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In this paper, the problems of nonorthogonality and possible overcompleteness in the resonating

group method equations are treated by explicitly symmetrizing previously developed
distinguishable-particle methods. It is shown that the orthogonalized resonating group method
equations are equivalent to the two-cluster-subspace projections of a symmetrized set of multiparti-
cle scattering equations with distortion operators. The result of the analysis is the conversion of the
resonating group method to an in-principle, convergeable approximation scheme. Corrections to the
resonating group method from three-cluster contributions are briefly discussed.

I. INTRODUCTION

In going beyond semiphenomenological methods, such
as the optical model or distorted-wave Born approxima-
tion (DWBA), standard reaction theories' work with a
variational ansatz for the wave function. This wave func-
tion is constructed as a sum of terms, each of which is the
product of the bound states of the clusters in some two-
cluster channel and an arbitrary relative-motion wave
function.

The variational principle which determines these arbi-
trary wave functions leads to a set of coupled equations.
As applied to rearrangement reactions, these equations are
known as coupled reaction channel (CRC) equations.
When a completely antisymmetrized trial wave function is
used they are known as resonanting group method (RGM)
equations.

Both rearrangement and antisymmetry mean that the
asymptotic regions of interest cannot be described by a
single asymptotic Hamiltonian for the free motion of the
two clusters. Hence, the natural basis states for the prob-
lem are not orthogonal. As a result, the dynamical equa-
tions contain nonorthogonality (NO) terms. These terms
are proportional to the overlaps of the bound cluster states
in different arrangements. It is essential to retain these
terms in the CRC or RCxM equations if one wishes to
treat the nonorthogonality of the basis correctly.

The CRC and RCxM formalisms are designed to treat
two-cluster final states. Many-cluster final states are
most easily described by the equations of multiparticle
scattering theories, which incorporate both the complete
set of asymptotic boundary conditions and a mathemati-
cal formalism that yields, in principle, unique solutions.

If one wishes to extend the CRC or RGM to include, e.g.,
three-cluster final states, such theories provide a natural
means for doing so.

In a previous paper it has been shown through an
orthogonalizing procedure how to embed the CRC equa-
tions into a multiparticle scattering formalism. ' In a
separate work it has also been shown how to antisym-
metrize wave function descriptions of multiparticle
scattering. " Our purpose in the present article is to com-
bine these two procedures and show how to embed the
RGM equations into an antisymmetrized multiparticle
collision theory. This establishes an expected connection
and provides a framework for exploring, in a convergeable
formalism, breakup corrections to the RGM.

This paper is organized as follows. In Sec. II, we re-
view the orthogonalizing procedure for the case of distin-
guishable particles, while in Sec. III we extend this pro-
cedure to include the effects of particle identity. We ap-
ply these latter results, yielding the orthogonalized RGM
equations, in Sec. IV. In Sec, V the symmetrization pro-
cedure" is reviewed and applied to the N particle, distort-
ed wave function component equations developed by
Levin these are the same equations used in Ref. 10. In
Sec. VI we show how to choose the distortion operators
introduced in Sec. V so that the two-cluster projection of
the symmetrized multiparticle equations yield the RGM
equations. The embedding of the RGM equations is ac-
complished in Sec. VII by means of a two-potential rela-
tion. Corrections due to three-cluster contributions are
discussed in Sec. VIII, where it is shown that Faddeev-
type techniques must be introduced in order to solve the
resulting three-cluster equations. Our results are briefly
summarized in Sec. IX, and the paper concludes with a
technical appendix.
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II. REVIEW OF THE UNSYMMETRIZED
ORTHOGONALIZING PROCEDURE

in a subspace consisting of a chosen set of two-cluster
channels. By a channel we shall mean a product of given
bound states, denoted Pp~. We use P to signify a specific
two-cluster partition and m as the set of relevant quan-
tum numbers. Corresponding to each is a decomposition
of H into an asymptotic channel Harniltonian Hp and a
channel interaction V~:

H =Hp+ V~, all P . (2.2)

In this section we review those portions of Ref. 10
necessary for the later development of this paper and in-
troduce relevant notation.

We wish to solve the Schrodinger equation

(E P—~HP )P /=0. (2.9)

Ppgp Pp——& (2.10)

An alternate set of unique quantities, the projections, are
defined by

(2.11)

and are related to P /by

P P=H 'QPpgp.
P

(2.12)

The components pp and the projections g~ are, respec-
tively, right- and left-hand dual eigenvectors of the non-
Hermitian operator P~H 'HP&. They are related by

The quantities f& are not always uniquely defined. As
discussed in Ref. 10, a set of unique components can be
defined using H

V~ contains all intercluster interactions and H~ governs
the motion of the system when V~=0.

From the p~ one can construct two-cluster projection
operators Pp in the usual manner. The standard CRC
equations approximating (2.1) then take the general
form2 —6, 10

6= X A~r&r
r

where

Apy ——Pp& Py .

(2.13)

(2.14)

Pp(E H) Q Pr—fr 0, —— (2.3)
The A~r are the generalized inverses of the NO kernel and
obey

which leads to Apr Ppr —g——5~pPEA, r, (2.15)

(E H~)P~6 —'= P~X I' Pr&r'
y

—g (E Hp)5prPpP—r Pr . (2.4)
y

The factor 5p~P~Pr is the nonorthogonality (NO) over-
lap, where 5py ——1 —5py. Applications of these equations
to nuclear reactions can be found in Refs. 2—6.

By Eq. (2.3), the CRC ansatz

ycRc yp qcRc

y

is an approximate means of restricting the Schrodinger
solution '0 to the subspace spanned by the chosen two-
cluster channels. We shall refer to this subspace as the
model space. As in Refs. 10 and 13, we define P to be
the projector onto the model space. We introduce

(2.5)

Ppr Pp& '——Pr . (2.16)

If there is no overcompleteness among the states P~

Ppy ——6pyPp .

In the case of overcompleteness, Ppy is given by

P~r =5~rPr &~r—

(2.17)

(2.18)

gg, =o.
(2.19)

where Qpr projects onto the space of spurious com-
ponents. A vector of spurious components gr is one
which obeys

and its generalized inverse' H ' which satisfies

'H =P
Since

(2.6)

These equations apply even if the particles are identical,
although they are awkward to use because all the ex-
change equivalent partitions are included explicitly, re-
sulting in an unnecessary duplication of equations. In
Sec. III we show how to reduce the number of equations
for the identical particle case.

PpP =P~Pp ——Pp (2.7)

and any model space wave function P g can be expanded
as

III. NONORTHOGONALITY
AND PARTICLE IDENTITY

P &= XP~6
P

the CRC equations follow from

(2.8)

In this section we will discuss the identical particle case
using the techniques of Bencze and Redish' applied to
the previous analysis. These techniques apply to both fer-
mions and bosons; the term symmetrization will be used
to cover both cases.
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We begin by replacing the partition labels p by
equivalence class labels b(j), whe«& refers to a generic
I-cluster partition, and 0(j &Nb labels the members of
the class. The set Ib(0) I is the set of canonical labels. '

The permutation operator which converts a state of parti-
tion b{j) to one of b(k) is denoted Pb(k)b(j), where the
caret signifies the presence of the relevant fermion phase
factors. The projector onto internally symmetrized states
in partition b(j) is denoted Rb(j). Finally, the full nor-
malized symmetrizer is R, given by'

Similarly, the projections pb(j) are given by

Pb(j)fb(j) + NbPb(j)PA (t ~ (3.13)

Pb(j)A(j)
—1/2

b,j
+Nb ~ RPb( o)A( 0)'

b

(3.14a)

(3.14b)

The antisymmetrized wave function P„(tj is expressed in
terms of the gb(j) by

b

Pb(j)b(k}Rb(k) ~

+b j=o
(3.1) The projections are related to the components by

Pb(og'b(o) = g (NbN» ) Pb(o)RP»(oA'a(o)
1/2 (3.15)

where Nb ——Xb+ 1.
The internal states pb(j) projected onto by Pb(j) are as-

sumed to be symmetrized, so that
while the inverse relation can be written

Pb(o)fb(o) g Ab»P»(p)kd(0) ~ (3.16)
Rb(j )Pb(j) Pb(j)Rb(j) =Pb(j)

As before, we define

g Pb(j) ~

b,j
its generalized inverse to be H ', and P by

(3.2)

(3.3)

(3.4)

where

Aba = (NbN»)' Pb(p) H RP(p) . (3.17)

g (NbNd ) Pb(o)RPo(p)Aad Pbd (3.18)

The generalized inverse Aba can be determined from

P is the projector. onto the unsymmetrized model space.
Since P and H contain internally symmetrized states

from all members of all equivalence classes, the relations

~here

Pbd (NbNd ) Pb(o}+ R d(p) (3.19)

PP =P„P, (3.5) The matrix of Pbd s is a projector, i.e., it is Hermitian and
satisfies

PH=HP,
Pe '= e )P,-- (3.6)

(3.7)
g Pb»P»a =Pb.

d
(3.20)

Pg ——RP

The analog of Eq. (2.8) is

j m
PA Q g V Nb RPb(p) Pb(p)

(3.8)

(3.9)

By definition, the components in noncanonical partitions
are

where P is any permutation operator, are intuitively obvi-
ous. Detailed proofs are given in the Appendix.

Let us now introduce the projector P~ onto the fully
symmetrized model space:

an equation easily proved on use of (3.19).
The operator Pbd can be written as

Pbd ~b»P» (0) Qbd (3.21)

where Qbd projects onto the space of spurious states.
These consist of Pauli forbidden states as well as over-
complete states. Such projectors have previously been dis-
cussed by Saito. ' Note that Pauli-forbidden states only
occur when Slater determinants are used to represent an
antisymrnetric wave function. '

Pb(j) Pb(j)b(o)A(o) ~

so that use of (3.10) in (3.9) yields

p„p= +jr I/NbPb(j)pb(j) .
b,j

(3.10)

(3.11)
(E PgHPg )Pg P =0— (4.1)

IV. ORTHORONAI. IZED RAM EqUATIONS

The standard form of the RGM equations * follows
from

j
Pb(J)gb(j) + NbPb(j)~ PAW ' (3.12)

As in the unsyrnmetrized case, we may introduce
unique components Via by expanding as in Eq. (3.9) and projecting with

Nb Pb(0). This leads to a set of equations involving only
canonical labels:

X I «NbN») '
Pb(p}RP»(o) (NbNd )'"Pb(o}H—RP»(o) IP»(o)A(o) =0 . (4.2)
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Applications of these equations are discussed by Tang, LeMere, and Thompson.
As in Sec. II, equations for unique components and projections can be derived. The equations for the components can

2be obtained by operating on (4.1) with N I, Pb(p)H
' and using Eq. (3.12):

g [E&bd (N—bNd) Pb(p) ~ +HPd(o)]Pd(p)gd(p) =0
d

which is the form of (4.2) obtained by inverting the NO terms and requiring that Pd(p)fd(p) be nonspurious.
1/2Similarly, the equations for the projections are obtained by using Eq. (3.13) and acting on (4.1) with N b Pb(p)..

(4.3)

g [E5bd (Nb—Nd)' Pb(o)HRH 'Pd(o)]Pd(o)fd(o) —0 . (4.4)

The components and projections are easily seen to be right- and left-hand dual eigenstates of pb(p)H gHpdIo), in strict
analogy to the CRC case. Similar equations have also been derived by various authors using other techniques.

The detailed structure of (4.3) can be made more explicit by writing H as H =Hd(p)+ V ' ' and using Eqs. (3.19) and
(3.21):

Hd(o))+~bdHd(p) (NbNd) Pb(o)~ +V Pd(o)]Pd(o)4(o) =0 ~ (4.5)

We will show in Sec V that (4.5) is the fo~ taken by the distorted version of the projected, symmetrized multipa~icle
scattering equations.

Yet another representation of the RGM equations can be obtained by using (3.14b) and projecting (4.1) onto
b b(0)

g [EAbd (NbNd ) —Pb(p) H 'RH H 'Pd(p)]Pd(p)pd(p) ——0,
d

(4.6)

where we have employed Eq. (3.17). By generalizing the methods of Ref. 18, this result can be shown to be an approxi-
mate form of the symmetrized equations developed by Goldflam, Kowalski, and Picklesimer. '

V. SYMMETRIZATION OF
MULTIPARTICLE SCATTERING EQUATIONS

In order to establish that the symmetrized version of a
rnultiparticle collision formalism can be reduced to Eq.
(4.5), we must first show how to symmetrize the equations
for the distinguishable-particle case. This procedure has
recently been described in Ref. 11,and we briefly review it
below. Although the procedure is general, we only con-
sider its application to the wave function component
equations introduced by Levin, ' since these are the ones
used in the unsymmetrized case of Ref. 10. These wave

I

function component equations have been variously re-
ferred to as extended Faddeev and as LBRS equations.

As in Ref. 12, the unsymmetrized solution of the full
Schrodinger equation, with incident waves in the two-
cluster partition a(i), is expressed as a sum of com-
ponents:

q' [~(&)l = g fb(j)[~(&)1
b,j

(5.1)

where b(j) is a general m-cluster partition label. These
components satisfy the following set of coupled, distorted
integral equations

U
(j)[ ] b(j)&(() ~(')+ b(j) g [ b b(j) b Ub(j) +~i(j)d(k)U N'd(k)[A(l)] ~

d, k
(5.2)

In this equation, N~(;) is an incident plane wave in the
partition (x(i); Gb(j)(E) is the usual outgoing-wave Green s

nbfunction (E+ Hb(j)) ', Cb ——( —1) —(nb —1)t, where nb
is the number of clusters in partition b(j); and Vb('j)' is
the set of interactions both external to d(k) and internal
to b(j).

The external interaction V"'"' and the distortion poten-
tial U ' ' are related to Vb('J)' and Ub(j)', respectively, by
the combinatorial distribution rules

Ud(k) ~ ' c Ud(k)
b(j)

b,j
(5.4)

In addition to satisfying (5.4), the distorting potentials
must be compact so that they do not interfere with the
treatment of the many-body boundary conditions. Apart
from these two requirements they are completely arbi-
trary.

A symmetrized solution to the full Schrodinger equa-
tion can be expressed in terms of the unsymmetrized solu-
tions by

and

Vd(k) ~ ' ( Vd(k)
b b(j)

b,j
(5.3) N

g ( —1) "qI [~(I)]
i=a

(5.5)



784 ADHIKARI, BIRSE, KOZACK, AND LEVIN 30

where oa(;) is the number of fermion exchanges needed in
the permutation of a(0) into a(i).

Using (5.1) and (5.5) we find that 'P (a) can be written
in terms of unsymmetrized components as

If we require that the Ub('j~)', like the Vb(J)', are label
transforming, ' then as shown in Ref. 11, itib(j)(a) and
1tb(0)(a) are related by

)p (~)= y ( —1) "i)'jb(j)[~(i)] .
QNa i, bj

(5.6)
S ~ S

4b(j)(&) Pb(j) b(0)gb(p) (~) ~ (5.9)

This can be simplified if we introduce o.-symmetrized
components defined by

4b(j)(~)—=+Nb/Na g ( 1) Pb(j)[~(&)l . (5.7)

qi (a)= g
b,j

s
Qb(j)(a) .

Nb

(5.8)

The normalization has been chosen to agree with that
used in Secs. III and IV. It differs from that of Ref. 11

by the factor (Nb/Na) The. symmetrized solution can
now be written

((x)= g QNbR Pb(p)(a)
b

(5.10)

Henceforth we will be working only with symmetrized
wave functions and will drop the superscript S.

From (5.2), (5.7), and (5.9), we can obtain the following
equations for the symmetrized components:

It can also be shown" that gb(j)(a) is internally sym-
metrized, i.e., it contains a factor Rb(j). Using this fact
and (5.9) it is easily seen that (5.8) is equivalent to

Xb
Pb (0)((Z ) ~bac a(0) +Gb(0) g

1/2

( V b
—U b +5bd U )pd(0)(a) (5.11)

where we have defined

d ~ d(k)
Vb ——Cb ~ Vb(p) Pd(k)d(p) .

k

(5.12)

VI. THE ROM CHOICE
OF DISTORTION OPERATORS

This is essentially the exchange interaction introduced in
Ref. 11. Similar definitions hold for the distorting in-

teractions Ub and U .
The symmetrization procedure outlined here has been

used as a basis for generating a new class of symmetrized
two-fragment, elastic scattering optical potentials. These
differ significantly from those defined by Goldflam,
Kowalski, and Picklesimer. ' A full discussion is given in
Ref. 11.

In this section we will show that by a proper choice of
the distortion operators, the orthogonalized RGM equa-
tions (4.5) can be obtained by a straightforward projection
of (5.11). The procedure followed is analogous to that of
Ref. 10. As will be shown in Sec. VII, this provides a way
to embed the orthogonalized RGM equations into the ex-
act N-particle formalism just discussed.

It is convenient to work with the differential equa-
tions obtained by acting on both sides of (5.11) with Gb(p)..

(E —Hb(0))fb(o)(a) = g (Nb/Nd ) ( Vb —Ub+5bd U")6(0)((z)
d

(6.1)

To obtain the bound state approximation to these equations we replace itb(0)((z) by Pb(0)gb(0)(a) and project each equa-
tion from the left with Pb(0). As in Sec. II, we keep only two-cluster channels: Pb(0) ——0 if nb )2. This yields

Hb(0)) (0b) bt(( ) 0() g (Nb /Nb ) b(0)~bd d(0)fd(0)(ix)
d

(6.2)

where we have introduced [using (2.7)]

8'bd ——P~V bPd(p) —U b+5bd U (6.3)

Ideally we would like to choose the distorting potentials so as to make the solution of (6.2) a good approximation to
the solution of (6.1), and hence to minimize the corrections to (6.2) from excluded channels. Since at present there is no
procedure available for making this choice, we follow the approach of Ref. 10 and require that (6.2) yield the same solu-
tion as (6.1) when it is projected onto the full (unsymmetrized) model space. This projected form of (6.1) is'

~b(0))Pb(OA'b(0)((z) g (Nb /Nd ) ~bd d(OA'd(0)(
d

(6.4)
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By restricting our attention to U's which satisfy

P UbPd(p) ——Ub

P U Pd(p)
——U (6.5)

the requirement that (6.2} and (6.4) be equivalent leads to
the condition that

The general solution can be written in the form

Ad
~b(j)d b(j)+ V d(0)+~b(j)d ~

where the 2's satisfy

~b(j )d Pb(j)~b(j)d ~

g Ab(j)d ——0 .
b,j

(6.11)

(6.12a)

(6.12b)

~bd Pb(p) ~bd (6.6)

+Pd(k)d (p)Pd (0)

so that IVbd ——Wb(0)d. Using (5.3) and (5.4) we find

(6.7)

Wb (j)d =P V Pd ( () )

b,j

Pd(k)d(0) .d d(k)

k
(6.9)

From the equations obtained from (6.2) and (6.4) by per-
muting with Pb(j)b(0), we can extend (6.6) to

b(j)d =Pb(j) Wb(j)d (6.10)

The solution of (6.8) and (6.10) now proceeds exactly as in
Ref. 10.

From (5.3) and (5.4), the W's must also satisfy a distribu-
tion rule. To obtain this rule we extend the definition
(6.3) to include noncanonical partitions,

Wb(j)d =Peg(Cb .Vb(j) —Cb Ub(j) +5b(j)d(k)U )
d(k) d(k) d(k)

k

Thus the A's are nonzero only when there are spurious
(overcomplete or Pauli-forbidden) states. The canonical
elements can be written

~bd (+d j+b } g Qba~odPd(0) ~ (6.13)

(6.14)

From (6.14) we obtain the following expression for the
U's:

Ad Ad
Ub ~bdU m VbPd(p) b(p)~ V Pd(0)

(~d»b}—'"g Qb.~.dPd(0)

To establish the identity with (4.5) we make the choice

and substitute (6.14) into (6.2). This yields

(6.16)

where the 8's are arbitrary operators. The general expres-
sion for 8'bd is thus

A d A A ))2 ~ A
~ed =Pb(o)~ V Pd(o)+(&d j&b) g Qb.&.dPd(0) ~

Xb
~bd(+ ~d(0)}+QbdHd(0)

d

Using (3.1), (6.9), and the label-transforming property of Vd'"', we find that

Pb(0)H V Pd(p) Pd(0) Pd(0)(+)
—1 d P

V Pd(p) ——NdRV Pd(p) .d d(p)

Hence, (6.17) can be written

g (4d(E ~d(0))+ Qbd~d(o) (~b&d )' Pb(0—)~ '& V ' 'Pd(0) jPd(0))t)d(0) =0 ~

(6.17)

(6.18)

(6.19}

The sets of equations (4.5) and (6.19) are identical in
form. Since the solutions of (4.5} with specified boundary
conditions are the unique nonspurious components (3.12),
the solutions of (4.5) and (6.19) must be identical. This
completes our demonstration of how the RGM is obtained
as an approximation to (5.11). It is now straightforward
to embed the orthogonalized RGM equations into the full
theory, a task we will carry out in Sec. VII.

VII. EMBEDDING OF THE RGM

1s

+p + ~pP ot('o =+0+P OG OLVOP 04 o

where

( P 0)bd Pb (0)obd

(00)b Wb(0)(+}

( @0}b @a(0)~ba

( 6 0)bd Gb(0)6bd

In matrix form, the orthogonalized RCxM equation (6.2)

In this section we carry out the embedding of the RGM
into the exact scattering equations. We use a matrix nota-
tion, as this will also prove useful in Sec. VIII.

and

( IV0)bd (+b j d } ~bd



786 ADHIKARI, BIRSE, KOZACK, AND LEVIN 30

Note that Po projects only onto model-space states with
two bound clusters, i.e., Pb~p~—=0 if b(0) is not a two-
cluster partition.

In this notation the exact equations (5.11) are

4o= @o+6o( Vo+ Uo)fo

where

(7.2)

and

( Vp )bd = (+b ~+d ) V b

P ohio= @o+PoG o( Vo+ Uo)(P o4o+Q ohio»

Q ofo=Q oG o( Vo+ Uo)(P oPo+Q o0o) .
(7.3)

With the distorting operators given by (6.14) and (6.15),
we have

P p(Vp+ Uo)P p ——LVo,

P o( Vp+Uo)Q o=P o VoQ o,

Qo(Vo+ Uo)P p QpQ Vp——Po,
Q o(Vo+Uo)Q o=Q oVoQ o

where in the third equation, Q =1 P. Usin—g (7.4) in
(7.3) we obtain

P ohio= @o+PoG oKoP o0o+P oG o VoQ o'|t'o

Q ohio= Q oG oQ VoP ohio+ Q oG o Vo Q ohio .

Equation (7.5a) can be rewritten in terms of the solution
of the RGM equation (7.1) and the RGM Green's func-
tions G o defined by

( Uo)bd (+b~ d) (~bdU Ub)

By writing g p=P pPo+Q ohio, where Q o
——1 —P o, we can

rewrite (7.2) as a pair of coupled equations for P pPp and

Qofo:

+o=Q Vo+ VogoGo+o (8.3)

Since we wish to focus on three-cluster terms, we write

Qo as

Q o=g o"+Q o (8.4)

where Q o
' projects onto one or at most a few three-body

continua, but not onto m-body breakup configurations
m &3. The assumption that corrections due to three™
cluster contributions are the most important means that
(8.4) is to be approximated by

Qo-=Qo' .(3) (8.5)

For simplicity, we will also neglect the nonorthogonality
corrections which arise from the occurrence of Q in
(8.2), i.e., we set

m =3 case. This is due both to computational restric-
tions as well as to an expectation that the most important
m-body corrections to a two-cluster approximation such
as the RGM mill come from three-cluster contributions.
In this section, we will give a qualitative discussion of this
case. The important conclusion we draw is that when the
Q space is limited to one (or a few) three-body
configuration(s), then Q ohio no longer obeys a connected
kernel equation, and a Faddeev type of analysis must be
initiated in order to obtain a unique solution. This is
analogous to the procedure that must be followed in at-
tempting to solve the three-cluster RGM-type equations
advocated by Schmid. '

All m-cluster effects, m & 3, are contained in Q o

through g pfp, which is related to P p1(tp of (7.7) by

Q o4o= Q oG o+pP ohio ~ (8.1)

The optical-potential-like operator +0 is given by

+o=Q Vo+Vogo(Go —QoVoQo) 'Q Vo,

which Is the formal solution to

G RcrM (6 —1 IV )
—t

This yields
~p ROMPolp=Pogo+PoGo VoQ ohio.

(7.6)

(7.7)

Qo Q =-Qo(3) (3)

%'ith these approximations it follows that

Q o'(('o =-Q o"6 o +o ~P
ohio

(8.6)

(8.7)

Equations (7.7) and (7.5b) achieve our goal of embed-
ding the (orthogonalized) RGM in an exact theory. Note
that if P p does not contain all two-cluster channels (in
canonical partitions) then some of the Qb~p~pb~p~ will yield
amplitudes for 2~2 transitions as well as for 2~m tran-
sitions with m & 2.

where

Qo +o = Qo Vo+Qo Vogo
(3) (3) (3) (3) (3)

x(G ' —Q' 'V Q' ') 'V

This satisfies an equation analogous to (8.3):

Qo '~o"=Q o" VoQ+o" VoGoQo"+o" .

(8.8)

VIII. THREE-CLUSTER
BREAKUP CORRECTIONS

The pairs of equations (7.5a) and (7.5b) or (7.7) and
(7.5b), supplemented by the usual boundary condition re-
quirements, provide a unique solution to the identical par-
ticle collision problem. In principle, both m-cluster
(breakup) contributions to P pgo and m-body transition
amplitudes can be obtained from these pairs. In practice,
however, calculations are likely to be restricted to the

It is evident that (8.8) yields a "three-cluster" approxi-
mation to gp kp. From (8.1) and (7.5a) we see that
Q o

' dt'p ' is the crucial ingredient in determinating three-
cluster corrections to P pPp -—P pPp, while from (8.7),
Q o

' kp ' is essential for obtaining three-body amplitudes,
i.e., amplitudes describing processes of the form 2~3.

If, for computational simplicity, one retains only one
three-cluster channel in Q p ', then (8.8) appears to define
an approximation of the dominant-cluster-partition type
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-d(0) —a (0)
( Vo Vo)ba g Vb(0) Vd(0) (8.11)

is related to the connectivity of the analogous unsym-
metrized quantity, which here is

( V V)b(0)a(0) g Cb Vb(0) Cd Vd(k) (8.12)
d, k

If (8.12) is connected, then so is (8.11).' In the case of
the BLRT distribution, the analysis of Polyzou ' clearly
demonstrates that connectivity is generally achieved only
if the d sum in (8.12) runs over all partition labels and not
simply over three-cluster ones.

Applying this argument to (8.10) we see that it will be
connected if

in which the role of exchange symmetry is made explicit.
While such a Q 0

' ko ' will satisfy (8.9), this latter equa-
tion alone cannot be used to calculate Qo ko . The(3) (3)

reason is that (8.9) is an integral equation with a discon-
nected kernel and therefore must be expected to yield
nonunique solutions. This lack of connectivity is a re-
sult of our using the combinatorial Benoist-Gueutal,
L'Huillier, Redish, and Tandy (BLRT) distribution
scheme of Eqs. (5.3) and (5.4), as we will now demon-
strate.

Equation (8.9) will be connected if its kernel Q 0 'VOG 0
is connected after one or more iterations. Since 6 0 con-
tains free-particle Greens functions, the connectivity of
the kernel is determined by the factor I(. 0

——Q 0 'Vo. In
the remaining discussion, therefore, we sha11 drop 60
from our analysis and consider only the factor L(. 0 and its
iterates. Despite the possibly unusual appearance of the
resulting expressions, there is no loss of generality in this
procedure.

The first iterate of this factor is

(3) -d(0) (3) -a (0)
(KOKO)ba =Qb(O) g Vb(O) Qd(0)Vd(O) i (8.10)

d

where Qb(0) and Qd(0) vanish, respectively, unless b(0)
and d(0) are among the three-cluster partitions S3 con-
tained in Q 0 '. Hence, the sum on d in (8.8) is limited to
one (or a few) three-cluster partition label(s). This limita-
tion is the source of the problem. As Bencze and Redish
have shown, ' the connectivity property of quantities such
as

that are associated with disconnectedness, it is clear that
exact solutions to this equation are guaranteed only if the
disconnectedness is removed. Since (8.9) involves only
three-cluster contributions, i.e., does not allow for breakup
of any one cluster, even in intermediate states, then the
methods used in the three-particle problem should be
applicable in the present case. Those latter methods are
discussed, e.g., in Ref. 26, which may be consulted for de-
tails.

IX. SUMMARY

In this paper we have treated the problems of nonortho-
gonality and possible overcompleteness in the resonating
group method (RGM). Our analysis is based on explicitly
symmetrized versions of the methods of Birse and Red-
ish. ' We have obtained orthogonalized versions of the
RGM equations in which the effects of the NO kernel
have been formally summed to all orders.

In Ref. 10 it was shown that CRC equations could be
obtained as a bound-state (pole) approximation to distort-
ed, connected-kernel equations with a suitable choice of
distorting potentials. Here we have extended that result to
the identical particle case. We have shown that one form
of the orthogonalized RGM equations can be obtained as
a pole approximation to the symmetrized versions" of the
distorted X-body scattering equations of Levin. ' %'e
have shown how to embed the RGM in an exact multipar-
ticle scattering theory and we have discussed problems
that arise when our procedure is extended to include
three-cluster (breakup) effects.
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APPENDIX

In this appendix we give the proofs of relations
(3.5)—(3.7). From (3.3) and the label transforming proper-
ty of Pb(j), we have

X Cb Vb(0) Qd(k)+d Vd(k)
d, k

(8.13) PH =P g Pb(j)
b,j

is connected. But, the presence of Qd(k), which allows
only those d ES3, interrupts the full combinatorial sum
needed to obtain connectivity. It is this limiting of d
which is the source of the problem in the present case and
also prevents (IC 0)", n )2, from being connected. It may
prevent equations analogous to (8.9), but based on other
coupling schemes, from being connected as well. [It is
straightforward to establish the disconnectedness of (8.10)
when the number of particles N is small, e.g., N =4 or 5,
since in these cases, momentum-conserving delta func-
tions are relatively easily seen to occur in the relevant ma-
trix elements. ]

Given the lack of uniqueness to the solutions of (8.9)

g Ppb(j)P
b,j

(Al)

'PP =P PH
From (3.3), (3.4), and (2.7) we have

(A2)

—1 —1Pb(j)~ b(j) M ~b(j)d(k)Pb(j) d(k)~
d, k

(A3)

where P is any permutation. Operating on this from right
and left with H ', we obtain
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Hence, we write Summing (A5) over b (j), and then operating on the result
from the left with H ', yields

P P=P PP (A6)

P b(j) ~ P (b(j)d(k)

XPPp —(b(j)Pd(k)+

—1—PPp ib(.)+PPp

P P '=PP 'P

Taking the transpose of both sides of (A7) yields

(A7)

Since this relation holds for any permutation, we also
have

X p —ib(.) d(k)~
d, k

A
=Pb(j)P+Pb(j)PS' Pb(j)P—P~ .

From (A4) we obtain

(A4)

PP =P PP

=P P.
Since on ' is nonzero only on the space of P by defini-
tion, we have, from (A2) and (A8), that

Pb(j) Pb(j)PPn (A5) PH '=H 'P . (A9)
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