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Variational calculation of the ground state properties of the trinucleon system
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A practical and flexible variational method is employed to calculate the trinucleon ground state energy,
wave function, and charge form factor, using the s-wave Malfliet-Tjon potentials V and UI. The results are
compared with existing accurate solutions of the same potentials. The charge form factor is found to be
rather insensitive to the addition of different three-body forces.

Due to their simple structure, the Malfliet-Tjon (MT) po-
tentials' have become the testing ground for approximation
methods. ' It is in this spirit that we report the following
calculation. Our variational method is rather unconvention-
al although it has been used a number of times. ' We
briefly outline it as follows.

Starting from a known function (x~0) not orthogonal to
the ground state wave function of a quantum mechanical
system, one can construct the ground state wave function
(x ~0) by the following process:

~0) = lim ~XN) = [1/(H —a) l ~0) (1)N~ oo

H is the Hamiltonian and a a numerical energy parameter
that lies closer to the ground state energy than any other.

The Green's function —Monte Carlo method used in Ref.
2 evaluates Eq. (1) using the Monte Carlo method. We
evaluate the operator 1/(H —a) in a truncated space of a
complete set of basis functions. In other words, the varia-
tional functions (x ~XN) are expanded in terms of the basis
functions. For our three-body systems, we have the expan-
sion,
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The r's are the internucleon distances, T the completely
symmetric Young operator, and a ~, a2 two nonlinear varia-
tional parameters. These simple basis functions are chosen
so that no numerical integration is necessary for our wave
function calculations.

From our experience in applying this method to various
systems, we found that for a reasonably chosen a and
(x 10), N = 2 in Eq. (1) is quite sufficient.

Our calculation has adopted the same values for the po-
tential parameters as in Ref. 2. Namely, we have,

=41.47 MeV fm2
M

V (r) = [1458.05 exp( —3.11r)/r

—578.09 exp( —1.55r)/r1 MeV

for the MTVI potential. The various parameters in the
variational wave functions and the corresponding energies,
evaluated using MTVI and MTV are listed in Tables I and
II, respectively. The number of digits retained in the ener-
gies is determined by the last digit where the variational en-
ergy and the variational lower bound from the method of
moments' both are equal. Note that the variational upper
and lower bounds are not the absolute upper and lower
bounds of the exact energy. They only measure how close
Eq. (I) has converged with respect to a particular expansion
in Eq. (2). It is a reflection of the numerical accuracy how-
ever.

It is seen from Table I that the ground state wave func-
tion of MTVI is very smooth, so that even the five-term
expansion is sufficiently accurate. The energy of this poten-
tial was reported in Ref. 1 to be —10.6 MeV.

Table II shows that a good MTV wave function needs
considerably more terms in the expansion. Our calculation
is consistent with the exact energy —8.26+0.01 MeV re-
ported in Ref. 2. Our 40-term expansion is comparable with
theirs.

The Malfliet-Tjon potential VI is a purely attractive poten-
tial. Its wave function in configuration space is fairly
smooth. That was demonstrated by a graphical study in
Ref. 7. The Malfliet-Tjon potential V consists of a short
range repulsive term as well as an -attractive term. The
wave function in configuration space consists of peaks and
valleys. Despite such seemingly difficult situations, our
simple variational function converges quite well at about 40
terms.

Our charge form factors F (q') are obtained with a limited
amount of numerical integration. Since F(0) =fqr'qrdr,
the integrals in F (0) can be checked with those obtained in
the wave function calculation where no numerical integra-
tion was used. This gives us a very useful means of finding

TABLE I. Parameters of wave functions and energies calculated
using the Malfliet-Tjon potential VI.

Total number Number of terms Number of terms Energy
of terms a& in a~ a2 ln a2 (MeV)

for the MTV potential, and

V (r) = —58.795 exp( —0.723r)/r MeV
14

0.4

0.5

0.75

0.7 10

—10.6819
—10.7018
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TABLE II. Parameters of wave functions and energies calculated using the Malfliet-Tjon potential V.

Total number
of terms

Number of terms
in a~

Number of terms
ln 02

Energy
(MeV)

5
14
20
30
40

0.27
0.45
0.75
0.75
0.77

1

4
10
10
20

1.0
0.85
1.0
1.1
1.15

4
10
10
20
20

—7.19146
—7.955 73
—8.068 83
—8.200 35
—8.237 83

out how many Gaussian points are needed for sufficient ac-
curacy. In fact, without sufficient accuracy in the numerical
integration, the form factor gives large oscillations in F(q )
for q & 14 fm, even though F (q ) was correctly ob-
tained for smaller q .

For comparison, we plotted the charge form factor ob-
tained from the 14-term MTVI wave function in Fig. 1.
The monotonic appearance of the form factor is a reflection
of the smoothness of its wave function. That, of course, is
due to the purely attractive nature of its underlying poten-
tial.

In Fig. 2, we plotted ~F(q ) ~
obtained with the 40-term

MTV wave function together with the ~F(q )~ obtained
with the 14-term MT V wave function. The energies calcu-
lated from these two functions differ by 0.28 MeV.

The MT V charge form factors have the familiar appear-
ance of those calculated from the realistic potentials. It has

the usual shortcomings in that the zero of the form factor is
too far out (at q

2 = 18.5 fm 2), and the secondary max-
imum in ~F(q ) ~

is about 2.2 times too small compared to
experiment data. All these potentials have the short range
repulsion.

Comparing the charge form factors in Figs. 1 and 2, one
cannot help but take notice of the drastic affect that the
short range repulsion has on F(q ), and one expects the
likelihood that the charge form factor is strongly two-body
potential model dependent!

To test the sensitivity of the charge form factor due to the
addition of three-body forces in the Hamiltonian, we used
two drastically different forms of three-body forces. These
potentials were chosen for their computational expediency,
lack of numerical integration, and the need for only minor
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FIG. 1. Charge form factor ~F(q~)
~

calculated using the 14-term
wave function and the Malfliet-Tjon potential VI.
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FIG. 2. Charge form factors ~F(q2)
~

calculated using the 40-term
wave function and the Malfliet-Tjon potential V—solid line, and us-

ing the 14-term wave function and the Malfliet-Tjon potential V—
dashed line.
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changes in our programming. We have

V3t= —5 g (r12+r13 r23)(I13 +f23 f12)(r12+f23 r13)
cyclic

x exp [ —0.5 (r t2+ r t3) ]/(r t2r t3r 23) M eV

The corresponding energy obtained with the addition of V3]
to the MTV potential is —9.0362 MeV. This is an increase
in binding energy of 1.48 MeV. V3l is attractive only when
the three nucleons form triangles. It becomes zero when
they take a collinear formation.

For the second three-body force, we used
V32 ———90~%'~' MeV. The energy obtained with V32 and
MTV is —8.523 80 MeV. This is an increase in binding of
0.57 MeV. Again the 14-term wave function is used. With
the nonlinear V32, the algebraic equations in our method
were solved iteratively. It takes seven iterations for the six
digits convergent result quoted above. Since there is no in-
tegration needed for subsequent iterations, the computer
time required is minimum.

The charge form factors calculated with the 14-term MT V
wave function without three-body force, with V3l and with

V32 are plotted, respectively, in Fig. 3 for comparison. One
notices that in both cases, their effect on the form factor is
rather small. In the case of V3l, it increases the secondary
maximum by 16% even when the strength of the three-body
forces are adjusted to increase the binding energy by 1.48
MeV, which is about a 20/o increase in binding energy.
Their effect on the position of the zero in F(q2) is even
weaker and it is not always in the right direction. In the
case of V32, it increases the secondary maximum by 9% with
an energy increase of 0.57 MeV or a 7% increase in binding
energy. The zero in F(q') always moves in the wrong
direction.

For all practical purposes, such as binding energy and
charge form factor calculations, our 40-term wave function
seems to be quite adequate. This calculation is carried out
on our small on-campus Cyber 750. The computer core
space available for our use is very limited. In a calculation
using more realistic potentials, comparable wave function
involves 180 terms. s Such calculation is easily manageable
on computers with large core memory.

Our three-body force calculation indicates that the charge
form factor is very insensitive to the addition of purely at-
tractive three-body forces, such as V3l and V32. Perhaps a
short range repulsive part in the three-body force is essen-
tial. The three-body force used in Ref. 2 is repulsive when
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FIG. 3. Charge form factors ~F(q2)~ calculated using the 14-term
wave function and Malfliet-Tjon potential V without three-body
force —solid line, with the three-body force V3l —dashed line, with
the three-body force V32 —dot dashed line.

the nucleons are on or near collinear configuration and be-
comes attractive in triangle formation. Yet unrealistically
large strength is needed to get the desirable effect. 2 Such
three-body force when properly regularized at rIJ=0 for our
use, will be investigated in our subsequent calculation using
more realistic potentials.
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