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Deep inelastic collisions between “light” heavy ions are considered in a formalism containing dif-
fractive, diffusive, and statistical aspects. A closed-form diffractive cross section is derived, with the
deflection function being parametrized in a classically-motivated way. A statistical argument is
used to demonstrate how the observed double differential cross section is built up from different dif-
fractive contributions each with its own weight. The form of the weighting function is derived. The
observed forward-peaked exponentially-decaying form of deep inelastic collision angular distribu-
tions is accounted for. The possibility of exciting a nonzero spin state is explicitly included, enabling
the same formalism to be used to explain the spin polarization occurring in deep inelastic collisions.
This quantity is much more sensitive than the angular distribution to the choice of deflection func-
tion parametrization. Reasonable fits to data are obtained with only one free parameter, apart from

an overall normalization factor.

L. INTRODUCTION

Deep inelastic collisions (DIC’s) have been studied ex-
tensively in recent years, both from experimental and
theoretical viewpoints.! In the latter case, calculations us-
ing Newtonian mechanics, with the inclusion of both fric-
tional forces and deformation degrees of freedom,? repro-
duce the average trends of the energy loss-scattering angle
correlation, typically illustrated by a Wilczynski plot.?
Element distributions are described fairly well using a dif-
ferent approach, namely the Fokker-Planck equation.*
However, DIC angular distributions have not been sys-
tematically described in such models, and, in particular,
little work has been done for relatively high energy col-
lisions and/or “light” heavy ions, where the modified
Sommerfeld parameter

' =Z,Zze* /v’ <100—200 .

Here v’ is the relative velocity of the two ions at the bar-
rier radius. For large energy losses the angular distribu-
tions of such reactions are generally forward peaked and
fall off roughly exponentially with angle.” In one study
Gelbke et al.b fitted 315 MeV ®0+2%Pb energy-loss in-
tegrated data with the form

d_a —0/T

do ~¢
where 7 was an adjustable parameter. Elsewhere’ a simi-
lar form has been used for the double differential cross
section for 88 MeV 16-130427Al. The parameter 7 re-
flects the degree of inelasticity of the process and in-
creases with energy loss and/or number of transferred nu-
cleons. It is straightforward to show that Eq. (1) arises
classically in collisions involving orbiting, but it is impor-
tant to note that the classical double differential cross sec-

(1)

30

tion d20/dE dQ has a spike at the classical scattering an-
gle, since in this case a given Q value corresponds to a
unique scattering angle. Thus it is not clear, a priori, why
the observed exponential shape, with forward peaking,
persists for all fully damped reactions in this energy
domain.

Recently Tamura et al.® used the distorted-wave Born
approximation (DWBA) to describe DIC angular distribu-
tions. Presumably statistical fluctuations in macroscopic
degrees of freedom, such as the energy loss, which arise
from the coupling between the relative motion of the two
ions and their intrinsic degrees of freedom, are included in
this formalism if a large enough number of channels and
steps are considered, but for practical reasons, calculations
are limited to one- and two-step processes.

Hartmann® approaches the problem in a similar way to
that presented here, but ignores any spin transfer between
the two heavy ions, which is known to be large.!®!! By
including the possibility of spin transfer our model gives
both angular distributions and polarization data in a con-
sistent manner. In addition, the form of the weighting
function that we use to describe statistical fluctuations has
some justification, unlike that used elsewhere.”!?

The plan of the paper is as follows. In Sec. II we derive
a closed-form expression for the diffractive cross section.
In Sec. III we justify the form of the weighting function
used to describe the diffusive part of the cross section.
The concept of diffusion is explained in this section also,
and we show how the statistical randomness of the intrin-
sic states is used in our formalism. These results are com-
bined in Sec. IV to describe the angular distributions of
the *®Ni(1%0,X) reactions at 100 MeV.!® The same for-
malism is used to describe polarization data for the same
reactions!®!! in Sec. V, and we end with a summary.
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II. THE DIFFRACTIVE CROSS SECTION

In DIC’s, nuclear identities are approximately maintained and so we assume that direct reaction theory is applicable.

The transition amplitude may then be written in the form

14

B (0)= A > iR+ )21 100 | 10)(I'T —MM | 10) 1LY, _0(6,0) , )

Kk’ <

where we have assumed that both nuclei have zero spin
initially and that the final state has spin (I,M). The ini-
tial and final wave numbers are k and k', respectively, the
quantization axis is along the incoming beam direction,
’z’=l'<\, and cos@=Kk X k'. The transfer form factor I 1’:, de-
pends on the number of nucleons transferred, and the
number of steps in this process. We parametrize this
quantity as'®

I,I',=GQ(I)f(I’—-L’)g(l =), (3)
particular forms of which have been used elsewhere.!®
|

kk'

Here Gp(I), which is related to the level density, describes
the probability of angular momentum transfer I at a given
Q value, g(I —1') describes the kinematic matching of the
reaction, and f(I'—L’) contains the diffractive part of
the process, L’ being the grazing angular momentum in
the final channel. Brink’s matching condition!” implies
that g(/ —1I') is peaked at /| —I'~L —L'=§, where L is
the equivalent of L’ for the initial channel and £ is the
mismatch of the reaction.

Using Eq. (3) in Eq. (4) and utilizing the asymptotic
forms of the Clebsch-Gordan coefficients'® we obtain

B (6)= i7’—GQ(1) S i o (3mda (3m)g (V) 3 U+ 1)V (I'— L") Yy, _ (6,0, @)
v r

where v=[ —1'. We now replace the spherical harmonics
by their asymptotic forms'® and rotate the axes to a more
useful system, where the quantization axis is perpendicu-
lar tg the reaction plane, Z=kxk’, using the transforma-
tion

B (6)= > B (0)D ﬂ;'M(—%W;——;—v,O) (5)
-

so that
2i1 +M

PO = /s

X[g(M)F*(6)+g(—M)F~(6)], (6)

déM( '71"‘7T)GQ(I)

with
Fre)=3 I+ f('—L")
<

xexp{+i[(I'+3)0—+7]} . (7

Equations (6) and (7) show the roles of the matching
function g and the diffraction function f. The quantities
F* are the farside and nearside amplitudes, respective-
1y,22! and these require / —I'=+M, respectively, in the
present coordinate system.

J

FE(0) c o HIIA0—(1/8)7] i

A Gaussian form for f(I'—L’) has been used in the
past,'® but we chose instead to work with the parametriza-
tion

f(x)=e%¥¥ gech [2—xA~+%i7 . ®)

Here 8(x) is the real part of the phase shift, A is the width
of the angular momentum window, and ¥ can be used to
describe the asymmetry of the transition form factor. In
principle, A and y are functions of the Q value, but they
are held constant in the present discussion.

The form of Eq. (8) is motivated by the relationship be-
tween orbital angular momentum and the energy loss in
DIC’s (Ref. 2) which gives an l-window effect. Large
values of | Q | arise when there is considerable overlap
between the two nuclei, that is, at low angular momen-
tum, but for I'~L’ the overlap, and hence | Q |, is small-
er. Large angular momentum values do not contribute be-
cause of the enhanced angular momentum barrier, which
prevents a significant overlap of the two ions. More
quantitatively, work on one- and two-step processes by
Chu et al.?? gives some justification for the form of Eq.
(8).

With Eq. (8), we can evaluate F¥(8) analytically using
the Poisson summation formula:?!

exp[2min (A'— +)+yAQ2mn +6+6)]

n=-—o0

with A’=L’'++. The approximation used to obtain Eq.
(9) is that A is sufficiently small and the phase shift § can
be expanded linearly around the classical deflection angle.

cosh[TA(2mn +©+6)] ’

9)

T
The physics behind the different Poisson terms has been
extensively discussed in the literature.?!??

The deflection function © is defined to be
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d

6= ar (28)
and describes the “classical trajectory” of the heavy ions
in their mean field, which is characterized by the phase
shifts 6. We have neglected the change in © across the
angular momentum window, and so have ignored the so-
called dynamic fluctuations®!? in the amplitude. For
light heavy ions this is a reasonable approximation.

The advantage of a Gaussian parametrization of f(x) is
that dynamic fluctuations can be readily included, and,
indeed, they are essential ingredients in a description of
DIC’s between very heavy ions.® For lighter systems they
become important only for the very highest energy losses.
Inclusion of these fluctuations prevents us from being able
to write a closed-form expression for the different Poisson
amplitudes contained in Eq. (9), if we use the sech
parametrization. However, studies of DIC’s using classi-
cal transport equations®* show that a nonsymmetric / win-
dow is necessary to reproduce data, and such a window
can be very easily introduced (through the parameter y)
using the sech parametrization. In this respect the Gauss-

|

=L’ (10

ian form is less suitable. Thus for light heavy systems we
feel that Eq. (8) is a more useful parametrization of the
DIC angular momentum window.

To account for dynamic fluctuations in an approximate
way with the sech parametrization, we could allow A to
depend on the Q value. A suitable dependence, motivated
by results® from the Gaussian form of f(x), is

Ao

=, (1)
(1++Aj0) 2

A(Q)

where ©’ is the derivative of the deflection function with
respect to angular momentum evaluated at the grazing an-
gular momentum and A, is some constant. Such a varia-
tion has not been included in the present discussion.

Since the level density, which is related to Gg(I), is
high for DIC’s, we assume that the measured cross section
is an incoherent sum over all the different spin states
which can possibly be excited in the collision. Thus the
double differential cross section can be written, using Eq.
(6), as

(13)

d? =

dEcZQ = % | Brag | < % | Go(Dg (M)diy(5m) |2 [ | FH(O) |2+ | F~(0)| %], (12)
d’c

dE.dn —A(@D©,0),

where 4 (Q) and D (6,0) are equal to the parts of Eq. (12)
in curly and square brackets, respectively. Spectroscopic
factors and the kinematic matching conditions are con-
tained in A4(Q), while D(0,0) describes the diffraction
around the deflection angle ©, which is Q dependent.
The quantity E, is the final state energy. We have
neglected the interference term in writing Eq. (13), be-
cause the kinematic matching condition dictates that
g (M) is only important for M ~& >>0. Consequently, as
the product g (M)g*(—M) occurs in the interference term,
this contribution can be neglected, which is consistent
with the fact that DIC differential cross sections show no
oscillatory structure.

Having derived an expression for the diffractive com-
ponent of the DIC double differential cross section we
now proceed to introduce the effects of statistical fluctua-
tions or diffusion.

III. STATISTICAL FLUCTUATIONS
AND RANDOMNESS

In Sec. II we have derived an expression [Eq. (6)] for
the scattering amplitude, SB;;,, which describes a transition
between definite initial and final states. As many final
states contribute to the measured cross section, however,
we should, in principle, allow the quantities A’, A, y, and
© appearing implicitly in Eq. (6) to be different for each
of these final states. This is, of course, impractical.

The approach taken elsewhere®!? is to assume that the
values of these parameters can be described by distribu-
tion functions, with their mean values being dependent
only on the Q value. Both 8 function and Gaussian distri-

1
butions have been used in the past:>!?> use of the former
is equivalent to neglecting statistical fluctuations.

Our approach is different since we assume that the ef-
fect of statistical fluctuations can be introduced by apply-
ing a Q-dependent distribution function directly to the
cross section of Eq. (13). This means that the fluctuations
in A’, A, y, and © are implicit, and that Eq. (13) describes
the cross section associated with the mean values of these
parameters. We now justify this procedure by deriving an
expression for this distribution function directly from for-
mal scattering theory, rather than introducing some arbi-
trary form for it.

We consider two heavy ions moving in their combined
mean field, which is independent of the intrinsic states,
and assume that the relative kinetic energy is transferred
into internal excitation energy through multistep multinu-
cleon transfer processes. In each step Brink’s rule!’
governs the kinematic matching of the angular momen-
tum, while the (radial) matrix elements appearing in the
transition amplitude have a random nature, similar to that
pictured in the microscopic theory of DIC’s given by
Agassi et al.®®

Let |Xg,(R)) and |$g({g)) be the wave functions of

relative motion in the mean field (with energy Eg) and of
the intrinsic nuclear states (with excitation energy ep),
respectively. Here (g represents all the internal coordi-
nates, Eg+eg=E,, the total c.m. energy, and €,=0. Let
V be the residual interaction and G§(E) the Green’s
function of the mean-field Hamiltonian describing the
two-body heavy-ion system.

Then the full stationary-state wave function |W}) is
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given by the Lippmann-Schwinger equation'*
|W2)=(1=GT N~ | XE da) (14)

(where we have dropped the {g for notational simplicity),
and the transition amplitude, Tg,, between the initial and
final states is

Tpa={Xg 95|V |¥3)
=(XE,8p| V | XE ba)+ X5, 05| VGV | W)
(15b)

using Eq. (14). Note here that the mean-field Green’s
function G{ describes the relative motion of the two
heavy ions after losing a certain energy in intrinsic excita-
tions, and is therefore to be evaluated at E =Eg. We now
make the assumption that, because of the large energy
losses involved, deep inelastic collisions are not one-step
processes, and so the first term in Eq. (15b) can be
neglected with respect to the second. Then, as we do not
measure a precise final state, the double differential cross
section may be written as

(15a)

|

| Xz, 0y |V 92 12| (XE406| V IXE,8,) |

d20' 2
m=§Pﬂ(Eﬁ)lTﬂal

~ X pplEp) | (X5, 05| VGSV |WE) |7, (16)
B

where pg is the level density of the intrinsic states 3, and
dE; is the energy element, centered at Eg~E 'fs Over
which we perform the ‘“coarse graining.” We write the
Green’s function as

PAEy) | XE 6y ){XE by |
Eg—E,+5il,

GI(Ep=73 [ dE, ,
4

where we can regard the I',, as the decay widths of the
resonance states which we take as our “doorways.” Alter-
natively, in a classical language, Eq. (17) shows that Gg
acts as a “wave guide” by restricting the heavy ions to
something close to their classical path.

Assuming that the matrix elements (Xg ¢p| V' | X}Eyd).,)
have phases which fluctuate randomly, we are then able to
write

d%
AE,d0 BEyPa(Eﬁ) J dE,pE,y)

Similar assumptions about phases of matrix elements have
been used elsewhere® 2 and are justified since we sum over
a very large number of intrinsic states in evaluating the
double differential cross section.

We can replace Eg in the denominator of Eq. (18) by
Ej, as noted above, and then perform the sum over the in-
trinsic states 3, which gives the total transition rate from
the state [ng'yqﬁ,,) to all states |Xg ). This is simply

the width of the former,
r
- + 2 27
%PB(E/S) | Xz 5|V IXE$,) |22 (19)

In addition, the sum over the intrinsic states ¢ in Eq. (18)
gives the coarse-grained double differential cross section
for a transition to a final state of mean relative kinetic en-
ergy E,,

— + 2 d 20'
We have assumed that the widths T, are only functions of
the energies of the resonance states and do not depend on
their precise structure. We identify Eq. (20) with the
cross section given by Eq. (13), and so, replacing E, by
E, we obtain

d%o

. f . /2w d’c
dE;dQ

, (21)
*(Ef—E,++T? dE.dQ

where the subscript on I', indicates that this quantity is,
in general, a function of E,.

The interpretation of this equation is clear: the cross
section is built up from a diffusion of diffractive contribu-

(18)

(Eg—E, )+ 3T}

|

tions about the energy Ef. The energy dependence of the
diffractive cross sections gives the fluctuations in A’, A,
v, and O, and we see that each such diffractive contribu-
tion is weighted by a factor equivalent to the distribution
function introduced elsewhere,”!? but stress, however,
that this Lorentzian weighting factor has some theoretical
justification.

Classically we can picture this diffusion in terms of dif-
ferent trajectories, each making a contribution to the
coarse-grained cross section which is weighted by a distri-
bution function. We now apply the results of Egs. (13)
and (21) to experimental data.

IV. ANALYSIS OF ANGULAR DISTRIBUTIONS

We consider the reaction *Ni('°0,X) at E},, =100 MeV
and use the data of Harris and his co-workers.!> Double
differential cross sections for various products were mea-
sured, but for definiteness we concentrate on those where
the light ejectile was boron or carbon. The data were tak-
en in Q bins 8 MeV wide ({(Q)—4<Qr <{(Q)+4 MeV),
and so we note here that in our analysis we have evaluated

do _ pl@)+4 d?o
do ~ Y-+ S dEdQ

where d%o /dE rd () is taken from Eq. (21). The cross sec-
tion obtained in Eq. (22) is effectively the product of the
double differential cross section, d*c/dQ dQ, and the Q-
bin width, provided that the Q-bin width is small.

Figure 1 shows a Wilczynski plot of the carbon data.
Superimposed on the figure is the classical trajectory,
which follows the ridge of the Wilczynski plot,
parametrized by
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*Ni ('®0,¢) zn E 1gp =100 MeV
of ]
o} y
20 ) s
" 3.1
g sof -
" 2.3
40 27 b
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FIG. 1. A Wilczynski plot of the data of Harris et al. (Ref.
13). Also shown is the “classical trajectory” given by Eq. (23).
The double differential cross section is in units of mb sr—!
MeV-—l,

Qr =0y +Be™, 23)

where a=2.22 rad~!, B=18 MeV, and Q,, = —44 MeV.
The boron data are very similar'® and the corresponding
classical trajectory has parameters a=2.22 rad~!, =18
MeV, and Q,, = —48 MeV. Classically, ©=—60 on the
fully damped branch of a Wilczynski plot, and the max-
imum Q value, @Q,,, is limited by the centrifugal,
Coulomb, and deformation energies of the final system.
The trajectories given by Eq. (23) are representative of
those resulting from classical friction-model calcula-
tions,>>13 although there is some difficulty in unambigu-
ously specifying the trajectory at intermediate angles, a
point to which we will return in Sec. V.

We identify the © of Eq. (23) with that appearing in
Eq. (13), which is equivalent to assuming that the classical
trajectory given above corresponds to the dynamics of the
energy dissipation mechanism. In principle, © can be
found from the mean field of the two nuclei, as shown by
Eq. (10), but this is not a trivial problem. The effect of
angular momentum transfer is partially taken into ac-
count by fitting Eq. (23) to the Wilczynski plot
phenomenologically.

Once O is known, the diffraction function D(0,0) of
Eq. (13) can be evaluated, as reasonable values can be as-
signed to the parameters ¥ and A.2! For our calculations
we choose y=1.0 and A=1.25 and hold these values
fixed as a function of Q value, since any variation is likely
to be fairly slow. [See, however, the discussion preceding
Eq. (11).] In addition, we take only two terms of the Pois-
son sum: n=0,+1 and n=0,—1 for F* and F—,
respectively, since no other terms are important.?! Fur-
thermore, we neglect interference between the different
Poisson terms which makes no discernible difference to
our calculation, and also removes the necessity of evaluat-
ing A’ as a function of Q value.

The remaining unknown quantity in Eq. (13) is 4(Q).

We found that the data could be fitted with the para-
metrization

A(Q)=40e?'T (Q <0), 24)

where A, is essentially independent of Q, and T is a con-
stant. Clearly 4 (Q) depends on the spectroscopic details
of the interacting nuclei as well as details of the kinematic
matching [see Eq. (13)], but our lack of knowledge of
these quantities precludes direct evaluation of A (Q). This
form does, however, have some justification since, if the
two nuclei reach thermal equilibrium in the collision, the
parameter T can be associated with a temperature (of
around 2—3 MeV).2® This works well for collisions be-
tween heavy nuclei,?® but for lighter systems, such as that
considered here, it has been noted’ that the thermal equili-
bration is less complete. In this case we can regard T as a
fitting parameter.

A highly simplified model illustrates how Eq. (24)
might come about. We suppose that both the nucleon and
the total energy transfer proceed in n steps, the latter of
energy AE each. The probability of each step occurring is
taken to be a constant, p, and so n=—Q/AE and
A(Q) «<p”. Noting that p <1, we then obtain

A(Q) <exp(—n Inl/p)
«<exp[Q(Inl/p)/AE], (25)

which is of the form of Eq. (24)
T=AE /In(1/p).

if we define

o'k
L
IO_Z 1 1 1 1 1
(0] 20 40 60 80 100
c.m.
FIG. 2. The angular distributions for the reaction

%8Ni(1°0,B)Ga for various Q values (Ref. 13). The solid lines
are the cross sections (in mb rad—!) given by Egs. (13) and (21).
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FIG. 3. The same as Fig. 2, but for 3¥Ni('°0,C)Zn (Ref. 13).

Finally, we note that I', in Eq. (21) increases with E,,
and it is reasonable to choose

I‘C=I‘O+I‘1—Q—c— , (26)
Om
where E, +Q,=E;, I'y=1MeV, and I'; =20 MeV.

The results of our calculations are shown in Figs. 2 and
3 for boron and carbon, respectively. The values of (Q)
are given in the figures. The only quantity which was
varied in fitting all sets of data, apart from the overall
normalization Ay, is T, and we found that T'=8.5 MeV
was a suitable value. The values of 4 (given in the fig-
ures) are seen to be of the order of 100—200, irrespective
of the case considered.

We do not claim that we have fitted the data perfectly,
indeed, better fits can be obtained if, for example, ¥ and A
are also allowed to vary, particularly if A is reduced
slightly with increasing energy loss.”’” Such a reduction
would be expected from the inclusion of dynamic fluctua-
tions, as explained in Sec. II [see Eq. (11)].

It is pleasing, though, that we get a reasonable fit and
obtain normalization factors that do not vary drastically
from one data set to another.

We see that forward peaked and approximately ex-
ponentially decaying angular distributions are obtained
with our formalism, and stress that diffractive, diffusive,
and statistical features are all indispensable in producing
such distributions. Thus the form of the double differen-
tial cross section used elsewhere’ has justification. A fur-
ther test of our formalism is provided by a study of polar-
ization data.

V. POLARIZATIONS IN DIC’S

The possibility of exciting a nonzero spin state in a DIC
has been explicitly included in our formalism, and so we
are able to evaluate the polarization of the nuclear spin
after the collision, which is not possible in other formal-
isms.® Since a considerable part of the orbital angular
momentum is converted into intrinsic spins of the frag-
ments through tangential friction,!®!! inclusion of such
spin effects is very desirable. A similar approach has been
worked out by Diinnweber and Hartmann.?®

It has been noted'®'“?® that the extraction of spin-
polarization data from continuum y-ray polarizations is
uncertain when there is the possibility of both nuclei being
excited. Indeed, spin polarizations so extracted may have
the opposite sign to that predicted from frictional models,
and do not reflect the transition from negative- to
positive-angle scattering at some Q value. However, y-
ray multiplicities suggest that in the case of interest here
(1®*0+-38Ni at 100 MeV), the circular polarizations mea-
sured experimentally are essentially those of the y radia-
tion whose source is the targetlike fragment.!>!! There-
fore, in the following, we assume that we excite only the
target. _

In terms of the By, of Eq. (6), the polarization from
the mean diffractive contribution is given by

M |Bu(6)|?

M

P(G)E—"T———Z— ,
21 IB]M(9)|
M

27

where the Q dependence of P and ;) is not explicitly in-

dicated. Using Eq. (6) this can be written as

1F*6) |2~ [F(0)|?
|[FHO) |2+ | F~(8) |?

P(6)=B(Q) ) (28)

where we have defined
S M| Go(Dg(M)dp(5m)|?

B(Q)=H , 29)
31 |Gog(M)dgp(+m)|?
IM

and ignored the interference between F* and F~ as ex-
plained in Sec. II. Since g(M) is peaked at M ~£&>>0,
B(Q) is positive definite. The sign of the polarization is
given by the relative importance of F* and F~ in Eq.
(28), which depends on the scattering angle as well as the
Q value, but its magnitude depends also on the form of
B(Q), and it is this that we now consider.

If we assume that | g(M)|? is a peaked function (such
as a Gaussian'®) centered on M =§, then, as a first ap-
proximation, we may write

S M |g(M)dy(+m)|?
M
~min[LE]S |g(M)d{y(+m)|%, (30)
M

and so if we only excite spins I <&, B(Q)~1. For the
1604%8Ni reaction studied in Sec. IV, £~2%, ~4#, and
~67i at Q@ =—10, —20, and —30 MeV, respectively,'!
while the data suggest!© I of the order of 10%—15%. Thus
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min[Z,£] is, in this case, equal to £, but the important
point is that B(Q) increases slowly with increasing energy
loss. In the Appendix we derive an analytic expression for
B (Q) which further illustrates this point.

Since an exclusively near or far sided process gives
| P(6)| =B(Q), we may identify B(Q) with P,,, the max-
imum y-ray polarization, used elsewhere.!!

To incorporate diffusion into the polarization calcula-
tion, we must consider each substrate cross section
| Bim(6) | ? separately. Noting that B(Q) varies slowly
with Q, we then obtain

(P)=B(Q){P), 31
where
JaEWEN(F* 2= |F~ |}

P)=
(P J dE.W(E (| F*+ |2+ |F~|?)

(32)

is the “reduced polarization,” and W (E,) is the Lorentzi-
an weighting factor appearing in Eq. (21).

In Fig. 4 we display (P as a function of 8 and Q value
for the case where carbon is the light fragment in the
160 458Nl reaction. To obtain (P) the curves should be
multiplied by B(Q), which we estimate in the Appendix.

Polarization data for this reaction exist!®!! and so we
can compare our results with experiment. Trautmann
et al.'® found polanzatlons of about 0.55+0.20,
0.70+0.15, and 0.90*% % for Q values around —23, —33,
and —43 MeV, respectively, and a c.m. scattering angle of
about 47°. Figure 4 shows that for a grazing angle of 5°
(see below), (P) is 0.92, 0.98, and 0.99 for Q values of
—23, —33, and —43 MeV, and so (P) is 0.58, 0.74, and
0.81, respectively. (See the Appendix.) These values are
in agreement with experiment, and illustrate the increas-
ing importance of negative-angle scattering for large ener-
gy losses.>>30

<pPle,Q)>

0.5¢1

-0.5 T

FIG. 4. The “reduced polarization,” as defined in the text, is
shown as a function of angle for the reaction ¥Ni('%0,C)Zn for
(Q)=—23 MeV (solid), —33 MeV (dashed), and —43 MeV
(dotted-dashed). For a full discussion, see the text.

Finally, we note that the calculation of (P) is more
sensitive than that of the angular distributions to the
choice of classical trajectory. This is illustrated in Fig. 4
where, for Q = —23 MeV, we show the effect of altering
the grazing angle. This quantity is not well determined
from the data!® and so there is an uncertainty in the
parametrization of Eq. (23) and in the limits of integra-
tion in Egs. (21) and (32), since we (numerlcally) integrate
over O rather than E_:

E,

fo'...dEc__)f_j'...

where ©,, corresponds to a Q value of zero. The angular
distributions can be fitted with different values of ©,, if
different “temperatures are used, but this quantity does
not appear in the expression for (P). In Fig. 4 we show
the Q =—23 MeV polarization for O, equal to 5° and
15°, and it is clear that {P) is very sensitive to this choice.
We conclude, therefore, that polarization data for DIC’s

give a better determination of the classical trajectory than
is possible with a Wilczynski plot alone.

do , (33)

V1. SUMMARY

By including the effects of diffraction and diffusion,
and utilizing statistical arguments because of the high lev-
el densities involved, we are able to account for the
forward-peaked, approximately exponentially decaying
nature of the angular distributions observed in DIC’s be-
tween light heavy ions at relatively high energies. With a
simple parametrization of the transfer form factor we ob-
tain an expression for the diffractive cross section which
involves the deflection function ©. We choose this to fit
the ridge of the Wilczynski plot, which is equivalent to a
classical trajectory.>® Diffusion around this classical tra-
Jectory is introduced, and the form of the weighting func-
tion is derived. This approach is different from that used
elsewhere,”!> and we are able to justify the Lorentzian
form of W(E,).

All these effects are necessary if angular distributions
are to be reproduced, and with one free parameter we ob-
tain reasonable fits to data. Better fits could be obtained
if other parameters were allowed to vary. In particular, a
A which decreases with increasing energy loss accounts
for dynamic fluctuations.

A big advantage of the present work over that of other
authors” 12?8 is that polarization phenomena can be treat-
ed correctly, since the excitation of nonzero spin states is
explicitly included. The agreement with experimental
data is good, but we found that (P ) is much more sensi-
tive than the angular distribution to the choice of classical
trajectory. Further measurements of the polarization pro-
duced in a DIC are therefore desirable.
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APPENDIX

We demonstrate with a simple model that the function
B(Q) appearing in the DIC polarization formula, and de-
fined by Eq. (29), has a slow Q dependence. We assume
that

_AM =]

A (A1)

|g(M)|?=exp

J

I I
S aM Me=MEIA 14 (1) + M) 1 [ dM Me =M —51/8=Ae =5/M(I coshl /A —AsinhI /A) ,

and so the numerator of Eq. (29) becomes, on performing
the I integral,

A% ~8/A[sinh& /A —shi(£/A)]

where!®

shi(y)= [ Sinhx

o dx . (AS)

Performing the denominator integrations also, we obtain

sinh(y)—shi(y)

cosh(y)—1 (A6)

B(Q)~
with y=£&/A. Calculations? show that there is an approx-
imately linear relationship between & and Q, and so we
write’

and
(A2)

implying that all states with I <£(Q) can be excited.
Furthermore, we approximate the reduced rotation matrix
elements in Eq. (29) by their asymptotic forms!®

|Go(D) |2 6(E~1)

|d5M<§v>|2z%[1+(—1>1+M1 (A3)

(which is clearly not as good for small I) and replace the
sums over I and M in Eq. (29) by integrals. The M sum
in the numerator becomes

(A4)

[

§=(L _Lcrit)Q/Qm ’ (A7)

where L is the initial channel grazing angular momentum
and L, is the angular momentum below which fusion
occurs, both in units of . We take L =50 and L, =41
for the O + Ni reaction (Ref. 11) and can therefore esti-
mate £(Q). Using A=1.25 as in the text, we obtain
B(Q)~0.63, 0.76, and 0.82 for Q = —23, —33, and —43
MeV, respectively. [This illustrates, albeit with a very
simple model, the slow dependence of B(Q) on the Q
value.] The value of P(,), for this reaction, which can be
identified with B(Q) as discussed in Sec. V, is estimated
to be 0.72 (Ref. 11), in good agreement with the above fig-
ures.
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