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The quantization of an extended time-dependent Hartree-Fock equation is performed by using the path

integral formalism. The path integral form of time evolution operator between initial and final states is ob-

tained with the use of the completeness relation of the fermion coherent states. It is sho~n that the ex-
tended time-dependent Hartree-Fock equation is naturally derived as a classical limit of the path integral.

While the time-dependent Hartree-Fock (TDHF) method
is suitable for the microscopic description of large amplitude
collective motion, ' the application of this method has been
limited so far only to systems having an equal number of
particles and holes; moreover, it is necessary to quantize the
equation derived with the TDHF method, because the
TDHF equation is the classical equation of motion. There-
fore, to treat quantum systems of odd fermion number or
different numbers of particles and holes, an extension of
the conventional TDHF method is needed. Recently,
Yamamura and Kuriyama" proposed such an extension of
the TDHF method, and performed the quantization of the
extended TDHF equation by applying Dirac brackets. 4

Then they have pointed out that the result obtained is
equivalent to the boson-fermion expansion of many fermion
systems formulated by Marshalek. ' On the other hand, the
path integral provides the other possible quantization
method. Kuratsuji and Suzuki have developed the path
integral technique for the quantization of the TDHF equa-
tion based on the completeness relation of the generalized
coherent states. However, their method is only limited to
the quantization of the conventional TDHF equation. In
this paper, therefore, we show that the path integral method
also provides the quantization of the extended TDHF equa-
tion.

In general, any Slater determinant can be written as

f/4 D» + g 0J CJ1
J

XD,»f —X Ci„g„' .

(6)

In order to obtain the classical image of the particles and
holes with respect to lZ), we introduce the fermion
coherent state:

r

lc) = N'exp $g„xq+ $7i;y, lZ)
I

Using this unitary operator, the particle and hole operators
with respect to l 2 ) are expressed as

g), = Ua g U '= ga„D„g—X bj CJ„
J

(4)
~, = Ub, U '= QD-„b, + gc,,a„',

J P

where D„~, D„", and C;), are defined as follows:

D»= [cos(F F)' ] = [(1+Z Z) 'i ]

Di= [cos(FF )''];,= [(1+ZZ ) 'i'];,

C;„= [sin(FF )' (FF ) 'F];„=[(1+ZZ ) ' Z]„,
The inverse relationships are given as follows:

lZ& =Xexp QZ&;azb, lgo)

where l@0) is a fixed Slater determinant, and N is a normal-
ization factor. a), and b; are, respectively, the particle and
hole operator with respect to l@o). The coefficient Z&, is
m S n matrix where m and n denote the number of the par-
ticle and hole states, respectively. Hereafter, we use Greek
letters for particle states and Latin letters for hole states.
The Slater determinant (1) is also written as follows:

Iz& = Uly, &,
where U is the unitary operator defined by

U=exp g(aib Fxl

which satisfies jzlc) =x&lc), 7i;lc) =y;lc). Here N' is a
normalization factor, and (x„,x„') and (y;,y ) are
Grassmann numbers which satisfy the following relation-
ships:

XgX~ = X~Xg, XgX~ = X@Xg

Here, the fermion coherent state l c ) satisfies the complete-
ness relation:

Jtdp, (c)lc) (cl= 1

where the invariant measure dp, (c) is given by

dp, (c) [det(1+ZZ )] ( +"~ gd(ReZ;)d(imZ„;) Qdx„'dx„Qdy dy;
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Next, in order to derive the path integral form of the propagator, we consider the matrix element of the time evolution
operator exp( —iHt) between the initial state lc;) and the final state Ic~):

K (cf, rf Ic;,t;) = (c~I exp[ —iH(t~ t;)—/t) ] Ic;) (12)

By dividing the operator exp[ —iH(t~ t;)—] into N equal segments [the time interval e = (rf t;)/—N], and then by inserting
the completeness relation (10), the propagator (12) becomes

~ ~ ~

(

jt ( ck IH I cq t)
log(ck I ck —()

Ck C/G —1
(13)

with leo) = Ic, ) and Ic~) =

K (cfog rf I c;,r() = Jf

Icf) By defining Ihck) =
I

N —1 N

Jl g dp, (c„)exp —'~ g
/G 1 k 1

ck) —lck t), the propagator (13) can be written as follows:
1

(ck l

hack)

—(ck I H I ck)

In the limit of N ~, which correspond to I/elhck) 9/r)tick), e dt, and gk (,we obtain the path integral
tj

form of the propagator (12) as follows:

f ff g
fa jK(cf rflc;, t ) = ~ ffdp [c (t)] exp —J cit——Hc dt = J D [p (c)]expt t

t

where
ptg

D[@,(c)]= gdp, [c(t)), 5= J!, Ldt
i

with

(14)

(15)

cit——Hc
Bt

The first term on the right-hand side (RHS) of the Lagrangian L can be written as
( ( (

itc —=it xpc c +x), c, c + yj c c +y; c, c + Zpj c c +Z],j c

Here, we notice the following relationships:

C C =
2 Xg, e 2 Xg C C = 2+j, C C = 2P'i

BXg

Xi hi

where I~; and K),j are given by

, 1+ZZ „, „« " & ()Zx;
r [BZx(

BC
BZ),( r

(

BD
t (

BD Dz + C» BC BC'
BZA j BZg& BZAi

BZgj BZg j BZ)t j BZg j
A, j
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With the use of the Eqs. (17) and (18), the Lagrangian L is rewritten as

I = ~it X(x„'xi,—x„'xi, ) + X(y y; —y y;) + X[Z„;(I„';+E„';)—2)'„(Ii„+K„;)] —H (20)

where

H= (c(H(c& (21)

I

where H' denotes H under the constraints (22). Here, the
Dirac bracket4 is given by

KAI = 0, KA;= 0 (22)

Note that, since we introduce CAI and CA'I, there occurs a
double counting problem of degrees of freedom. Here, in
order to avoid this difficulty, we introduce the following
constraints:

(~,~)D= (~,&) —X(~,4.)(4., 4p) '(4i,&),

where @ is defined for n = (Xi) by

~=1 2 3 nm

,Ka —nm 0'= 1+nm, 2+nm, . . . , 2nm

(25)

(26)

Now we examine the classical limit of the propagator (14)
under the constraints (22).'o The classical propagator is ob-
tained with the stationary phase approximation:

K"—exp ( iS"/t ) (23)

BI„i(i'"
gz

' i BH'
f 9ZAI

(24a)

BI„'. . . BI„r.r
itxg= (xg, H)D it $ ~ Z t IZ i,(.

BXA BXA
(24b)

IAXA = BI„'.,
(x„',H)D+it X

r I '( XAhi
(24c)ii Xi

BI, , BI r. r

ity; = (y;,H)D —it g, Z, , —Z', , (24d)

91„', . BI„.ity;"= (y,H)D+it g "' Z, , —Z, , "', (24e)
A, i

Here the classical action S" satisfies the variational equation
SS=O under the constraints (22), and then the classical
equations of motion are obtained as follows:

8I I.r

I r
' BZA] BZAI'

A, i

and the symbol ( ) denotes the modified Poisson bracket9
including the Grassmann variables. Equations (24) are
essentially the same equations as those obtained by Kuriya-
ma and Yamamura. If the degrees of freedom XA, XA', yI,
and y are frozen in Eqs. (24), the classical equations of
motion (24) can be reduced as follows:

Iz'= —' (1+z'z) (1+zz')
h 9Z

Z= ——(1+ZZ ) (1+Z Z)
Z

This is just the TDHF equation derived by Kuratsuji and
Suzuki. 7 Therefore, Eqs. (24) are considered to be an ex-
tension of the TDHF equation including the Grassmann
variables.

While the path integral method is identical to the pertur-
bative expansion method, its application is not restricted to
the perturbative system. Therefore, for the large amplitude
collective phenomena in which the nonlinearity in classical
equations (24) becomes large, the path integral method is
considered to provide a more useful device comparing the
conventional perturbative approach.
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