose

the EO contribution of the cross section. While the
minimum of the Ml form factor measured in elastic elec-
tron scattering ' on ' C appears at Q=1.04 fm ', in y, n
it will appear at a different momentum transfer in gen-
eral. The reason is that in electron scattering both isoscal-
ar and isovector transitions are allowed, and furthermore,
the convection current contributes. In a PWIA pion pro-
duction calculation this momentum shift can easily be cal-
culated. The Ml form factor takes the general form

ZM)~ e-&(a +ay)

with y =b2Q /4 There.fore the minimum shows up at
y;„=—2 /8, which we can most simply express in terms
of the LS-coupled nuclear density matrix elements. For
the minimum of the isovector spin-flip form factor we
find

ym)n 2 ~5 Pl(01);I/(|('1(21);I ~41(01);I) ~

which takes the value of y;„=0.761 fm or Q;„=1.01
fm ' using the numbers from Table II. This value is very
close to the minimum measured in (e,e'); however, this is
purely accidental, and in ' N(y, m )' Os, the shift is
quite large. Figure 9 shows our calculations at Q=1
fm '. The EO contribution is clearly exposed in the non-
local calculation, and the cross section follows the o11
partial cross section from Fig. 6. Such an experiment
would shed light on the production mechanism of pions in
nuclei more than any experiment performed so far.

IX. 5-RESONANCE EFFECTS

From the derivation of elementary amplitudes for pion
photoproduction it is well known that the 4 resonance
plays an important role in the region around Ez ——300

TABLE III. Total cross sections in pb for pion photoproduc-
tion on the nucleon at E„=310MeV ( 8'=1210 MeV). Num-
bers are given separately for transition spin S=O and 1. The
separate contributions for pseudovector Born diagrams (PV) and
6(1236) excitation add in a coherent way to the total result
PV+ b, .

E (MeV)

FIG. 9. Differential cross sections in nb/sr for
' C(y, m ))3N~, at Q=1.0 fm ' as function of photon energy.
The full, short dashed, and dash-dotted lines are as in Fig. 4, the
long dashed curve shows the EO contribution alone, and the dot-
ted line is EO+ Ml with 6 omitted, both calculated in nonlocal
DWIA.

p(y, m+)n

n(y, m )p
p(r ~')p
n(y, ~ )n

16
16
3
3

61
61

173
173

103
102
173
173

L(s =0)
PV 5 PV+ 5

106 30
161 30
27 79
13 79

154
216
119
101

z(s =1)
PV 5 PV+ 5
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MeV. In Fig. 10 we show the total cross section for m.

production on the neutron obtained with the model of
Blomqvist and Laget. However, here we have included
the separate contribution for the S=O and 1 transitions
and point out the effect of the 5 resonance. While the
role of the b is relatively unimportant for S=l transi-
tions (K) it plays a major role in the S=O transitions (L).
The situation for all possible yn. reactions on the nucleons
is shown in Table III. For neutral pion production the b
dominates the cross section and it is a perfect doorway
state for coherent m. production on nuclei, where only
S=O contributes. This is different for charged pion pro-
duction, and for y, m. the b, contributes 60% in S=O and
only 14% in S= 1 transitions. Therefore in nuclear appli-
cations the b will never show up significantly in Ml and
M3 transitions, since these are dominated by S=1. On
the other hand it should be very important in EO transi-
tions and also in some E2 transitions. The best way to
study this is an experiment which fixes the momentum
transfer Q to the nucleus thereby keeping the nuclear
transition form factor more or less constant. Then the
role of the 5 can be examined by going from 200 to 400
MeV in photon energy. To demonstrate this, in Fig. 6 we
have included the curves for the situation if no 5 were ex-
cited. As expected, the effects of the b, are very big for
the S=O transitions (o» and o77) and are quite small for
S= l. While the excitation of the b, enhances the cr» and
0 77 by a factor of 6 in the maximum, the changes in the
spin transitions is of the order of 30% and leads to both
positive and negative interference with the Born terms.
The biggest b, effect in the spin transition is in o«, which
normally plays a minor role in M1 transitions, which are
dominated by the Gamow-Teller transition 0.44. However,
in the 2.31 MeV transition of the 2=14 system it will

200
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FIG. 11. Differential cross section in nb/sr for
C(p 7T' ) Ng ai 8 =90' as a function of the pion laboratory

energy. The full lines show EO+ M1, the dashed lines EO

separately, both for nonlocal and local DWIA. The dotted line

is obtained for nonlocal DWIA, EO+ M1, where the 6 excita-
tion is omitted. The data points are from LeRose et aI. (Ref.
11).

show up because of the suppression of the Gamow-Teller
transition.

The effect of the b, on the specific reaction
' C(y, n )' Ns, is demonstrated in Figs. 11 and 12. Be-
cause of the importance of the EO contribution, even at
low energies the effects are sizable. Figure 11 shows the
old Bates experiment" at 8 =90' which was in big
disagreement with theory for some time. The consistent
treatment of all nonlocalities of the full Blomqvist-Laget
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FIG. 10. Total cross section in pb for yn —+m p. The full

line shows the PV-Born + A(1236) model of Blomqvist-Laget,
the dash-dotted lines ( L,L~ ) give the nonspin transitions

(S=O), and the dashed lines (K,E~) give the spin transitions
(S=1), both for PV-Born+ 6 and 6 separately. The data
points are from Ref. 42 or quoted therein. Copied with permis-
sion.

FIG. 12. Differential cross section in nb/sr for
' C(y, m )' N~, at T =50 MeV in the nonlocal DWIA calcula-
tion. The full line shows EO+ M1 with the full BL operator,
while the short- and long-dashed lines are obtained for EO and
EO+ M1, respectively, both with the 5 excitation omitted. The
preliminary data points are from Stoler et al. (Ref. 23).
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operator gives a different energy distribution than the lo-
cal calculation but is about a factor of 5 bigger than the
data points. Furthermore, the EO contribution which has
no nuclear structure uncertainties is already a factor of 4
too big. By removing the 6 contribution, however, the
low cross section of the data could be explained. The
same is true for the 65' data point of the new Amsterdam
experiments. Also here a theoretical explanation can be
given by removing the b. in the B Lope-rator (see Fig. 12).
At this point one could speculate that the b excitation
does not show up in y, m reactions on nuclei at all. Toker
and Tabakin pointed out that including the 6 excitation
in the production operator and in the optical potential
may result in some double counting. We believe that the
contribution of the 5 in the B Loper-ator is overestimated
at low energy, but is probably right in the resonance re-
gion around 300 MeV. If we examine the result shown
for yn —+n p in Fig. 10, we find that at 50 MeV pion en-
ergy the influence of the b, is negligible in the elementary
process as compared to the nuclear case ' C(y, n. )' Ng, .
To clarify this point an experiment done in the minimum
region around Q=1 fm ' which covers an energy range
from well below to well above the resonance would be
most desirable (see Fig. 9).

X. SUMMARY AND CONCLUSION

In this paper we have presented a momentum space cal-
culation of pion photoproduction from p-shell nuclei. It
is performed in the framework of a distorted wave im-
pulse approximation with pion wave functions obtained
from the optical potential of Stricker, McManus, and
Carr and the Blomqvist-Laget amplitudes. Unlike
coordinate space calculations our method is suitable for
any analytic form of pion production operators and treats
nonlocalities exactly. Since it is still an unsolved numeri-
cal problem to include the Coulomb distortions in
momentum space, a limit to the validity of our calcula-
tions is given for the threshold region. However, a major
purpose of this work is the b, resonance region, where
Coulomb effects can be neglected. Also around 50 MeV
the effects of the Coulomb potential can be expected to be
smaller than the current uncertainties of experiment and
theory.

The main point of this work is a study of operator ef-
fects for pion photoproduction which is mainly indepen-
dent of the nuclear structure of a specific transition. In
this way our results on the partial cross sections are
universal for any such reaction in the lp shell for a large
variety of ground states and low lying excited states.
From a total of ten different transitions, determined by
angular momentum L, spin S, and total spin J all y, m re-
actions are given. Some reactions like ' B(y,n. )' Cz, in-
volve only 1 transition, others like ' C(y, ~ )' Ng, a total
of six, and "B(y,m )"Cs, involves all ten of them.
However, we found that from threshold up to energies
well above the resonance a total of six transitions play a
dominant role. In EO transitions it is a=1, with L=O,
S=O, and J=O. This cr~~ element is the most interesting
one in respect to the 6 resonance excitation. Even at rath-
er low energies of r~= 50 MeV the contribution of the 6

shows up significantly and taking the resonance into ac-
count and leaving it out results in a factor of more than 2
at pion angles between 40' and 90'. A comparison with a
recent experiment on ' C(y, n )' Ng, even suggests that
the b, is totally absent. From the study of the elementary
reaction on the neutron we have seen that the total S=O
contribution at this energy is quite unimportant. From
this point of view, the threshold behavior of the S=O b,
excitation can be wrong in the Blomqvist-Laget approach.
Another explanation can be the neglect of b;propagation
effects which are only treated in 6-hole calculations.
From such calculations on y, m it is known that the 6
contribution is lowered, but not by such a dramatic
amount. To rule out a nuclear structure effect like core
polarization, the best way to investigate this is an experi-
mental study at the same kinematics for the reaction
' N(y, m. )' Og, when the same nuclear transitions occur
as in ' C, but with different weights. Also, we have
shown that a kinematical separation of the EO can be ob-
tained at Q=1 fm ' where the Ml cross section is
minimal. In this case the 6 excitation enhances the cross
section by a factor of 6. Finally there is one unique exam-
ple for a pure EO transition. This is ' C(y, m )' N*
which leads to the first excited state in ' N, the isospin

and ' +g, (Ref. 44). If one can over
come the difficulties with the ' C target this will be a
unique experiment.

In M1 reactions there are two transitions ca=4, with
L=O, S=1, and J=1 and +=6 with L=2, S=1, and
J=1, that play an important role. In general they can
both become large and interfere strongly. Since the Q
dependence of the reduced cross sections is roughly Q,
the a =4 dominates for small momentum transfer.
Furthermore, this transition shows very little operator ef-
fects and is mainly given by the Kroll-Ruderman term.
This situation changes for 066, which shows more opera-
tor sensitivity than o44. But these effects are far less pro-
nounced than in monopole transitions. In most M1 tran-
sitions we get an interference between a=-4 and 6; howev-
er, in the 15.11 MeV transition of ' C the reduced nuclear
matrix element $6 is small, so, apart from the minimum,
the o.44 term can be singled out. And in the 2.31 MeV
transition of ' N the Gamow-Teller matrix element $4-0,
so here the cr66 term can be studied.

In E2 reactions there are also two dominant transitions
possible, a=7 with L=2, S=O, and J=2, and +=9 with
L=2, S=1, and J=2. Here the a=7 is most interesting
because it shows similar characteristics as EO, as it is
dominated by 6 excitation. For isoelastic reactions like

B(y jr ) Cg g Q9 —0 from time reversal symmetry, so
apart from the small nonlocal contribution with a =8 the
E2 cross section is given by o77 However, in such reac-
tions not only E2 but also EO, M1, and M3 are involved,
therefore an E2 effect will be very hard .to see. The
situation is different in analog transitions. In
' C(y, n+)' B(2+1;0.95.MeV) a pure E2 transition can be
studied, however, both a =7 and 9 contribute equally well.
Nevertheless the 6 should show up according to our
analysis.

Finally there is only one M3 transition, a=10 with
L=2, S=1, and J=3 and a famous p-shell example,
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' B(y,m.+)' Bes, and ' B(y, ir )' Cs, . Since there is no
interference with different matrix elements and the fact
that o.

~o ~0 is dominated by the K.roH-Ruderman term,
even in the region of the 5 resonance only small operator
effects will show up. This explains why even simple cal-
culations were so successful in describing the experimental
data. '

In conclusion, we find that this kind of analysis is quite
useful for proposing future experiments of y, m. on light
nuclei which can shed more light in the production pro-
cess and may eventually be used in testing different nu-

clear models in a more complete way than standard elastic
or inelastic electron scattering experiments. The develop-
ment of continuous wave electron accelerators will very
soon provide clean monochromatic photon beams and the
accuracy of experimental data will improve very much.
Experiments will also be performed to nuclear excitation
levels which are not well enough separated for current
techniques. Eventually coincidence experiments such as
(e,e'n) will be performed, and with the combined informa-
tion it should be possible to disentangle the three different
aspects of pion production; nuclear structure, pion pro-
duction from bound nucleons, and pion distortions by nu-

clei.
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APPENDIX: BLOMQVIST-LAGET AMPLITUDES
IN SPIN DECOMPOSITION

The elementary pion photoproduction amplitudes for
charged pions with charge P have the general form

1 p
r =(L+io"K)

2
'

where L, and K are the spin 0 and spin 1 transition ampli-
tudes, respectively. In the model of Blomqvist and
Laget these amplitudes are derived as a nonrelativistic
reduction of covariant Feynrnan amplitudes for the first
order Born terms and the s-channel b, (1236) excitation.
Choosing the pseudovector (PV) pion-nucleon coupling
model we find the following spin decomposition for
gp~n7T'

~&go
Lpv=

2m
+ o q (kXe),

2E~ (P~ E~ ) 2Eb (—Pb Eb)—
~&go

Kpv=
2m

mE~—1+
E.(P.+E.) 2E.(Po —E.)

(k e.q —e k.q)
2Eb(Pb Eb)—

+ (k —q)e. q

k-q —kE
q~'p

E,(P, E,)—
and for yn~pm

~&go
Lpv=

2m
+ o q (kate),

2E, (P, E, ) 2Eb(Pb —Eb)—
~&goKpv=-

2m
(ke q —ek q)

2Eb (Pb Eb)—mE~
1+

O
E'+

Eb(Pb+Eb ) 2E, (P, E,)—
+ (k —q)e. q

k-q —kE

/q& p
Eb(Pb Eb)—

The photon, pion, incoming nucleon, and outgoing nucleon four-momenta are (k, k), (E,q), (E,p), and (E', p '),
respectively; e is the polarization vector of the photon. The four-momenta in the s and u channels are p,"=p"+k" and

Pf =P'" k" and E—, b
——(p, b+m )' . The magnetic moments of the nucleons are @~=2.79 and p„=—1.91 nuclear

magnetons and for the m.-N coupling constant we choose go/4~= 14.
For the s-channel b, (1236) excitation we get for y, m

—+
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2v 26)63/9L~=+
P —m~+iI m~

~26)63/9
K~=+ 2 2

Pa —ma+&I m

p.(kXe)+ q (pXe) —q (kXe)
m m

E m~ —m E„m~—m—k q+ (k +k.p)+ p q — (p +k p) e
mg m m~ m

E m —m
+ e.q — e.q k— P

m~ m

We have chosen the parametrization of Eq. (19) in Ref. 33 with the delta mass of mq ——1231 MeV. For the total ampli-

tudes, the Born terfns and the 4 excitation add coherently, so L, =Lp~+I.g and K=Kpv+ Kg.
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