Level schemes of ⁹⁸Pd and ⁹⁶Ru

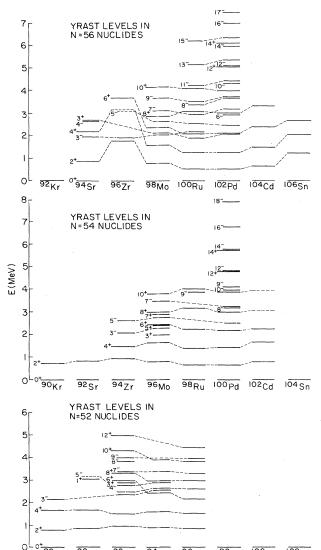
W. F. Piel, Jr.* and G. Scharff-Goldhaber

Physics Department, Brookhaven National Laboratory, Upton, New York 11973

(Received 18 May 1984)

Levels of the ground-state cascade of ⁹⁸Pd up to $J^{\pi}=16^+$ were established by means of the reaction ⁷⁰Ge(³²S,2p2n γ)⁹⁸Pd with $E_{lab}=120$ MeV. The ⁹⁶Ru(¹⁶O,¹⁴C)⁹⁸Pd reaction was used to aid in the nuclidic identification of the observed γ -ray transitions. We compare the excitation energies of the new states of ⁹⁸Pd with states of the N=52 isotone ⁹⁶Ru, which were populated using four distinct reactions. No evidence has been found for the existence of collective four-particle—two-hole states involving the excitation of a pair of $g_{9/2}$ neutrons across the N=50 shell closure. The level schemes are discussed in terms of the nuclear shell model while the empirical ratios of energies are presented from the viewpoint of the variable moment of inertia model.

INTRODUCTION


The present study of high-spin states of ⁹⁸Pd is a continuation of an effort¹ to study the level schemes of increasingly neutron-deficient even-*A* Pd nuclides which approach N = 50 neutrons from above. One goal was to establish the limits of validity of the extended variable moment of inertia (VMI) model^{2(a),(b),(d)} near the lowest value of R_4 ($=E_{4+}/E_{2+}$)=1.82 for which the model applies. Deviations at and above the 6⁺ level in nearby ¹⁰⁰Pd have recently been shown^{2(c)} to be due to the fact that this nuclide is pseudomagic: ¹⁰⁰Pd is an isobar of doubly magic ¹⁰⁰Sn (it contains four proton holes in the Z = 50 shell and four neutrons above N = 50).

We were aided in this effort by the population, by means of several distinct projectile-target combinations, of high-spin states in the N=52 isotone ${}^{96}Ru$. The yrast states of ⁹⁶Ru and ⁹⁸Pd up to $J^{\pi}=6^+$ were expected to have similar excitation energies in view of the similarity previously observed between ⁹⁸Ru and ¹⁰⁰Pd, and also between ¹⁰⁰Ru and ¹⁰²Pd, as shown in Fig. 1. This figure summarizes the known vrast levels in the even-A nuclides with either 52, 54, or 56 neutrons. Figure 1 also exhibits a transition (for the even-A Ru and Pd nuclides) from the regular collective bands found for the N = 54 and 56 systems to the bands found in 96 Ru (N = 52) which exhibit irregular energy spacings characteristic of shell-model effects. A comparison of the level energies of ⁹⁸Pd and ⁹⁶Ru would be expected to display those features due to the number of protons differing by two. On the other hand, those features which the two level schemes have in common could be attributed to the presence of two valence neutrons outside an inert N = 50 core. For example, in the context of the shell model, one expects to observe a relatively small $6^+ \rightarrow 4^+$ transition energy in both nuclides due to the presence of two neutrons in either the $vg_{7/2}^2$ or $vd_{5/2}g_{7/2}$ configurations.

A second goal was to search for evidence of collective four-particle—two-hole (4p-2h) states related to the excitation of a pair of $g_{9/2}$ neutrons across the N=50 shell closure. These states would be analogous to collective proton excitation states recently found^{3,4} in several Sn(2p-2h), Sb(2p-1h), Te(4p-2h), and I(4p-1h) nuclides. Specifically, it is expected that there exist states in 96 Ru and 98 Pd which are members of a $\Delta J=2$ positive parity band built upon an excited $J^{\pi}=0^+$ state; this state is analogous to states recently reported for several Z=52 even-A Te nuclides.⁴ Whether or not electric quadrupole (E2) transitions between these 4p-2h states in 96 Ru or 98 Pd can actually be observed depends, however, on whether the states occur at a low enough excitation energy to be significantly populated by the fusion-evaporation process. In this regard, the present situation (N=52) is not as favorable as is the Z=52 case for reasons which will be discussed below.

Prior to the present work, the excited states of ⁹⁸Pd had not been studied. A first preliminary report⁵ assigned a γ -ray cascade to ⁹⁸Pd on the basis of observed γ -ray excitation functions produced by ${}^{12}C + {}^{90}Zr$ and ${}^{16}O + {}^{86}Sr$. With the optimum beam energies of 71 and 85 MeV for the ¹²C and ¹⁶O beams, respectively, the two most intense members of this cascade were γ 841.1 and γ 725.6. Further work showed, however, that the cascade could also be produced promptly by a ${}^{10}B + {}^{92}Zr$ bombardment.⁶ Therefore, the cascade could only be assigned to a nuclide with $Z \leq 45$ (probably ⁹⁸Rh) and not to ⁹⁸Pd. However, subsequent work utilizing a ${}^{32}S + {}^{70}Ge$ bombardment allowed us to assign⁷ a new γ -ray cascade to ⁹⁸Pd. This latter assignment has been confirmed by two separate experiments. In one experiment, using the ⁹⁶Ru (¹⁶O, ¹⁴C)⁹⁸Pd reaction,^{7,8} the energy spacings between the $J^{\pi}=0^+$, 2⁺, and 4⁺ states of ⁹⁸Pd were deduced from the ¹⁴C spectrum produced (see Fig. 6 which will be discussed later). In the other experiment,⁹ the γ -ray transitions in ⁹⁸Pd were observed following the EC- β^+ decay of 44 s ⁹⁸Ag. In both experiments, the assigned transitions are in agreement with the second preliminary report⁷ of this work. Most recently, Behar et al.¹⁰ confirmed the lower-spin states of 98 Pd up to $J^{\pi} = 12^+$.

The low-spin states of ⁹⁶Ru following the EC- β^+ decay of ⁹⁶Rh, ⁹⁶Rh^m have been studied by Doron and Blann,¹¹ while the high-spin states up to $J^{\pi} = 12^+$ were deduced by Lederer *et al.*¹² using the ⁹⁴Mo($\alpha, 2n\gamma$)⁹⁶Ru reaction. Most recently, high-spin states up to $J^{\pi} = 12^+$ were reported by Walkiewicz *et al.*¹³ from the

 $O^{L_0^+}$ $\overline{}^{38}_{Kr}$ $\overline{}^{90}_{Sr}$ $\overline{}^{92}_{Zr}$ $\overline{}^{94}_{Mo}$ $\overline{}^{96}_{Ru}$ $\overline{}^{98}_{Pd}$ $\overline{}^{100}_{Cd}$ $\overline{}^{102}_{Sn}$ FIG. 1. Previously known yrast levels for the even-A nuclides with N = 56 (top), N = 54, (middle), and N = 52 (bottom) neutrons. The similarity in excitation energy for the $J^{\pi} = 2^+$ and 4^+ levels for each of the isotonic pairs 100 Ru- 102 Pd and 98 Ru- 100 Pd suggested that the excitation energies of these levels of 98 Pd would be similar to those of 96 Ru as discussed in the text.

⁹³Nb(⁶Li, $3n\gamma$)⁹⁶Ru reaction. They also studied in detail the EC- β^+ decay of ⁹⁶Rh, ⁹⁶Rh^m to ⁹⁶Ru. The present results for ⁹⁶Ru are in agreement with these three previous studies, as will be shown below; in addition, new states of ⁹⁶Ru up to $J^{\pi} = 18^+$ and 12^- are deduced.

EXPERIMENTS

The reaction ${}^{70}\text{Ge}({}^{32}\text{S},2\text{p}2\text{n}\gamma){}^{98}\text{Pd}$ with $E_{\text{lab}} = 120 \text{ MeV}$ was utilized to populate high-spin states of ⁹⁸Pd using ions produced by the Brookhaven Tandem Van de Graaff facility. The ⁷⁰Ge targets of 500-800 μ g/cm² were enriched to 85% and evaporated onto thick tantalum backings. The use of this reaction to search for the high-spin states of ${}^{98}Pd$ was suggested by a study¹⁴ of ${}^{32}S + {}^{70}Ge$ with $E_{lab} = 132$ MeV utilizing a magnetic spectrometer to record the evaporation residues. This study showed that a significant amount of the evaporation residues, namely $21\pm1\%$, have mass A=98. This observation suggested the use of this reaction for studying high-spin states of ⁹⁸Pd by γ -ray spectroscopy. The states of ⁹⁶Ru were popof four by means reactions: (1)ulated 90 Zr(12 C, $\alpha 2n\gamma$) 96 Ru with $E_{\rm lab} = 71$ MeV; (2) ${}^{66}Zn({}^{35}Cl, 3p2n\gamma){}^{96}Ru$ with $E_{\rm lab} = 170$ MeV; (3) 70 Ge(32 S, $\alpha 2p\gamma$) 96 Ru with $E_{lab} = 120$ MeV; and (4) ${}^{60}\text{Ni}({}^{40}\text{Ca},4p\gamma){}^{96}\text{Ru}$ with $E_{\text{lab}} = 140$ MeV (Ref. 15). The self-supporting 90Zr target was enriched to 98% and was 10 mg/cm² thick, while the ⁶⁶Zn target (enriched to 98%) consisted of 1.4 mg/cm² evaporated onto a thick tantalum backing. To produce the 60 Ni target (enriched to 99%), 1 mg/cm² was evaporated onto a 20 mg/cm² thick layer of lead. For each of these reactions, γ -ray excitation functions, γ -ray angular distributions, and γ - γ coincidences were recorded, except for ${}^{40}Ca + {}^{60}Ni$, for which the γ -ray angular distributions were not measured. The coincidence data were event-mode recorded onto magnetic tape for subsequent playback and analysis.

Figure 2 shows a γ -ray singles spectrum produced by ${}^{32}\text{S} + {}^{70}\text{Ge}$ with $E_{\text{lab}} = 130$ MeV and recorded by using an 85 cm³ Ge(Li) detector. The simultaneous production of several fusion-evaporation products is evident. A γ - γ coincidence experiment revealed that the moderately in-

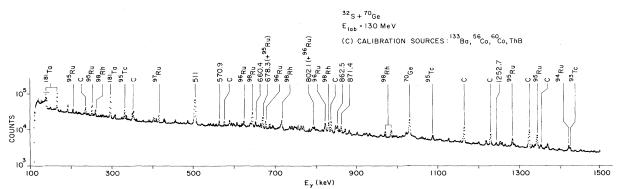


FIG. 2. A Ge(Li) singles spectrum produced by ${}^{32}S + {}^{70}Ge$ with $E_{lab} = 130$ MeV. The transitions assigned to ${}^{98}Pd$ are labeled with their energies (in keV). Other large peaks are labeled by nuclide, while several peaks, labeled (C), are due to radioactive calibration sources.

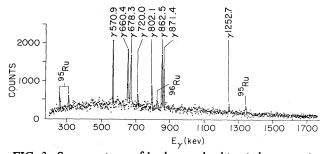


FIG. 3. Sum spectrum of background-subtracted γ -ray gates for ⁹⁸Pd transitions produced by ³²S + ⁷⁰Ge with $E_{lab} = 120$ MeV.

tense 862.5 keV transition is coincident with the 678.3 keV one. These two transitions were observed to be the most intense members of a coincident cascade of eight transitions. The spectrum formed by summing six Compton-background subtracted gates set on photopeaks from one Ge(Li) detector is displayed in Fig. 3. This γ -ray cascade is arranged in order of observed relative intensity and displayed on the left-hand side of Fig. 4.

As mentioned above, the γ rays produced by ${}^{10}\text{B} + {}^{92}\text{Zr}$ with $E_{\text{lab}} = 40$, 45, and 55 MeV were recorded in order to check the assignment to ${}^{98}\text{Pd}$ for the cascade displayed in Fig. 4. The Ge(Li) singles spectrum recorded with $E_{\text{lab}} = 55$ MeV appears in Fig. 5. There is no evidence in Fig. 5 for the transitions displayed in Fig. 4, in agreement with their assignment to ${}^{98}\text{Pd}$. However, the γ rays in a cascade previously assigned 5 to ${}^{98}\text{Pd}$ are evident in Fig. 5, indicating that these latter γ rays must instead occur in a nuclide with $Z \leq 45$, as has also been pointed out previously.⁶

An additional check on the assignment to ⁹⁸Pd was obtained from a separate experiment⁸ to measure the mass excesses of the three nuclides ^{98,99,100}Pd. In that experiment, the Brookhaven quadrupole-dipole-dipole-dipolemagnetic spectrometer was utilized to record the ¹⁴C spectrum produced at $\theta_{lab}=40^{\circ}$ by the reaction ⁹⁶Ru(¹⁶O, ¹⁴C)⁹⁸Pd with $E_{lab}=70$ MeV as shown in Fig. 6.

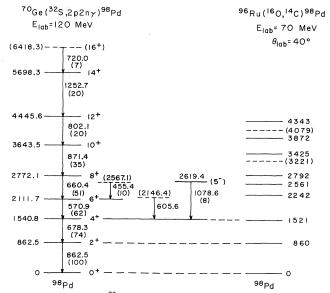


FIG. 4. Proposed ⁹⁸Pd level scheme. The levels shown on the left-hand side are deduced by γ -ray spectroscopic methods while those on the right-hand side were deduced from particle spectroscopy (Ref. 8). The uncertainty in the excitation energy of each of these latter levels is ± 17 keV.

The Q values obtained from this spectrum are listed in Table II of Ref. 8. The levels of ⁹⁸Pd deduced from the Qvalues are shown on the right-hand side of Fig. 4. These levels are expected to be partly nonyrast levels in contrast to those obtained from γ -ray spectroscopy. The uncertainty in the excitation energies deduced from the ¹⁴C spectrum is ± 17 keV. To this degree of accuracy, the excitation energies of the 2⁺ and 4⁺ levels of ⁹⁸Pd are in reasonable agreement with those deduced from the γ -ray data as summarized in Fig. 4.

In a separate experiment, the γ -ray angular distributions produced by ${}^{32}S + {}^{70}Ge$ were recorded with $E_{lab} = 130$ MeV. Under computer control, a Ge(Li) detec-

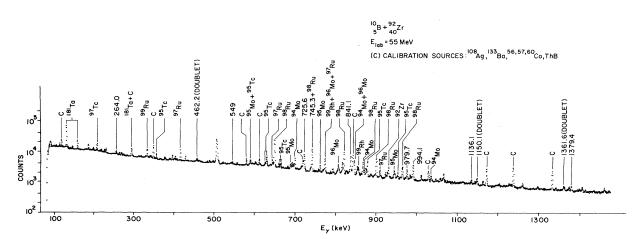


FIG. 5. A Ge(Li) singles spectrum produced by ${}^{10}B + {}^{92}Zr$ with $E_{lab} = 55$ MeV. The strongest transitions of a cascade previously assigned to ${}^{98}Pd$ are labeled with their energies (in keV). This spectrum is evidence that this assignment was incorrect and that, therefore, the cascade must be assigned to a nuclide with $Z \le 45$ (probably ${}^{98}Rh$). The transitions presently assigned to ${}^{98}Pd$ are not seen in this spectrum, in agreement with this assignment.

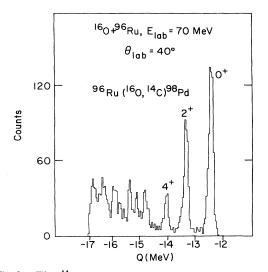


FIG. 6. The ¹⁴C position spectrum produced at the focal plane of a quadrupole-dipole-dipole-dipole magnetic spectrometer by the ⁹⁶Ru(¹⁶O, ¹⁴C)⁹⁸Pd reaction with $E_{lab} = 70$ MeV. The abscissa is labeled by the Q value calibrated by utilizing elastic scattering as discussed in detail in Ref. 8.

tor was positioned successively at each of eight angles ranging from 60° to 162° with respect to the beam direction. Two methods of normalization were utilized and found to agree to within 2%: (1) the digital output of a beam current integrator connected to the beam dump was stored in a computer, and (2) a monitor Ge(Li) detector, positioned at 90° and on the other side of the beam line, was used to count γ rays with $E_{\gamma} > 600$ keV. The results of the γ -ray angular distribution experiment will be presented below.

For the ${}^{35}\text{Cl}+{}^{66}\text{Zn} \gamma \cdot \gamma$ coincidence experiment, Fig. 7 shows the sum spectrum of several background-subtracted gates set on transitions of ${}^{96}\text{Ru}$. The level scheme of ${}^{96}\text{Ru}$, which has been deduced from these and other data, is shown in Fig. 8 and will be discussed in the following.

RESULTS

In order to obtain information about the multipolarity of each transition of 98 Pd and 96 Ru, the formula

$$W(\theta) = A_0 + A_2 P_2(\theta) + A_4 P_4(\theta) \tag{1}$$

was fit to the observed intensity function $W(\theta)$, where θ is the angle of the detector measured with respect to the beam direction; A_0 , A_2 , and A_4 are adjustable parameters; while P_2 and P_4 are Legendre polynomials. The empirical intensity $W(\theta)$ is obtained for each transition by subtracting the Compton background from the intensity under the photopeak. The results of the fitting procedure are listed in Table I for ⁹⁸Pd and in Table II for ⁹⁶Ru. In both tables, a slight correction was made to the A_0 , A_2/A_0 , and A_4/A_0 values for the finite solid angle subtended by the Ge(Li) detector. The values of A_0 obtained were also corrected for the efficiency of the Ge(Li) detector and normalized to the $2^+ \rightarrow 0^+$ transition for each nuclide to obtain the relative γ -ray intensities. Table II also lists angular distribution results for the ⁹⁶Ru transitions obtained from the ${}^{66}Zn({}^{35}Cl,3p2n\gamma){}^{96}Ru$ reaction with $E_{\rm lab} = 165$ MeV and the ${}^{90}Zr({}^{12}C, \alpha, 2n\gamma){}^{96}Ru$ reaction with $E_{\text{lab}} = 71$ MeV.

For ⁹⁸Pd, the spin-parity assignments up to $J^{\pi} = 8^+$ seem straightforward. These four transitions have also been observed in a study⁹ of delayed γ rays (associated with A = 98) produced by ¹⁴N+⁹²Mo with $E_{lab} = 110$ and 125 MeV. Using the LISOL mass separator, Huyse *et al.*⁹ assigned these four transitions to the ground state cascade of ⁹⁸Pd as mentioned above. The relative intensities of the four transitions observed by Huyse *et al.* following the EC- β^+ decay of ⁹⁸Ag are consistent with the ordering shown in Fig. 4. For the $10^+ \rightarrow 8^+$ and $16^+ \rightarrow 14^+$ transitions, the assignments are based on systematics (i.e., ⁹⁶Ru), while $\gamma 802.1$ and $\gamma 1252.7$ can be more definitely assigned as stretched E2 transitions.

For ⁹⁶Ru, the spin-parity assignments seem to be straightforward up through the $J^{\pi} = 10^+$ level as listed in

FIG. 7. Sum spectrum of background-subtracted γ -ray gates for ⁹⁶Ru produced by ³⁵Cl+⁶⁶Zn with $E_{lab}=165$ MeV. The ⁹⁶Ru transitions are labeled with their energies (in keV).

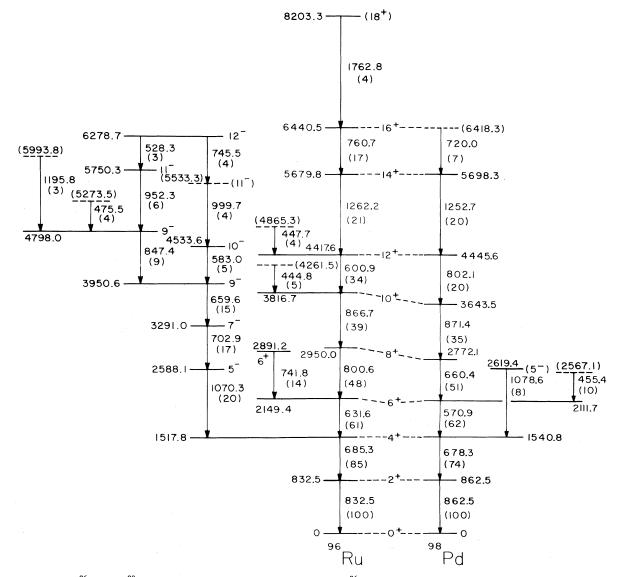


FIG. 8. Proposed ⁹⁶Ru and ⁹⁸Pd level schemes. The lower spin levels in ⁹⁶Ru are in agreement with a previous $(\alpha, 2n\gamma)$ study (Ref. 12) and a (⁶Li, $3n\gamma$) study (Ref. 13).

Table II and displayed in Fig. 8. For $\gamma 600.9$, however, the A_2/A_0 values are consistently smaller than for the $10^+ \rightarrow 8^+$ transition immediately following in the ⁹⁶Ru level scheme. On the other hand, in the previous ⁹⁴Mo($\alpha, 2n\gamma$)⁹⁶Ru study,¹² this transition was observed with a large positive A_2/A_0 value and assigned to be a $12^+ \rightarrow 10^+$ transition. Therefore, we support this assignment as shown in Fig. 8. The 1262.2-, 760.7-, and 1762.8-keV transitions also appear to be stretched quadrupole transitions. Several new levels of ⁹⁶Ru were best inferred from a ⁴⁰Ca+⁶⁰Ni γ - γ coincidence experiment, with $E_{lab}=140$ MeV, intended primarily to study nearby ⁹⁶Pd (Ref. 15). The lower-spin negative parity levels listed in Table II up to $J^{\pi}=9^-$ and the positive parity levels up to $J^{\pi}=12^+$ were also deduced by Lederer *et al.*¹² and by Walkiewicz *et al.*¹³ and are in agreement with the present

assignments. The 583.0 keV transition in ⁹⁶Ru appears to be a $10^- \rightarrow 9^-$ transition. The angular distribution data for this transition listed in Table II are consistent with a stretched dipole assignment. Moreover, the parity of the 4533.6 keV level appears to be odd since if instead it were even, a 716.9 keV transition to the yrast 10⁺ level would be expected, in contrast to experiment. The angular distribution results for γ 847.4 are characteristic of a $\Delta J = 0$ quadrupole transition because of the large negative A_4/A_0 value listed in Table II. This leads to a $J^{\pi}=9^{-1}$ assignment for the 4798.0 keV level in ⁹⁶Ru. Analysis of the data listed in Table II leads to assignments of odd parity for the other levels shown in Fig. 8. The 999.7 keV $(11^{-}) \rightarrow 10^{-}$ transition has been placed differently from that proposed by Walkiewicz et al.,13 who assigned a 1000.1 keV transition from the 3950.6- to the 2950.0-keV

TABLE I. Transitions in ⁹⁸Pd produced by 130 MeV ${}^{32}S + {}^{70}Ge$. The relative transition intensities have been corrected for the efficiency of the Ge(Li) detector. The A_2/A_0 and A_4/A_0 values have undergone the slight corrections necessary to take the finite solid angle of the detector into account.

E_{γ} (keV)	$I_{\gamma}^{\mathrm{rel}}$	A_2/A_0	A_4/A_0	Assignment
862.48±0.14	≡100.0 ±1.0	$+0.282\pm0.015$	-0.099 ± 0.022	$2^+ \rightarrow 0^+$
678.3 ±0.6	73.5 ±4.1	a	a	$4^+ \rightarrow 2^+$
570.91±0.10	61.9 ±0.7	$+0.326\pm0.020$	-0.096 ± 0.029	$6^+ \rightarrow 4^+$
660.41±0.24	51.0 ± 2.1	$+0.332\pm0.026^{b}$	-0.116 ± 0.038^{b}	$8^+ \rightarrow 6^+$
871.36±0.14	34.7 ±1.7	с	с	$10^+ \rightarrow 8^+$
802.1 ±0.8	19.4 ±2.5	$+0.324\pm0.039^{d}$	-0.081 ± 0.057^{d}	$12^+ \rightarrow 10^+$
1252.69±0.14	20.33 ± 0.39	$+0.237\pm0.041$	-0.171 ± 0.060	$14^+ \rightarrow 12^+$
720.0 ±0.5	7.3 ± 1.7	e	e	$(16^+ \rightarrow 14^+)$
455.38±0.29	9.7 ±0.5	$+0.11 \pm 0.11$	-0.41 ± 0.17	$\rightarrow 6^+$
605.65±0.14		f	f	$\rightarrow 4^+$
1078.59±0.19	8.0 ±0.8	-0.11 ± 0.20	-0.03 ± 0.30	$(5^-) \rightarrow 4^+$

^aUnresolved from γ 677.6 in ⁹⁵Ru.

^bUnresolved from γ 663.0 in ⁹⁸Rh,

 $\gamma 659.6$ in ⁹⁶Ru, and $\gamma 661.0$ in ⁹⁵Ru.

^oUnresolved from γ 871.10 in ⁹⁴Mo.

level. Finally, the ordering of the 745.5- and 999.7-keV transitions is tentative. Therefore, the 5533.3 keV level shown in Fig. 8 has been dashed.

DISCUSSION

It is apparent in Fig. 8 that the yrast $J^{\pi} = 6^+$ states of both nuclides are relatively low lying. This is related to the presence of the $vd_{5/2}g_{7/2}$ and $vg_{7/2}^2$ configurations, although the $6^+ \rightarrow 4^+$ transition energies are not exactly those expected for pure shell-model configurations. This is in agreement with a recent calculation of the energies of the positive parity levels of ⁹⁸Pd by Sau *et al.*¹⁶ They considered the coupling of four proton holes below ¹⁰⁰Sn to two neutron particles above ¹⁰⁰Sn while studying ⁹⁸Pd. We remark that the $6^+ \rightarrow 4^+$ transition energies which have been found for several even-A N = 84 nuclides are larger than would have been expected (for the $vf_{7/2}^2$ shellmodel configuration). It will be interesting to see if this empirical result for the N = 84 system has a common basis with the N = 52 system.

The $J^{\pi} = 8^+$ yrast state of ⁹⁸Pd is relatively low lying, suggesting a $(\pi g_{9/2}^{-4})_{g+}$ seniority-two component, while the corresponding state of ⁹⁶Ru occurs with a higher excitation energy. In the neighboring N=51 (95 Ru) and N=53 (97 Ru) nuclides, $J^{\pi}=\frac{11}{2}^{-1}$ states have been observed⁴ at about 2.4 and 1.9 MeV, respectively. Therefore, one expects the yrast $J^{\pi} = 10^+$ states of ⁹⁶Ru and ⁹⁸Pd to have an important contribution from the $(vh_{11/2}^2)$ configuration. If this is the case, then the $J^{\pi} = 8^+$ states are possibly of a different structure since the $10^+ \rightarrow 8^+$ transition energies are large. The calculations of Sau et al.¹⁶ suggest that the 8⁺ level of ⁹⁸Pd is a somewhat pure proton excitation (although they indicate that the 10^+ level should also be a proton excitation). It is interesting to note the similarity in the empirical excitation energies in the two isotones for the $J^{\pi} = 12^+$, 14⁺, and 16⁺ states even though the energies of the $J^{\pi} = 8^+$ and 10^+ states are not so similar. The relatively low excitation energy of the 12⁺ states in both nuclides probably indicates the pres^dUnresolved from γ 800.6 in ⁹⁶Ru.

^eUnresolved from γ 719.4 in ¹⁰²Pd

(from ⁷⁴Ge target contamination).

^fUnresolved from another transition.

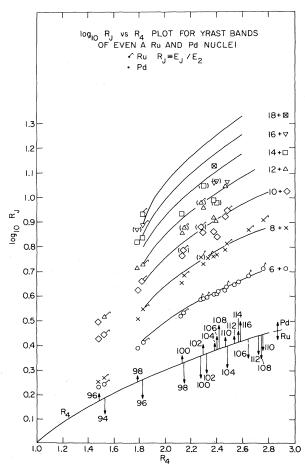


FIG. 9. A comparison of the even-A Pd ($96 \le A \le 116$) and Ru ($94 \le A \le 112$) yrast level energies to the energies predicted by the VMI model indicated by the solid curves. It is seen that the R_6 and R_8 values (where $R_J \equiv E_{J^+}/E_{2^+}$) are in excellent agreement with VMI with the exception of pseudomagic ¹⁰⁰Pd. For ¹⁰²Pd, the agreement continues up to the 14⁺ state and for ¹⁰⁰Ru up to the 12⁺ state. For ^{104,106}Pd, downward deviations occur above the 8⁺ level, but in ¹¹⁰Pd, the agreement is seen to persist to the 12⁺ level.

TABLE II. 1 detector efficienc	Fransitions in 96 Ru sy. The A_2/A_0 an	TABLE II. Transitions in ⁹⁶ Ru produced by 165 MeV ³⁵ , detector efficiency. The A_2/A_0 and A_4/A_0 values have been	AeV ${}^{35}Cl + {}^{66}Zn$, by 130 is been slightly corrected	$Cl + {}^{66}Zn$, by 130 MeV ${}^{32}S + {}^{70}Ge$, and by 71 MeV ${}^{12}C + {}^{5}$ slightly corrected for the finite solid angle of the detector.	TABLE II. Transitions in ⁹⁶ Ru produced by 165 MeV ³⁵ Cl+ ⁶⁶ Zn, by 130 MeV ³² S+ ⁷⁰ Ge, and by 71 MeV ¹² C+ ⁹⁰ Zr. The relative intensities have been corrected for the Ge(Li) tector efficiency. The A_2/A_0 and A_4/A_0 values have been slightly corrected for the finite solid angle of the detector.	ae relative intensities	have been corrected	l for the Ge(Li)
	35C	³⁵ Cl+ ⁶⁶ Zn		³² S+	$^{32}S + ^{70}Ge$	$^{12}C+^{90}Zr$	⁹⁰ Zr	Present
E_{γ}	$I_{\gamma}^{\mathrm{rel}}$	A_2/A_0	A_4/A_0	A_2/A_0	A_4/A_0	A_2/A_0	A_4/A_0	assignment
832.51±0.09	$\equiv 100.0\pm 0.5^{a}$	$+0.194\pm0.009$	-0.079 ± 0.015	$+0.174\pm0.016^{a,f}$	$+0.003\pm0.024^{a,f}$	$+0.254\pm0.016$	-0.069 ± 0.024	$2^+ \rightarrow 0^+$
685.34 ± 0.12	a,b	$+0.145\pm0.013^{b}$	-0.091 ± 0.021^{b}	$+0.191\pm0.021^{a}$	-0.085 ± 0.037^{a}	$+0.288\pm0.027$	-0.107 ± 0.040	$4^+ \rightarrow 2^+$
631.64 ± 0.10	69.4 ± 0.5^{a}	$+0.227\pm0.006$	-0.091 ± 0.026	$+0.253\pm0.014^{a}$	-0.058 ± 0.020^{a}	$+0.305\pm0.018$	-0.109 ± 0.026	$6^+ \rightarrow 4^+$
800.55 ± 0.13	44 .0±0.3	$+0.303\pm0.013$	-0.148 ± 0.021	$+0.324\pm0.020^{b}$	-0.081 ± 0.030^{b}	$+0.433\pm0.022$	-0.062 ± 0.032	$8^+ \rightarrow 6^+$
866.71 ± 0.10	40.5±0.4	$+0.299\pm0.017$	-0.140 ± 0.027	$+0.346\pm0.028$	-0.150 ± 0.040	$+0.278\pm0.059$	-0.194 ± 0.086	$10^+ \rightarrow 8^+$
600.86 ± 0.10	39.9±0.6	$+0.241\pm0.038$	-0.119 ± 0.061	$+0.115\pm0.029$	-0.094 ± 0.042	$+0.247\pm0.030$	-0.117 ± 0.045	$12^+ \rightarrow 10^+$
1262.17 ± 0.11	29.2 ± 1.0	$+0.327\pm0.030$	-0.122 ± 0.048	$+0.218\pm0.040$	-0.081 ± 0.060	$+0.080\pm0.030$	-0.083 ± 0.044	$14^+ \rightarrow 12^+$
760.68 ± 0.17	23.6 ± 0.7	$+0.291\pm0.028$	-0.141 ± 0.045	$+0.089\pm0.049^{b}$	-0.091 ± 0.072^{b}	$+0.29 \pm 0.09$	$+0.02 \pm 0.14$	$16^+ \rightarrow 14^+$
1762.8 ± 0.4	4.0±2.3 ^g	$+0.21 \pm 0.06$	$+0.09\pm0.09$	$+0.51 \pm 0.19$	-0.18 ± 0.26			1
741.77 ± 0.28	13.7 ± 1.4	-0.05 ± 0.05	-0.14 ± 0.07	-0.25 ± 0.14	$+0.08 \pm 0.21$			1
444 .85±0.35 ^g	5.4 ± 1.4^{g}	-0.10 ± 0.07	$+0.03\pm0.12$	$+0.36 \pm 0.16$	-0.19 ± 0.23			
447.68±0.35 ^g	3.8 ± 1.0^8	-0.20 ± 0.06	$+0.01\pm0.09$	-0.12 ± 0.19	-0.09 ± 0.27			$\rightarrow 12^+$
1070.26 ± 0.12	24.7±0.8	-0.16 ± 0.06	-0.21 ± 0.10	-0.07 ± 0.07	-0.01 ± 0.10	-0.18 ± 0.05	-0.09 ± 0.08	$5^- \rightarrow 4^+$
702.95 ± 0.25^{g}	16.6 ± 2.2^{g}	e	e	$+0.037\pm0.031^{\circ}$	$-0.071\pm0.046^{\circ}$	$+0.146\pm0.024$	-0.065 ± 0.035	$7^- \rightarrow 5^-$
659.61±0.11	23.3 ± 0.6	$+0.13 \pm 0.05$	-0.15 ± 0.08	$+0.330\pm0.026^{b}$	-0.114 ± 0.038^{b}	$+0.338\pm0.039$	-0.126 ± 0.057	$-2 \leftrightarrow -6$
847.38±0.25 ^g	8.8 ± 1.4^{g}	p	p	d ,	đ	-0.23 ± 0.08^{d}	-0.27 ± 0.12^{d}	$9^{-}_{2-} \rightarrow 9^{-}$
582.99±0.14	5.1 ± 1.6^{8}	J	ა	-0.21 ± 0.07	$+0.05 \pm 0.10$	-0.21 ± 0.11	-0.04 ± 0.17	$10^- \rightarrow 9^-$
999.70±0.28	4.4 ± 2.6^{8}	$+0.16\pm0.05$	$+0.00\pm0.07$	$+0.11 \pm 0.10$	$+0.03 \pm 0.14$			(11 ⁻)→ 10 ⁻
745.48 ± 0.40^{g}	3.6 ± 1.4^{B}	-0.051 ± 0.036	-0.060 ± 0.057	$+0.14 \pm 0.05^{b}$	-0.17 ± 0.08^{b}			$12^- \rightarrow (11^-)$
1195.79 ± 0.26	3.1 ± 1.9^{8}	$+0.41 \pm 0.08$	-0.08 ± 0.12	$+0.33 \pm 0.12$	$+0.18 \pm 0.18$	•		\ 1.6
952.33 ± 0.35^{g}	5.7 ± 1.7^{B}	$+0.32 \pm 0.06$	-0.11 ± 0.10	$+0.47 \pm 0.12$	-0.03 ± 0.17			$11^{-}_{-} \rightarrow 9^{-}_{2}$
528.27 ± 0.30^{g}	3.2 ± 1.7^{8}	p	ф Ч	-0.32 ± 0.10^{b}	-0.06 ± 0.15^{b}			1
475.52±0.35 ^g	3.6 ± 1.0^{8}	$+0.033\pm0.036$	$+0.028\pm0.062$	-0.03 ± 0.08	$+0.18 \pm 0.12$			$\downarrow 9_2^{-1}$
^a Includes some ii ^b Unresolved from	^a Includes some intensity from the ⁹⁶ R ^{bt} Inresolved from another transition.	^a Includes some intensity from the ⁹⁶ Rh \rightarrow ⁹⁶ Ru EC- β^+ decay. ^b Unresolved from another transition.	lecay.					

908

W. F. PIEL, JR. AND G. SCHARFF-GOLDHABER

<u>30</u>

^cUnresolved from γ 583.17 from a RdTh calibration source. ^dUnresolved from γ 846.8 in nearby ⁵⁶Fe. ^dUnresolved from γ 702.6 in ⁹⁴Mo. ^fUnresolved from γ 833.9 in ⁷²Ge (5.5% target contamination). ^gValue obtained from ⁴⁰Ca + ⁶⁰Ni, 140 MeV coincidence data. ence of the $[(\pi g_{9/2}^4)_{12^+}(p_{1/2}^2)_{0^+}]_{12^+}$ configuration in ⁹⁶Ru and $(\pi g_{9/2}^{-4})_{12^+}$ in ⁹⁸Pd, i.e., 12 is the maximum spin for a positive parity level in the Z=38-50 shell. The yrast $J^{\pi}=9^-$ state of ⁹⁶Ru is probably related to the $(\nu g_{7/2}h_{11/2})_{9^-}$ configuration.

Transitions between collective 4p-2h states corresponding to the excitation of a pair of $g_{9/2}$ neutrons across the N=50 shell closure are not obviously observed in the present experiment. It is expected that a $\Delta J = 2$ positive parity band could be observed built upon an excited collective $J^{\pi}=0^+$ state; this state is analogous to 4p-2h states deduced recently in several even Te (Z=52) nuclides.⁴ The systematic occurrence of collective states in the Z > 50 region corresponding to the excitation of either one or two $g_{9/2}$ protons across the Z = 50 shell closure indicates^{3,4} that the proton-excitation states are most likely to be observed when the neutron shell between N = 50 and 82 is half-filled, i.e., for N=66. The Ru (Z=44) and Pd (Z=46) nuclides lie at or near the middle of the Z=38to 50 proton shell. This suggests the possible observation of the collective $g_{9/2}$ neutron-excitation states. However, the situation is probably not as favorable in the Ru-Pd region, first, because there are fewer particles outside of a closed shell to encourage collective behavior. Second, in the Z > 50 region, the excited protons in, say, a $(\pi g_{7/2}^2)_{0+1}$ structure are in Nilsson orbitals that overlap significantly with occupied neutron orbitals, thus tending to lower the energy required for the structure. However, in the Ru-Pd region, the excitation of $g_{9/2}$ neutrons must be to orbitals which overlap only with unoccupied proton orbitals, thereby increasing the energy required. We note that the analogous neutron states were also not found⁴ in the neighboring 95 Ru₅₁ and 97 Ru₅₃ nuclides, where they would be 3p-1h or 5p-2h states for 95 Ru and 97 Ru, respectively. However, high-spin levels of ⁹⁴Ru up to $J^{\pi} = 19^+$ have recently been reported.^{15,17} Some of these may be shell model states (i.e., not collective) involving the excitation of a $g_{9/2}$ neutron into a $d_{5/2}$ orbital. The agreement of the deduced levels with the shell-model calculations of Muto et al.,¹⁸ who considered the neutron excitation in

cooperation with the valence protons, points in this direction.

Figure 9 presents a comparison of the predictions of the variable moment of inertia (VMI) model for the even-A Pd $(96 \le A \le 116)$ and Ru $(94 \le A \le 110)$ nuclides. The solid lines refer to $\log_{10} R_J$ vs R_4 , as given by the VMI equations where $R_J = E_{J^+}/E_{2^+}$. The lowest curve shows R_4 on which the abscissa values for Z = 46 (Pd) are indicated by upward pointing arrows and Z=44 (Ru) by downward pointing arrows. The increase in R_4 near the middle of the neutron shell is larger for Ru with six proton holes than for Pd with four holes. While the empirical R_6 and R_8 values are in excellent agreement with the VMI predictions with the exception of pseudomagic ¹⁰⁰Pd [Ref. 2(c)] (and the R_8 values of the most deformed Ru nuclides which lie in a region of γ instability), backbending occurs in several of these nuclides above the 8⁺ state. Finally, we mention that Klein¹⁹ has also recently discussed ⁹⁸Pd in terms of two expressions which relate the features of both the VMI and the interacting boson approximation (IBA). However, Bonatsos and Klein find²⁰ that the "near magic" limits of validity are either $E_{4+}/E_{2+} = 1.59$ or 2.0, in contrast to the VMI value of 1.82; this last value is in better agreement with the data.^{2(b)(c)}

To sum up, high-spin states of 98 Pd have been identified and studied for the first time. The lower-spin states are in agreement with a recent study of the EC- β^+ decay of 98 Ag and with the results of a two-proton transfer experiment. Several new high-spin states of the isotone 96 Ru have been deduced from four distinct reactions. The new results should stimulate detailed calculations of the underlying nuclear structures.

ACKNOWLEDGMENTS

We would like to thank G. Hummer, K. R. Asselta, T. G. Russell, and B. Comfort for their help and M. McKeown and A. H. Lumpkin for their collaboration during the earlier experiments. This research was supported by the United States Department of Energy under Contract No. DE-AC02-76CH00016.

- ¹W. F. Piel, Jr., G. Scharff-Goldhaber, A. H. Lumpkin, Y. K. Lee, and D. C. Stromswold, Phys. Rev. C 23, 708 (1981).
- ²(a) M. A. J. Mariscotti, G. Scharff-Goldhaber, and B. Buck, Phys. Rev. 178, 1864 (1969); (b) G. Scharff-Goldhaber and A. S. Goldhaber, Phys. Rev. Lett. 24, 1349 (1970); (c) G. Scharff-Goldhaber, J. Phys. G 5, L207 (1979); 6, 413 (1980); (d) G. Scharff-Goldhaber, C. B. Dover, and A. L. Goodman, Annu. Rev. Nucl. Sci. 26, 239 (1976).
- ³R. E. Shroy, A. K. Gaigalas, G. Schatz, and D. B. Fossan, Phys. Rev. C **19**, 1324 (1979); D. B. Fossan, M. Gai, A. K. Gaigalas, D. M. Gordan, R. E. Shroy, K. Heyde, N. Waroquier, H. Vincx, and P. Van Isacker, *ibid*. **15**, 1732 (1977); U. Garg, T. P. Sjoreen, and D. B. Fossan, *ibid*. **19**, 207 (1979); **19**, 217 (1979).
- ⁴P. Chowdhury, W. F. Piel, Jr., and D. B. Fossan, Phys. Rev. C 25, 813 (1982); P. Chowdhury, Ph.D. thesis, State University of New York at Stony Brook, 1979 (unpublished).

- ⁵W. F. Piel, Jr., A. H. Lumpkin, M. McKeown, and G. Scharff-Goldhaber, Bull. Am. Phys. Soc. 18, 702 (1973).
- ⁶W. F. Piel, Jr. and G. Scharff-Goldhaber, Phys. Rev. C 15, 287 (1977);
 A. H. Lumpkin, L. H. Harwood, L. A. Parks, and J. D. Fox, *ibid.* 17, 376 (1978).
- ⁷W. F. Piel, Jr. and G. Scharff-Goldhaber, Bull. Am. Phys. Soc. 23, 555, (1978).
- ⁸C. E. Thorn, P. D. Bond, M. J. LeVine, W. F. Piel, Jr., and A. Gallman, Bull. Am. Phys. Soc. 23, 72 (1978); Phys. Rev. C 25, 331 (1982).
- ⁹M. Huyse, K. Cornelis, G. Dumont, G. Lhersonneau, J. Versplancke, and W. B. Walters, Z. Phys. A 288, 107 (1978); M. Huyse, K. Cornelis, G. Lhersonneau, D. Van Deplassche, J. Versplancke, and W. B. Walters, Bull. Am. Phys. Soc. 24, 649 (1979).
- ¹⁰M. Behar, A. M. J. Ferrero, A. Filevich, and A. O. Macchiavelli, Z. Phys. A 314, 111 (1983).
- ¹¹T. A. Doron and M. Blann, Nucl. Phys. A 167, 577 (1971).
- ¹²C. M. Lederer, J. M. Jaklevic, and J. M. Hollander, Nucl.

^{*}Present address: Physics Department, State University of New York, Stony Brook, NY 11794.

Phys. A169, 449 (1971).

- ¹³T. A. Walkiewicz, S. Raman, and J. B. McGrory, Phys. Rev. C 27, 1710 (1983).
- ¹⁴D. Horn, H. A. Enge, A. Sperduto, and A. Graue, Phys. Rev. C 17, 118 (1978).
- ¹⁵W. F. Piel, Jr., G. Scharff-Goldhaber, C. J. Lister, and B. J. Varley, Phys. Rev. C 28, 209 (1983).
- ¹⁶J. Sau, K. Heyde, and J. Van Maldeghem, Kernfysisch

Versneller Institüt, Groningen, Report LVK-82-54, 1982.

- ¹⁷E. Nolte, G. Korschinek, and U. Heim, Z. Phys. A **298**, 191 (1980).
- ¹⁸K. Muto, T. Shimano, and H. Horie, Phys. Lett. **135B**, 349 (1984).
- ¹⁹A. Klein, Phys. Lett. **93B**, 1 (1980).
- ²⁰D. Bonatsos and A. Klein, Phys. Rev. C 29, 1879 (1984).