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The collective mass and potential, the quantum corrections, and the inertia parameters of the
' Q+' Q~ S system are evaluated by means of the quantized adiabatic time dependent Hartree-

Fock theory in a three-dimensional coordinate and momentum lattice. The interaction used, consist-

ing of a direct finite range Yukawa force and a density-dependent term, is fitted by static Hartree-

Fock calculations (including center-of-mass corrections) to binding energies and elastic electron

scattering form factors in the mass region of interest here. The result of the fit is a new interaction,

still without exchange terms, which for light nuclei reproduces the binding energies, the diffraction

radii, and the surface widths. The sub-barrier fusion cross section for ' 0+' 0—+ S calculated

with this force in quantized adiabatic time dependent Hartree-Pock theory is in excellent agreement

with experimental data in contrast to calculations using other interactions. For the evaluation of the

fusion cross section above the barrier classical trajectory calculations are performed using a suitable

phenomenological friction force. This yields agreement with experimental data up to energies of 40

MeV above the barrier. The quantum corrections and the dependence of the mass parameter on the

fragment distance are shown to have an important impact only below the barrier.

I. INTRODUCTION

In recent years the description of fusion between light
and medium-heavy ions has attracted the interest of
theoreticians, since here, in contrast to other heavy-ion
processes, the reaction channel is well defined, and this is
very important for the application of mean field methods.
Furthermore, for not too heavy systems, these microscop-
ic theories can be applied without larger technical limita-
tions, thus allowing clean conclusions about the applica-
bility of the theory In the ca. se of sub-barrier fusion, also
tunneling properties of the many-body system are relevant
which require the formulation of quantization prescrip-
tions in self-bound systems. Furthermore, this process is
particularly interesting, since adiabatic approximations
made obviously or more or less implicitly in various
many-body theories are certainly best fulfilled in the vi-
cinity of or below the barrier. Therefore these assump-
tions should be checked here before they are applied to
other fields like the description of thermonuclear burning
rates at energies where experiments are at present not
feasible.

Recently, sub-barrier fusion cross sections have been
calculated for the ' G+' Q~ S system' by means of
the quantized adiabatic time dependent Hartree-Fock
theory (ATDHF) using the Bonche-Koonin-Negele in-
teraction (BKN). As a matter of fact, the experimental
data have not been reproduced by the calcu1ations, neither
in magnitude nor in energy dependence. Since, besides
adiabatic assumptions, the quantized ATDHF theory is

based on variational methods and hence is free of adjust-
able parameters, the question arose if the failure is due to
the adiabatic approximations, present also in many other
theories, or to the interaction used. Furthermore, the
question arose to which extent, by the inclusion of friction
forces, fusion cross sections above the barrier can be
reproduced by an adiabatic approach.

The present paper addresses both questions. We first
show that one can indeed find an appropriate generaliza-
tion of the BKN interaction which not only gives good
binding energies and form parameters, but which also
reproduces we11 the measured sub-barrier fusion cross sec-
tions within a quantized ATDHF calculation. Second, we
show that, using a suitable phenomenological friction
force and the adiabatically evaluated potentia1 and mass
parameter, fusion cross sections measured up to five times
the barrier height are reproduced.

The paper is organized as follows. In Sec. II the quan-
tized ATDHF method is briefly reviewed. Section III de-
scribes the generalization of the BKN interaction and the
procedure we used to redetermine the free parameters by a
fit to appropriate experimenta1 data. In Sec. IV the col-
lective potentials and the mass parameters calculated with
BKN and with the new reaction are presented. Section V
is devoted to the sub-barrier fusion cross section and the
astrophysical S factor of the ' 0+' 0 reaction. In Sec.
VI, classical trajectory calculations involving the mass pa-
rameter and the potential energy surface calculated by
quantized ATDHF are performed using a suitable friction
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force. ~e discuss the effect of quantum corrections
below and above the Coulomb barrier. The conclusions
are summarized in Sec. VII.

The mass parameter M(q) reads as

fi /M(q)=(+q
I [Q, [H, Q]] I 4q) . (2.9)

11. QUANTIZED ATDHF

5,(eIH —E Ie)=0, (2.3)

yields, after a lengthy algebra and with the Gaussian over-
lap approximation, the equation for the collective path
(ATDHF equation):

„ I C, & =c(q}[H H»(q)]»«)
I
~'q & (2.4)

with c (q) given below. If one also performs a variation of
('P

I
H E

I
4 ) with respe—ct to f*, i.e.,
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I
H E

I

%' ) =0— (2.5)

one obtains, again by Gaussian overlap techniques, a
Schrodinger equation for the collective motion of the Lth
partial wave:

r'

The details of the quantized ATDHF theory can be
found in Refs. 4 and 5 and in the references given therein.
Here we shall only briefly sketch the basic ideas and for-
mulae.

The stationary wave function for the collective motion
of the fragments towards each other is given by

+(&), . . . , rg)= fdq dp f(q,p)4~(r), . . . , rq) .

(2.1)

Here the
I 4~) are Slater determinants labeled con-

veniently by the distance q =R of the two fragments with
respect to each other and by the conjugate momentum
p =M(q)q. The p is included in the integrand to ensure a
proper description of the dynamics in analogy to the dou-
ble projection formalism of Goeke and Reinhard. The
adiabatic approximation involves the definition of a lp-lh
and lh-lp operator Q(q) for the construction of the
momentum p as

I 4~ ) = [1+(pQ(q)]
I @~ ) . (2.2)

The variation of the total energy with respect to (4~ I,
1.e.,

The quantum corrections Z(q) include zero point energy
corrections of the collective q motion and the spurious ro-
tations and translations of the total system:

Z(q) =[A /2M(q)](4~ I (8/Bq)B/Bq
I 4&)

+ —, (4q I Q I@q)B v/Bq
3

+ g [[A /28;(q)](4q
I J; I @q)

+(fi'/2mA)(e,
I V,'

I e, ) j . (2.10)

The c(q) in Eq. (2.4} is given by c(q)=M(q)/(aV/aq).
It depends on the way the label q is chosen; the final re-
sults, however, are independent of this choice. Thus we
can choose it at our convenience. For heavy ion fusion
processes, involving A particles, we use a prescription
which gives for separate ions the distance 8 between the
fragments:

—,'~z'=(e, Ir'12o
I c,)+(Q),+(Q), , (2.11)

x t Wr(n)+ Wo(n)[1 —2po(n)] Wo(n) 7

Xq'"'(r ) . (2.12)

Here, po(n) is the density matrix associated to
I
4„):

where (Q ), and (Q )2 are the quadrupole moments of the
isolated fragments. Actually, Eq. (2.4) poses an initial
value problem and many different paths may be produced
by using different initial conditions. Exploiting the valid-
ity condition of quantized ATDHF it has been shown
that in case of fusion and fission processes the saddle
point is the appropriate initial condition.

The actual solution of Eq. (2 4} is done by finite step
methods yielding a discrete series of points q„and states

I
4„). Here, it is most convenient to choose 5q such that

c(q)5q = —@=constant. This yields for the single parti-
cle wave functions p'"'(r ), associated to

I 4„), the basic
ATDHF equation in a three-dimensional r grid

y'"+ "(r ) =qr'"'(r )—e[l —po(n)]

d
Hc q

d R d + &(q) —Z(q)
a=1

(2.13)

The Wo(n) and W, (n) are given by
(2.6)L(L+1) .26 q

(2.14)Wo(n) = — 7' +Trupo(n),2'
Wi (n) =Tru[ Wo(n) po(n)] .

In the above equations the index ph indicates the 1p-1h
and 1h-lp part of an operator with respect to

I @~). The
Q(q) is given by

r

(2.15)

Q(q)=
Bq

H~g(q), (2.7)

with the classical potential

v(q)=(e, IH Ie, ) . (2 8)

The BKN force and its generalization, to be introduced
below, do not show a momentum dependence, thus they
have an effective mass m'/m = 1 and W& (n) =0.

Actually, depending on which side of the saddle point
one starts with

I @„o&, the states
I @„& approach for

n —+Do the Hartree-Fock point of the compound nucleus
or the asymptotic state of two fragments, which are near-
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y~"+"(r ) =(p'"'(r ) —ego(n)q&~"'(r ), (2.16)

which is also known as the "gradient method" or
"imaginary time-step method. " The Hartree-Fock calcu-

ly Hartree-Fock states interacting via the Coulomb force
at slowly increasing distance. Hence, with n —+ oo in each
of two calculations, the full potential energy surface, mass
parameters, etc., are evaluated. If one is only interested in
obtaining the Hartree-Fock state one can use an approxi-
mation for Eq. (2.12)

lations in the next section are performed with this approx-
imation, improved by accelerating techniques.

III. THE TYCHO-BODY INTERACTION

At present, dynamical calculations in three-dimensional
grids can only be performed using rather simple effective
forces without exchange terms. An interaction which has
been in use for several years was introduced by Bonche,
Koonin, and Negele. For a given one-body density distri-
bution po( r ), normalized to the total nucleon number, the
corresponding energy density reads

t.(-. )+-', t.p'.(-. )+ —,', t,p +'(-r)+-'I (-. )
'""

I
' '

I /', -')d'-'
f
r —r'I/a

+ ,' e'p—o(r )f d'r ' .
o( r ')

fr —r'I
Here, we have introduced the free parameter a in the density dependent term; the original BKN force had a = 1.

The corresponding Hartree-Fock Hamiltonian is given by

(3.1)

$Vo(r, r ') =5(r —r ') — V + , topo(r )+ „—(a+2—)t3po '(r )

1 ( )
exp( —

I
r —r'I/a) (,)d3 d3, 2 po(r )

y J pQ r pQ r r r + 4 e d r ~

fr —r'I/a fr —r'f (3.2)

The total energy is given either by

E = &@HF I
H

I
C&HF& =fE(r )d r

or by

(3.3)

E=-'Z&~ I—
a=1

f2 ~'+ II'o
I V &+Em

2m
(3.4)

with the rearrangement energy

t3
E~ ———a fd rp+(r).

32
(3.5)

Actually, in most applications in the literature the BKN
interaction is used without applying center-of-mass
corrections to the Hartree-Fock ground state and ignoring
the Coulomb force, although both effects are not negligi-
ble for single nuclei as well as for heavy ion systems. One
may take them into account by considering as ground
state energy

I

of the interaction for the description of this process
should therefore be given by the reliability with which the
interaction reproduces the relevant measured quantities.
We have checked the quality of the parametrization given

by Bonche, Koonin, and Negele as we11 as that given by
Kohler' by comparing the calculated values to experi-
ment in the mass region of interest here, i.e., for A (40.
For the sake of completeness we have compiled their pa-
rameter values in columns 3 and 4 of Table I.

In addition to the binding energy E, we look for the
form of the density distribution. The fusion process
under investigation is certainly dominated by the exten-
sion and by the surface width of the distributions. In par-
ticular, the latter quantity should play an important role
since it is the strong interaction of overlapping tails which
helps to overcome the Coulomb repulsion. As a measure
for the nuclear extension we take the diffraction radius
R~. This radius is determined from the momentum
transfer k~ of the first diffraction minimum in the elastic

Es.. =&~'HF
I
If

I
@HF& —

2 ~ &~'HFI ~
I
@»&

—& 2e &~'HFI J I@HF&
i=1

(3.6)

TABLE I. Parameter values of the finite-range Yukawa in-
teraction (Ref. 3). The resulting Hartree-Fock Hamiltonian and
the total energy are given in Eqs. (3.1) and (3.2), respectively.

where the direct Coulomb part is contained in H. With
the last term in Eq. (3.6) we also take into consideration
rotational corrections which must be applied to deformed
nuclei.

The fusion process is governed by the energy of the
fragments and compound nucleus and by the spatial mass
distribution functions of the nuclei. The appropriateness

to (MeVfm')
t3 (MeVfm'+ )

V, (Mv)
a (fm)

This paper

0.25
0.

14 316.2
—5998.64

0.2786

BKN
(Ref. 3)

1.00
—497.73
17270.0
—363.044

0.4598

Kohler
(Ref. 8)

0.33
—1072.14
14203.0
—517.01

0.4598
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electron scattering form factor in the spirit of Helm's
model' for the charge distribution, i.e., R~=4.493/k!, as
described in Ref. 11. This radius corresponds to the
droplet-model radius; for light nuclei it has a value of ap-
proximately 1.12M '~ fm. The surface width o is extract-
ed from the height and the position of the second form
factor maximum according to the prescription given in
Eq. (12) in Ref. 11. In that definition it has a value
around 0.9 fm, being systematically smaller for light nu-
clei. In Fig. I we also compare the calculations to the
more familiar rms radius. In the picture of the Helm
model' the form parameters are related to each other by

( r ) = , Rd f 1—+5(cr /Rd ) ] . (3.7)

Equation (3.7) shows that the rms radius mixes up the in-
formation about the nuclear extension Rd with that about
the surface width o, in particular, in light nuclei where o
is comparable to Rd. In Fig. 1 we show results for 4n nu-
clei between ~He and 40Ca.

One realizes underbinding of 5% to 12% for
16&3 &40 and about 23% for ' C. Since these deficien-
cies are strongly A dependent one is bound to obtain poor
potential energy surfaces for heavy-ion collisions since
fragments and compound states are not equally well (or
poorly) described. Apparently, Kohler's force is not of
better quality in this respect.

The nuclei are predicted by both the BEN and the
Kohler force to have too large extension Rd. The BKN
force gives substantially too small surface widths. %lith
this force the two deficiencies in the extension parameters
Rd and o. just cancel in the determination of the rms ra-
dius which, for ' 0 and Ca, is reproduced extremely
well by this force. However, the small surface width is

TABLE II. Height and position of the barrier. The position
8& and height H~ of the barrier are given for the new set of pa-
rameters given in Table I, for the parameters from Ref. 3, and
for a phenomenological potential fitted to fusion data involving
sd-shell fragments.

Rg {fm}
H~ (MeV}

This
paper

8.53
10.07

BKN
(Ref. 3)

8.16
10.59

Phenom enological
(Ref. 23)

8.6
10.0

bound to yield too large Coulomb barrier heights in
heavy-ion collisions and therefore strongly suppresses
sub-barrier fusion. The Kohler parametrization gives a
good surface width; the poor reproduction of the rms ra-
dii is only due to that in Rd.

In order to improve upon the BKN parametrization we
increased the flexibility by introducing the free parameter
a in the density dependent term and then determined the
five free parameters a, to, t3, V», and a by fitting them to
the relevant measureable observables E, Rd, and o. in ' 0
and Ca in a g minimizing procedure. ' The experimen-
tal values are taken from Refs. 14 and 11. The calcula-
tion for the fit is performed with a fast Hartree-Fock code
where we also take into account the direct part of the
Coulomb interaction and where we correct the total ener-

gy by subtracting the translational spurious energy. The
resulting density distribution is then Fourier transformed
to give the form factor from which we extract the form
parameters Rd and o just as it is done with the experi-
mentally determined charge distributions. " The finite ex-

I I I I I 'I I I I I I I I I I I I I I I I I I I I I ! I I I I I

2Q% Arms
rms

10 c/o f
g 4
I

1

I

1

1

1

6

b- —Cl

BKN force
Kohler's force

new force
I I I I~ I I I ! I I I I I I I ! I I I I I I I I I I I I

0 12.162020283200

FIG. 1. Binding energy, diffraction radius, rms radius, and
surface width: relative deviation between experimental values
and calculations with different finite-range Yukawa interac-
tions. The Hartree-Fock calculations include the direct
Coulomb force and center-of-mass corrections. Positive values
of AE/E indicate underbinding. The diffraction radius and the
surface width are determined by means of the elastic electron
scattering form factor (see the text for details).

experiment
this analysis
BKN
Kohler

—7-- T

'I 2 3 4
q (fm )

FIG. 2. The elastic electron scattering form factor of ' 0 de-
fined as the Fourier transform of the charge distribution. The
experimental result is taken from Ref. 25. Kohler's force yields
the largest diffraction radius (first minimum at the smallest
momentum transfer), and the BKN parameters yield the small-
est surface width (largest form factor in the second maximum).
The high Fourier components are not well reproduced by any of
the forces.
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FIG. 3. The charge density of ' O. Nomenclature as in
Fig. 2.
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tension of the nucleons is taken into account appropriate-
ly.

Since both to and V„describe to some extent the same
nuclear properties, the g minimum turns out to be ex-
tremely flat in the to V» plane -having an asymptotic
minimum for to~+ ao and Vz ~—Oo. Since this
asymptotic minimum is only slightly lower than the 7
value at small to we have chosen arbitrarily the value
to ——0. The remaining four parameters are then deter-
mined by the minimum in 7 . The resulting set of param-
eters is given in column 2 of Table II.

The new parametrization of the generalized BKN force,
allowing for a&1, has a substantial effect on the nuclear
ground state data of light nuclei as is demonstrated also in
Fig. 1. For ' 0 and Ca all given data are noticeably
better reproduced by the new interaction than by the oth-
ers. For all 4n nuclei in the ra~ge 16&A &40 the calcu-
lated binding energy deviates from the measured values by
less than 2%%uo. We do not show Rd and cr for the nuclei
known to be deformed since here the spherical calculation
is inappropriate, in particular, with respect to the surface
width o.. For ' 0 and ~Ca one notices a lowering of the
diffraction radius and an increase of the surface width
with the new parametrization. The rms radius is compa-
rable in quality to those mlculated with the other two
forces. The important distinction between the forces lies
in their ability to reproduce extension and surface width
separately. Actually, for He and ' C all interactions are
rather poor (results for Be are not given at all since this
nucleus is unbound in nature whereas the ordinary micro-
scopic forces yield a bound system).

In Figs. 2 and 3 we compare the charge distribution and
its Fourier transform directly to the measured results.
The improvement with the new set of parameters is clear-
ly visible.

IV. COLLECTIVE MASS AND POTENTIAL

As an application of the new force to heavy ion col-
lisions we consider the fusion process ' 0+ ' 0—+ S.
Starting from the saddle point, the ATDHF equation

FIG. 4. The quantized ATDHF potential V(R) —Z(R) and
the mass parameter M (R) for the ' 0 + ' 0 collision versus the
distance R between the ions. The new parameter set yields a
lower barrier height and (in agreement with the measured bind-
ing energy of S) a stronger binding of the compound system.
In addition, the mass parameter is less structured with the new
force.

[(2.4) or (2.12)] is solved by finite-step methods using a
step size of M =by=M=1 fm. Details of the Fourier
components in the wave function for A' k /2m & 100 MeV
are ignored. Accordingly, e is close to 10 MeV . Fur-
ther details of the numerical procedure can be found in
Refs. 2 and 5.

In Fig. 4 we show the resulting mass parameter M(R)
and the quantum mechaniml collective potential
V(R) —Z(R) for Eq. (2.6) calculated for both the BKN
and the new parameter set. The collective mass parame-
ters look somewhat similar for both forces. They have
bumps at rather the same positions; their heights, howev-
er, are different. Apparently, in accordance with the
larger surface width the changes of the internal wave
functions take place over a larger range of distances be-
tween the two colliding nuclei and this leads to broader
peaks with reduced heights. For the collective potential
two features should be pointed out. First, the height of
the barrier is reduced for the new force due to the notice-
ably larger surface width. Second, the potential with the
new parameters is deeper for R =0 due to the stronger
binding of the S nucleus (cf. Fig. 1) which is in agree-
ment with the measured value. We shall see that the sum
of all these effects changes the fusion cross section quite
drastically.

We could also have performed calculations of the po-
tential and the mass parameters using Kohler's force. '

However, the calculations with the three-dimensional
ATDHF code are rather time consuming and we pre-
ferred the BKN force for a detailed comparison since this
force is mostly used in the literature. The larger surface
width with Kohler s force should lead in the right direc-
tion.
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V. SUB-BARRIER FUSION CROSS SECTION

Having evaluated V(R), Z(R), M(R), and e(R) for
the ' 0+ ' 0—+ 8 system the full Hamiltonian is avail-
able. From this the sub-barrier fusion cross section can be
calculated by generalized WKB techniques. The

I

TL, (E, )=[I+exp(2II )]
with

(5.1}

transmission coefficient at the c.m. energy E, ~ is given
by

b
Il.(E, ~ )=f ([2M(R)lfP]I V(R) —Z(R)+[A' /26(R)]L(L+1) —E, I

)'~2dR, (5.2)

S(E, )=E, re (E, }exp(2nZ&Z2e /A'u) (5.4)

"Q + "Q subbarrier Eusior}

quantized ATDHF

where a and b are the classical turning points.
The fusion cross section for identical incident nuclei is

then given by

m62
cr& (E )= g [1+(—) ](2L+1)T&(E ) .

2PEc.m.

(5.3)

Instead of crt„„below the barrier one normally refers to
the astrophysical S factor defined by

I

where U is the relative velocity of the ions. The astrophys-
ical S factor is preferred for sub-barrier fusion since one
thus takes out the dropping by several tens of orders of
magnitude present in the cross section due to the trivial
penetration through the Coulomb barrier; thus the S fac-
tor reveals in a more transparent way the influence of the
nucleon-nucleon interaction.

In Fig. 5 we show the astrophysical S factor for the re-
action under discussion, again calculated with both the
BKN and the new parameter set: one realizes a drastic ef-
fect on the S factor. With the new parameters, the S fac-
tor is larger by a factor ranging from 2 at E, = 10 MeV
up to 4 at the lowest measured energy of E, =7 MeV.
The agreement with the measured data is not so good that
we must emphasize here that the parameters have not
been fitted to these data, nor to any data of this kind. In
contrast, they have just been fitted to appropriate infor-
mation on ground state charge distributions available

26
10 Barrier Penetration

160 + 160

BKN

y O

1
~ J ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~

quant. ATDHF: M(R)fp Z(R)$0

10

e.rn. ENERGY (MeV)

FICz. 5. The astrophysical S factor for the sub-barrier fusion
of ' 0+ ' Q. The nomenclature for the curves as in Fig. 4.
The data points are taken from Ref. 24. Note that the continu-
ous curve is not fitted to these data.

c.m. Energy (MeV)

FIG. 6. The sub-barrier fusion cross section calculated with
various approximations compared to the full quantized ATDHF
result. The approximations indicated on the different curves
refer to the corresponding approximations in the evaluation of
the transmission coefficient with Eqs. (5.1) and (5.2).
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from elastic electron scattering cross sections.
It is interesting to investigate the effect of the variation

of M with R, i.e., the deviation of the mass parameter M
from the reduced mass of the system, and the importance
of the quantum corrections Z(R) for the sub-barrier
fusion cross section. In Fig. 6 we show various approxi-
mately evaluated cross sections as their ratio to the quan-
tized ATDHF calculation versus center-of-mass energy.
The approximations concern the various terms in the
penetration integral of Eq. (4.2). It is obvious that at en-
ergies well below the barrier it is indispensable to account
for the R-dependent mass M(R) and for the quantum
corrections Z(R). These findings, which have already
been discussed by Urbano et al. ' in a simple model, are
particularly important for the evaluation of thermonu-
clear burning rates.

VI. FUSION ABOVE THE BARRIER

The fusion above the barrier cannot be calculated reli-
ably by penetration models since besides fusion and elastic
scattering many excitation channels are open giving rise to
dissipative effects. A reasonable approximation consists
of a classical trajectory calculation using a phenomenolog-
ical friction force. If for a certain relative angular
momentum I. the trajectory is trapped for an energy
E,~, one assumes for the transmission coefficient
TL, (E, )=1, otherwise TL ——0. The final fusion cross
section is then again calculated by Eq. (4.3).

For the present calculation we apply the model of
Gross and Kalinowski' which uses the equation of
motion

1250

60 )60 32S

above barrier

—0.86&, '", y, =o.S4 fm.
The trajectory calculations are performed with the fric-

tion coefficients K~ ——4 && 10 sec MeV ' and
E =0.01 & 10 sec MeV '. The resulting fusion cross
sections are shown in Fig. 7. Again, the V(R) and Z(R)
have been calculated with the BKN parameters and also
with the new interaction determined in this paper. The
theoretical curves in Fig. 7 are to be compared with the
experimental data' whose spreading is due to different
evaporation residues considered. As in the case of sub-
barrier fusion the new parameters give good agreement
with the experimental data, whereas the BKN force again
yields too small cross sections. The differences again are
due to the different surface properties and binding ener-
gies, which in particular lead to a higher saddle point for
the BKN force which, obviously, is at variance with ex-
periment. When stating this we take it as a second re-
markable result that the adiabatic theory is applicable also
above the barrier if a suitable friction force is used. In the
present example the agreement with experimental data
holds even for energies up to E, =50 MeV. Altogether
it is clearly demonstrated that the microscopic and funda-

[M(R)R]— R — y + +KR'
dt 2dR 2dR dR

1000—

dt
[e(R)j]+K~j =0 .

=0, (6.1)

750—

Here, K~ and K+ are the radial and tangential friction
coefficients, respectively. The main energy loss is
described by Eq. (6.1). Equation (6.2) describes the loss of
angular momentum connected with some additional loss
of (rotational) energy; angular momentum is conserved in
the fusion channel if L+——0. The friction coefficients are
parametrized as

500—

250—
new force

BKN force

K~ Kg(V Vf, ), Kq ——Kq—(—V'Vr, ) (6.3)

Here, Vr, measures the geometrical overlap of the single
particle potential of the target with the nucleon density of
the projectile'

0.02

I

0.0/+ 0.06

t

0.08

Vr, (R ) =f V, (R—r )p,(r )d'r,

with V] and p2 having Saxon-Woods shape:

V~(r ) =a~/{ 1+exp[(r —/3&)/y&] j,
p2(r ) =a2/I 1+exp[(r —P2)/y2]] .

(6 4)

(6.5a)

(6.5b)

The parameters are a~ ———50 MeV, /3~
——1.25A I fm,

y ~
——0.65 fm, and a2 ——0. 17 fm, /32

——1.12A 2

E,. (wev )

FIG. 7. Comparison of the theory with experiment for
' 0+ ' 0 fusion above barrier as a function of the inverse of the
center-of-mass energy. Both curves are obtained by trajectory
calculations involving the quantized ATDHF potentials
V(R) —Z(R) and a phenomenological friction force (Ref. 16)
fitted to the available fusion data of sd-shell nuclei. The calcu-
lation with the new parameter set is in excellent agreement with
the data (for the scattering of the data see the text).
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mental theory combined with a well founded phenomeno-
logical friction approach does work.

If one replaces in Eq. (6.1) the quantized ATDHF po-
tential V(R) —Z(R) by a phenomenological one-folding

otential U(R) of the form [Eqs. (6.4) and (6.5)] one ob-
t ins the phenomenological friction model of Gross andains

'hKalinowski. A detailed comparison of this model wit
the experimental data on fusion above the barrier and on
deep inelastic collisions has shown that the phenomeno-
logical nucleus-nucleus potential is wel1 described by the
one-folding formulae with parameters for the collision of
sd-shell nuclei' a = —40 MeV, P&

——1.252 I fm, and

y&
——0.45 fm, whereas the a2, Pz, and yz are as above.

The agreement of the theoretical results with the fusion
data measured above the barrier is good for available sys-
tems and qualitatively like the one shown in Fig. 7. This
fitted phenomenological potential U(R) is compared in
Fig. 8 with that from the quantized ATDHF calculation,
V(R) —Z(R), and we find a striking agreement. This
demonstrates that the single folding potential U(R) in-
cludes realistically many-body effects as far as they are
relevant for fusion above the barrier. Of course, particu-
lar systems can deviate from the average trends; then it is
necessary to incorporate these deviations as discussed in
Ref. 16. It is also interesting to note from Fig. g that the
proximity potential calculated in Ref. 23 is only one-third
of the quantized ATDHF and single folding potentials.

In Fig. 9 we demonstrate the effect of various approxi-
mations in Eqs. (6.1) and (6.2) by comparing the full solu-
tion to the approximations M(R) =p (reduced mass) and
Z(R)=0, respectively. One realizes that the three cases
give rather similar results, in particular, as compared to

1250

&6 16 32
0+ 0-S

above barrier

1000

0

750

500—

8"(R)-Z(R), w(R)

V(R)-Z(R), g

——— V(R), X(R)

I

0.02

E,.(~eV )
FIG. 9. Comparison of trajectory calculations involving vari-

ous approximations with the full solution (fu11 curve). The un-
certainty in the data is larger than the difference between the
different approximations, therefore any of the approximations is
acceptable here.

C3

CL

15—

the scatter of the data. This shows that fusion cross sec-
tions above the barrier are not very sensitive to the mass
parameter and also not to the slight deviations of V —Z
from V in the vicinity of the saddle point. Actually, this
feature is quite different from the situation below the bar-
rier, as has been discussed in the context on Fig. 6. The
slight increase of the fusion cross section above the barrier
with R-dependent mass M(R) as compared to M(R)=tM
can be understood easily. On the way in, the M(R) is
increasing with decreasing R, hence the force
——'(dM/dR)R in Eq. (6.1) is positive and helps to over-2

come the friction and the Coulomb repulsion. Thus, the
penetrability is enhanced yielding a larger fusion cross
section.

10 15

tance of the ions (fm)

—10--

ATDHF potential

phenom. (s-d) potential

proximity potential

point Coulomb potential

FICx. 8. Comparison between the quantized ATDHF poten-
'

1 f r the ' 0+' 0 collision, the proximity potential, and a
f. 23).phenomenological potential fitted to sd-shell nuclei (Re . ).

VII. SUMMARY AND CONCLUSION

The present paper is concerned with the fusion cross
section at low energies. The theoretical description of the
process is based on three ingredients: (i) a suitable micro-
scopic theory, (ii) a proper microscopic interaction, and
(iii) an appropriate friction force for energies above the
barrier. It turns out that, indeed, the experimental data
can be reproduced surprisingly well from the lowest mea-
sured energies up to E, =50 MeV if each of the three
ingredients is chosen carefully.

The microscopic theory is the quantized ATDHF ap-
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proach which is solely based upon an adiabatic assump-
tion and variational principles. Up to now it was by no
means clear whether this was an appropriate approach to
the problem since the calculations had failed to reproduce
the measured data. Agreement with the sub-barrier data
is achieved with this theoretical approach by using a suit-
ably chosen interaction, namely a force which reproduces,
in particular, the surface widths and the binding energies
in the mass region of interest in the process, i.e., in partic-
ular for the compound nucleus and the incident frag-
ments. This force is obtained by fitting the parameters of
a generalized BKN interaction to measured binding ener-
gies and to elastic electron scattering form factors. In the
latter we put emphasis on the nuclear extension and on
surface properties as given by the diffraction radius and
the surface width. In particular, the force is not fitted to
the rms radius which only gives a mixture of extension
and surface width. As a result of the fitting procedure,
the power of the density in the density dependent term has
been chosen as +=0.25. It is this parameter which allows
for larger surface widths in agreement with experiment.
The new interaction yields a potential energy surface with

a lower barrier at greater internucleus distance than that
obtained with the Bonche-Koonin-Negele parametriza-
tion. This energy surface is in good agreement with
phenomenological potentials fitted to fusion data of sd
shell fragments by means of trajectory calculations.

With this approach the sub-barrier data for E, be-
tween 8.5 and 10 MeV are reproduced so precisely as if
the calculation were fitted to these data. This not being
the case, one might be allowed to take seriously the devia-
tion between the calculation and the data around 7.5 MeV
which now looks like a structure in the fusion cross sec-
tion. Here one would like to have a few more data points
at lower energies.

We have completed the approach to fusion by taking
into account a phenomenologically determined friction
force. Using this force in a trajectory calculation with the
potential taken from the quantized ATDHF approach we
also find agreement with experiment for fusion several
tens of MeV above the barrier. Here, the quantum correc-
tions and the dependence of the mass parameter on the in-
ternucleon distance do not play as an important role as
they do in sub-barrier fusion.
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