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Mass and range dependence in the binding energy of a three-body system
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We have studied the bound-state solutions of a system of two particles of mass M which do not
interact among themselves but which interact attractively with a third particle of mass p as a func-
tion of the ratio M/p. In the limit M/p~0, the solution of the system is well known since it cor-
responds to the problem of two independent particles in a well. We point out that in the limit

M/p~ 00 the solution is also very simple, and it corresponds to having the two particles of mass M
fixed at the same point in space. We have found that the three-body binding energy tends to be pro-
portional to the square of the range of the two-body interaction in momentum space, and that the
sensitivity of the binding energy with respect to off-shell variations of the two-body amplitude in-

creases when M/p increases.

I. INTRODUCTION

Exact simple solutions of the three-body problem are
important, since very often they can shed light on the na-
ture of the solution of more general systems or serve as a
natural starting point for a perturbative expansion. These
solutions are normally obtained in some limiting cases
when one of the interactions is zero and the masses of one
or two of the particles are either very large or very small.
Thus, for example, the system of three particles where
two particles do not interact with one another but each of
them interacts with a third particle of mass p~ Oo is sim-
ply the problem of two independent particles in a well, so
that the wave functions are products of single-particle
wave functions and the energy eigenvalues the sum of
single-particle energies. ' Another well-known case which
corresponds to the so-called "three-body model of the op-
tical potential" is that in which a particle of mass p in-
teracts with a particle of mass rn, while at the same time
the particle of mass m interacts with a particle of mass
M. The solution of this three-body problem in the limit
case p/m ~0 can be written in closed form, ' and it has
been applied to study the effect of the nucleon-nucleus
well in the pion-nucleus optical potential. '

In this paper, we will study the ground-state solution of
a system of two particles of mass M which do not interact
with one another, but which both interact with a third
particle of mass p such that Mlp —+ac. As we will show,
the ground-state solution in this case is determined by the
configuration in which the two heavy particles are fixed
at the same point in space. This result will be obtained in
Sec. II first by solving numerically the Faddeev equations
using two different families of separable potentials, and
then proving it by using the Foldy-Walecka equations for
a system of a particle of mass p interacting with two fixed
centers of force. We will then use in Sec. III the solution
of this system to study the dependence of the binding en-
ergy on the range of the two-body interaction and its sen-
sitivity to off-shell variations of the two-body amplitudes,
as a function of the mass ratio M/p.

II. BOUND-STATE SOLUTIONS
OP THE THREE-BODY SYSTEM
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We will use the Faddeev equations to calculate the bind-

Let us consider two particles of mass M which do not
interact with one another, but which interact with a third
particle of mass p, where p ~M. We will consider two-
body interactions in the 1=0 and l = 1 partial waves of
the separable forms
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so that the two-body T matrices which are obtained by
solving the Lippmann-Schwinger equation
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As a first example, let us calculate the binding energy
of the system when the two-body interactions are S wave
as given by Eqs. (1) and (8), so that the ground state has
total angular momentum L =0. We show the results of
these calculations in Fig. 1 as a function of the range of
the interaction a. The curve labeled M/phoo was ob-
tained by solving the one-body problem that results when
the two particles of mass M are at the same point, and we
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FIG. 1. Square root of the three-body binding energy when
the two-body interaction is the S-wave potential defined by Eqs.
(1} and (8}, as a function of the range of the interaction in
momentum space a.

ing energy of the three-body system. We will assume that
the three particles are spinless, and take the mass of the
light particle equal to that of the pion, while the mass of
the heavy particle will be varied so as to approach
smoothly the limit M~ oo. We will consider families of
two-body interactions such that at a given energy they
produce the same phase shift. Thus, in the case of the S-
wave potential, we will require that the two-body subsys-
tems have a bound state at zero energy, while for the I'
wave potential we will require that the two-body subsys-
tems have a resonance at a relative momentum po. Using
Eqs. (5) and (6) and the above conditions, we can obtain
the strengths yo and yi in terms of the range of the in-
teraction in momentum space a as
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FIG. 2. Square root of the three-body binding energy when

the two-body interaction is the P-wave potential defined by Eqs.
(1} and (9), as a function of the range of the interaction in
momentum space a.

see that it is the limit to which the binding energy con-
verges when the mass of the heavy particles tends to infin-
ity.

Next, let us assume that the two-body interaction is a P
wave as given by Eqs. (1) and (9) and (10), and take the
position of the resonance at po ——1.1 fm ' so that it
resembles the pion-nucleon P33 resonance. In this case,
the ground state of the system has total angular momen-
tum L =1, so that the relative angular momentum of the
third particle with respect to a pair can be either 0 or 2.
We show the results of these calculations in Fig 2, where.
again we see that the binding energy of the system con-
verges as we increase the mass M, to the results labeled
M/p~ao, which are obtained by solving the one-body
problem that results when the two particles of mass M are
at the same point.

The proof that the binding energy in the limit
M/p~no is determined by the configuration where the
two heavy particles are at the same point is as follows: If
the two particles of mass M become very heavy (we know
from Heisenberg's uncertainty principle that they will
tend to be localized in space, and therefore in the limit
M~ao), the ground state of the system will be deter-
mined by the configuration of the two fixed particles for
which the binding energy is maximum. In the case of
separable potentials, as we show in Appendix A, this con-
figuration corresponds to the two fixed particles being at
the same point.

III. MASS AND RANGE DEPENDENCE
OF THE THREE-BODY BINDING ENERGY

In order to understand the linear dependence of ~B
with respect to a observed in Figs. I and 2, let us consider
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the bound-state solution of the Lippmann-Sch winger
equation for the separable potentials (1) when the two par-
ticles of mass M are fixed at the same point in space, that
is, when the strength of the potential is 2yi instead of yi.
In the case of the S-wave potential {1),we get using Eq.
(5) that

1 8P
2yo 2a (a+k)'

where the binding energy B is related to k by
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B=k /2p . (12)

If we substitute Eq. (8) (with M= oo) into Eq. (11) and
use Eq. (12},we get

B=a (~2—1) /2p, (13)

that is, the binding energy is proportional to the square of
the range in momentum space n, which explains the linear
dependence of ~B with respect to a that is observed in
Fig. 1 for the case M/phoo, although this behavior is
also followed when M is finite.

In the case of the P-wave potential (1},we get using Eq.
(6) that
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so that substituting Eq. (9) (with M= no) into Eq. (14)
and using Eq. (12), we get

B=ai(2P —1)[(2P—1)'i +(2P)'ii] /2p . (15)

We see from Eq. (10) that for a »po, P~1, so that for
large values of a the binding energy is proportional to a,
which again explains the linear behavior of ~B for large
values of a that is observed in Fig. 2 for the case
M/p~ ao, although this behavior is also followed when
M is finite.

The behavior of the three-body binding energy with
respect to the mass ratio M/p is also apparent in Figs. 1

and 2, where we see that the slope of V B with respect to
a increases when M/p increases. In order to interpret
this result, we notice first of all that one can rewrite the
off-shell T matrix ti(p, p', E), given by Eq. (4), as

r

2+ 2

r, (p,p;E)= &, q, r, (q,q;E) ~ q, , (16)
+P g Q', +P

where ti(q, q;E) is the on-shell T matrix. Thus, we see
that the different values of the parameter a really corre-
spond to different off-shell extrapolations of the two-body
T matrices, and therefore the curves with larger slopes in
Figs. 1 and 2 correspond to cases that have large sensitivi-
ty to off-shell effects. This interpretation would be
rigorously true if the two-body interactions that we use
were on-shell equivalent; however, as mentioned before,
the interactions are only required to reproduce the same
phase shift at one energy.

In order to show that indeed the sensitivity of the bind-
ing energy to off-shell effects increases when M/p in-
creases, we will now go to the opposite limit M/p, ~O,
and use two-body interactions that are on-shell equivalent.

0
0 67

Thus, we will consider again the system with S-wave
two-body interactions where now the mass p will be
varied and the mass M will be kept constant and equal to
the mass of the nucleon, so that in the case M/p, =1 our
system resemb1es the three-nucleon problem and in the
case M/p=6. 7 it resembles the irNN problem. We will
consider a two-body interaction with a bound state of en-
ergy 2.225 MeV which is the binding energy of the deute-
ron, and a range a=1.449 fm ' so that it corresponds to
the separable potential of Yam aguchi in the case
M/p, = 1. In order to generate on-shell equivalent interac-
tions, we have applied to the two-body Hamiltonian
H=K+ V a unitary transformation U=1 —2A where
A+ A~=2AA~, so that the resulting two-body potential is

V= V—2A(X+ V) —2(E+ V)A +4A(IC+ V)A, (17)

and have taken the operator A to be of rank one as

(18)
irP' (P'+p')' (13'+p ')'

We show in Fig. 3 the results for the three-body binding
energy as a function of the mass ratio M/p, considering

Q/p
FIG. 3. Three-body binding energy when the two-body in-

teraction is an S-wave potential that possesses a bound state of
2.225 MeV as a function of the mass ratio M/p. The dashed
line is the result of a two-body potential with range a=1.449
fm ', while the solid lines are the results of the on-shell
equivalent potentials generated by the transformation (17)—(18)
with the parameter P given in fm ' for each curve.
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five different values of the parameter P in Eqs. (17) and
(18). We see that indeed the sensitivity of the binding en-

ergy with respect to off-shell effects increases when M/p,
increases. In the limit M/p~0, the binding energy tends
to the value 4.45 MeV independently of P, since in this
limit the system corresponds to that of two independent
particles in a well and the binding energy is equal to twice
the single-particle energy.

It is interesting to point out that the effect that we have
just discussed may provide an explanation for the ob-
served sensitivity to off-shell effects of some well-known
three-body systems. Thus, for example, the three-nucleon
bound-state problem is rather insensitive to off-shell ef-
fects, which corresponds approximately to the
behavior of the case M/@=1 in Fig. 3. The mNN sys-
tem, on the other hand, which corresponds to the case
M/p=6. 7 in Fig. 3, is very sensitive to the off-shell
behavior of the pion-nucleon T matrix, ' ' and it has
been shown for the case of a negative pion and two neu-
trons that it may even become bound if the pion-nucleon
interaction in the resonant P33 channel has a very long

range in momentum space, ' ' which is also consistent
with the results of Fig. 2 for the case M/p =6.7.

This work was supported in part by the United States
Department of Energy under contract No. DE-AS05-
76ER05223.

APPENDIX: THE FOLDY-WALECKA
BOUND-STATE PROBLEM

The problem of a particle of mass p interacting by
means of separable potential with X fixed centers of force
can be solved exactly, as it has been shown by Foldy and
Walecka. 5 Let us consider the case of two identical parti-
cles of infinite mass which are fixed at positions xi and

x2 and which interact attractively with a particle of mass

p by means of a separable potential of the form

I'i(P,P') = gib—»@(P') .

The Foldy-Walecka equations for the bound-state problem
are

2

Xlttt (x 1» x 2'» 8.) = gj=l

I

Gittt ttt (x~i.,'8. )X/ttt ( xi x2,8),
m =—1J

i =1,2, (A2)

where 8 is the (positive) binding energy, and

x"=x- —X.
lJ 1 J

is the separation between the two fixed centers, while
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In the case i =j, we have from Eq. (A3) that x;; =0, so
that from Eq. (A5) we see that

21+1 2Fi' (0)=
2

d COSHPi~ (cos8) =1,

and therefore we get from Eq. (A4) that

1 —2Gi(8) =0 . (A10)

We will now show that the solution for the binding energy
8 obtained from Eq. (A10) is larger than that obtained
from Eq. (A9). First of all, we notice from Eqs. (A5) and
(A6) that

Glttl. ttt (Xij 8) ~ttt ttt Gi( (A7) F(~ (PXii ) ( 1 if xii+0» (A 1 1)

where

Gi(8)= f P dP
gi'(s»

(A8)
8+p /2q

Using Eqs. (A4)—(A8) into Eq. (A2), we find that the con-
dition for the existence of a bound state of binding energy
8 is

(A9)

If the two fixed centers are at the same point, then x,z
——0,

so that repeating again the arguments of Eqs. (A6)—(AS)
we get that the bound-state condition is in this case

so that using this result in Eq. (A4) and comparing with
Eq. (A8), we see that

Gi~~~(xti, B)(Gi(8) if x»i&0 . (A12)

Finally, since both Gi(8) and Gp~(x,&,8) are monotoni-
cally decreasing functions of 8, this means that the solu-
tion for 8 obtained from Eq. (A9) is always smaller than
that obtained from Eq. (A10). Thus, we have shown that
the binding energy is maximum when the two centers of
force are at the same point, and therefore this is the con-
figuration that corresponds to the ground-state solution of
the three-body system of Sec. II in the limit when the
mass M tends to infinity.
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