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Methods which include the effect of mean-field fluctuations on the nuclear partition function and
level density of hot nuclei are tested by applying them to a many-body system for which exact solu-
tions are available, the Lipkin model. It is found that for finite systems fluctuation corrections to
the mean field partition function and level density can be substantial, and especially so near a shape
phase transition where these fluctuations smooth out discontinuities in the mean-field quantities.
The model calculations suggest that only time-independent fluctuations are important at high tem-
peratures or at high excitation energies. Moreover, even when fluctuations are restricted to a small
set of constraints, a significant improvement over the mean-field calculations can result. This is
thus a practical approximation since it requires only knowledge of the deformation free energy sur-
faces at finite temperature.

I. INTRODUCTION

A heavy nucleus typically has a very large number of
states at high excitation energies, since there are many
ways in which these internal energies can be distributed
among the many nuclear degrees of freedom. It is thus
hopeless to look for a completely detailed description of
nuclear states at these energies, either experimentally or
theoretically. Instead, we should try to single out quanti-
ties which are the result of averaging over many states.
One such quantity, for instance, is the level density at a
given excitation energy. The level density is of great im-
portance as it describes the statistical factor which enters
into various transition rates according to the Fermi golden
rule. Theoretical estimations of the level density are thus
essential for calculations of statistical y-cascade decay
rates of highly excited nuclei, formation rates of com-
pound nuclei, and so on.

The level density can be considered as the partition
function of the microcanonical ensemble. However, that
ensemble has a sharp energy and is described by a singular
distribution function which is not in a convenient form
for applying standard approximation methods. Instead, it
is much easier to work in terms of a smooth distribution
in which the energy is allowed to fluctuate. Such a distri-
bution is represented by the canonical ensemble at a finite
temperature T =P '. Its partition function Z(P) is then
related to the level density p(E) by a Laplace transform

Z(P)= f dEe ~ p(E) .

Thus, we are naturally led to consider nuclei at finite tem-
peratures, whether or not such states can be achieved and
detected experimentally. The finite temperature formal-
ism is, of course, of much more direct physical interest in
cases where it is proven possible to heat nuclei to finite
temperature. Indeed, nuclei can be heated to relatively
high excitation energies in deep inelastic heavy ion col-

lisions. There is evidence that at least a partial equilibra-
tion takes place in such reactions, to a temperature which
is, roughly speaking, the average excitation energy per nu-
cleon.

In thermodynamics, it is considered to be a fundamen-
tal relation when the free energy

F(P)= —P ' InZ(P) (1.2)

is given in terms of the temperature. This means that it
contains all the thermodynamic information about the
system that we can possibly have. Our main interest is
therefore in applying tractable approximations to (1.2).

Mean-field theories have had considerable success in
describing ground-state ( T =0) energies of nuclei and
have been generalized to finite temperatures, where they
result in the temperature-dependent Hartree-Fock. '

Pairing effects can also be incorporated by the finite tem-
perature Hartree-Fock-Bogolyubov approximation. For
temperatures above —1 MeV these effects are small and
we shall not consider them. %'hile the mean-field
theories have traditionally been approached by the varia-
tional principle, in recent years another method based on
functional integral representation of the partition function
has been advocated. The mean-field free energy func-
tional of the latter approach is more general than the vari-
ational one since it allows time-dependent solutions.

As in the T =0 case, there can be several solutions to
the mean-field equations, which are found by constructing
the free energy surfaces obtained when certain constraints
are imposed on the mass distribution of the nucleus. As
the microscopic constrained Hartree-Fock calculations are
quite complicated, especially for shapes which do not
have an axial symmetry, it has been suggested that these
surfaces be constructed by applying the Strutinsky shell
corrections at finite temperature. ' " Constrained
Hartree-Fock calculations' in which the axial quadrupole
moment is constrained show that a nucleus which is de-
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formed in its ground state will usually undergo a phase
transition to a spherical shape as the temperature is raised
above a certain value.

A phenomenological description of quadrupole shape
transitions using the framework of the Landau theory is
provided in Ref. 13. This reference addresses itself also to
the important problem of fluctuations around the equili-
brium shape on the nuclear partition function. Previous
calculations of level densities, based on realistic single par-
ticle schemes, ' neglected such fluctuations. There are
two reasons for the inclusion of these fluctuations in the
mean-field theory. The first is that, as opposed to a ther-
modynamical system, the number of nucleons is finite (of
order 100), and the second and most important is that
near the phase transition the fluctuations in the mean
field are known to be large. While the fluctuations can be
taken into account by the saddle point method when the
system is far away from the transition temperature, this
latter approximation fails near the critical point. The
proper way to treat fluctuations in such a case was illus-
trated in Ref. 13 for a quadrupole shape transition. It is
called the uniform approximation' ' since it can be ap-
plied near the transition temperature as well as far from
it. This method becomes practical when the fluctuations
in the mean-field configuration are restricted to the con-
straint directions only, since it does not require more in-
formation than is provided by the finite-temperature free
energy surface.

The conditions for the validity of the above approxima-
tions are hard to formulate quantitatively. It is thus im-
portant to apply and test these methods in a many-body
system which is also amenable to exact numerical solu-
tion. This is the main objective of the present paper and
is accomplished by using the the Lipkin model, ' com-
monly employed in nuclear physics to test many-body
theories. ' A special emphasis is put on the calculation of
the fluctuation corrections by means of the uniform ap-
proximation, which are indeed found to be significant,
especially in the transition region.

The balance of the paper is as follows. In Sec. II the
finite-temperature methods are used to approximate the
free energy of the Lipkin model. In Secs. II A and II B we
apply the mean-field approximation in the variational ap-
proach and in the functional integral approach, respec-
tively. Section II A contains a thermodynamic analog of a
theorem of Thouless' concerning the stability of the
mean-field solutions in a general temperature-dependent
Hartree-Fock approximation. The uniform approxima-
tion schemes for the inclusion of fluctuations in the mean
field are discussed in Secs. IIC and IID in the static ap-
proximation. In Sec. III the entropy and level density of
the Lipkin model are evaluated using the same approxi-
mations as in Sec. II. All quantities are compared with
their exact values. We find in these model calculations
that the uniform approximation provides a significant im-
provement over the mean-field approximation and that
the Uniformly approximated thermodynamic functions are
in good agreement with their exact values at high excita-
tion energies. Encouraged by these results, we discuss in
Sec. IV the potential application of our methods to realis-
tic situations.

II. LIPKIN MODEL: FREE ENERGY

H= eJ, +U—(J„—J») . (2.3)

Since [H, I ]=0, the Hamiltonian has to be diagonalized
within each of the irreducible SU(2) multiplets separately.
The ground state multiplet is characterized by j =X/2,
and from now on we shall confine our attention to that
multiplet. In the following we shall need to have an in-
teraction which is negative definite. The Hamiltonian
(2.3) can be modified to meet this requirement by sub-

tracting from it U J (which is a constant for the ground
state multiplet):

H =eJ, —U (2J» +J, ) . (2.4)

A. The variational free energy

The exact free energy of a system at temperature
T =P is found by minimizing the free energy function-
al

F„,[T D]= (H ) —TS =TrD ( T 1nD + H) (2.5)

with respect to a normalized trial many-body density ma-
trix D.

To obtain the temperature-dependent Hartree-Fock ap-
proximation we have to minimize (2.5) with respect to
densities which are exponentials of one-body operators.
Such a trial density matrix for a Lipkin system is

Di„=exp( —I3A, J )/Tr exp( —PA, . J ), (2.6)

where A, =(A,„,X», A,, ) are variational parameters. This
density is the canonical distribution for a one-body mean-
field Hamiltonian

Hg ——A, ~ I (2.7)

Note, however, that here we consider in the exponent a
special type of one-body operator, namely one which can

The Lipkin model' is an E fermion system with two
N-fold degenerate single-particle levels, —e/2 and e/2. If
we denote by a» & (p =1,. . . ,XI the creation operators
for the X degenerate lower states and by a»+i, those for
the higher states, the Lipkin Hamiltonian is the following:

1H =—, e g sa», a», + —, U g a», a», a» , a» , . (2.1)
P,S =+1 P, S,S

The first term in the Hamiltonian (2.1) is a one-body
operator analogous to a kinetic energy term, while the
second represents a two-body interaction characterized by
a strength U. It is possible to define quasispin operators

J+ = ~ ap+]app]
p

(2.2)
1J,= —, ~sa, ap, ,

PS.

which close an SU(2) algebra. The Hamiltonian can then
be expressed in terms of these operators:
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B. The functional integral approach
and the static approximation

Since the variational principle is not capable of dealing
with fluctuations around the equilibrium configuration, a
more sophisticated theory should be applied. Such a
theory is based on the functional integral representation of
the exact partition function9 in terms of an infinite num-
ber of one body partition functions,

lO 20 50 40 50
where

(2.17)

FIG. 2. Variational mean-field free energy (full line) and ex-
act free energy (dashed line) versus temperature T. Units and
parameters are as in Fig. 1. Note that the variational approxi-
mation is worst near the critical temperature, which is marked
by an arrow.

F[13,oy{r)cr,(r')]=P U I dr(2oy+ o )

—P ln Tr(Te —w2 )

is the free energy of the one-body Hamiltonian:

H =J,—2U(2oy Jy+o,J, ) .

(2.18)

proximation the equilibrium PI' is still convex at any point
P where there is a stable Hartree-Fock solution. It is
common knowledge in thermodynamics that the convexi-
ty of PI" is a condition for the thermodynamic stability of
the system. Thus, we have obtained an important result
that in the mean-field approximation the thermodynamic
stability of the system (with respect to fluctuations in the
temperature ) follows from the stability of the Hartree-
Fock solution on the free energy surface (with respect to
fluctuations in the density at constant temperature). The
physical content of this result is a thermodynamic analog
of a famous theorem of Thouless, ' who showed that the
random phase approximation {RPA) frequencies are all
real when the ground-state Hartree-Pock solution is stable
on the energy surface. Since the RPA modes are just the
normal modes of the TDHF equation linearized around
the static HF solution, the reality of the RPA frequencies
implies the stability of the system against dynamical per-
turbations. Thus, the content of the Thouless theorem is
that the dynamical stability of the system follows from
the "static" stability of the Hartree-Fock solution. The
reader should note, however, that the proof of the Thou-
less result is rather different and more complicated due to
its dynamical content.

In the limit T—+0

Time dependent mean-field configurations do contri-
bute to the exact partition function but are hard to evalu-
ate. We shall therefore use the static approximation in
which only time independent configurations are included
in (2.17). It can be shown directly, by completing the
squares, that if the noncommutativity of the operators J»
and J, is neglected, then

—pI'[p, o,o ]d CTy 0"z8

—pv(2o2+o2)
doydcrze

(2.20)

F[P,oy, o,] =U (2oy+o, )—P ln
sinh(j + 1/2)PA,

(2.21)

is the free energy (2.18) in the time-independent mean
field o», o, . Here A, is the magnitude of the vector

A, ={0,—4ucr», 1 —2uo, ) . (2.22)

Note that the integrals in (2.20) are ordinary integrals, so
their calculation is significantly simpler than (2.17). The
approximation (2.20) is a "classical" approximation since
it provides the leading term in a I/X expansion as shown
by scaling the quasisPin oPerators jy =Jy/X, j,=J,/N.
Then the I.ipkin Hamiltonian undergoes a similar scaling:

I'/N~ ——X+ +61 1 1

2 2X
(2.16) H/X=j, X(2j»+j, ) . — (2.23)

which is just the Hartree-Pock ground state energy.
When compared to the exact ground state energy, the er-
ror in {2.16) is of order I/X. The error in the variational
free energy becomes even larger around the phase transi-
tion since the free energy surface is very Aat near T, and
fluctuations in the mean-field values are important.

Since [jy,j,]=(i/Xj)„, it is clear that any correction to
the free energy per particle from time-dependent fluctua-
tions is of order 1/N.

To test the static approximation we have calculated
{2.20) by using numerical integration. The results for
% =50 and 7=1.47 are hardly distinguishable from the
exact one on the scale of Fig. 2. The ratio of the static
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FIG. 3. Ratio of the "static" partition function (2.20) to the
exact partition function, versus temperature T for the Lipkin
model. The approximation is better at higher temperatures.

where A, =
I

1 —2vo, I. The degenerate deformed solu-
tions which exist below a certain critical temperature T&

are characterized by 0,=o, = —1/(2v) and by o~ = —o~
which solve

(2.24a)

where

A, =2(l+4v o~)'i (2.24b)

At T = T, the three solutions coalesce and there is a sin-
gle minimum at o~ =0, o.,= —1/(2v). Since o~ becomes
nonzero as T decreases from T, it may be identified as an
order parameter. The transition occurs when the solution
to (2.24) is o~ =0, so that T, is determined from

partition function (2.20) to the exact one is plotted in Fig.
3. We see that the static approximation becomes better
for higher temperatures. Indeed, as the "time" interval /3

in (2.18) becomes shorter, we expect the time dependent
fluctuations to be less important. However, even at tem-
peratures down to T-2, the error for %=50 is only
about 10%. This difference should be accounted for by
the RPA corrections at finite temperature. 9

C. The mean field approximation

In a realistic problem, the integral in (2.20) is still infin-
ite dimensional and has to be evaluated by some approxi-
mation method. The simplest one is the saddle point
method, where one assumes that the main contribution to
the integral comes from the points where F in (2.21) has a
minimum. Thus, as in the variational approach, we have
to investigate the topology of the free energy surface at
different temperatures. As noted in Appendix A of Ref.
13, although the free energy surface in the functional in-
tegral differs from the variational one, they both have the
same topology of saddle points. Indeed, we see this in
Fig. 4, where the functional integral free energy (2.21) is
shown at different temperatures.

The spherical saddle point is now given by o.
&

——0 and
cr, =cr, which is found from the solution of o, = —g'/g,

1

2p 2v
(2.25)

I I I I I I I I I I

-60

The mean-field free energy, which is the global minimum
of F in (2.21), is plotted against T in Fig. 5 (dotted-dashed
line), where the deformed value is used below T, and the
spherical one above T, .

It is important to note that contrary to the general case
(see Ref. 13), the above mean-field free energy does not
coincide with the variational one (shown in Fig. 2) and the
critical temperatures differ as well. The reason for this
apparent contradiction is that here we are restricting our-
selves to coherent configurations only in both the func-
tional integral (2.17) and the variational trial state (2.6).
However, the difference in the above two free energies per
particle is only of order 1/¹ For instance, in the limit
T~O we find from (2.21)

-IOO
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0
;I I I
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-TQ
- l30.0

-I4.0

-2I.O = l8
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I
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CTy
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FIG. 4. As in Fig. 1, but for the "functional integral" free
energy (2.18) and at temperatures T =0.67, 14.3, 18 (critical
temperature), and 33.3.

FIG. 5. Approximate and exact free energies I' of the Lipkin
model versus temperature T. The dotted-dashed line is the
mean-field free energy [calculated at the equilibrium configura-
tion of (2.21)]. The full line includes the fluctuations in the or-
der parameter o~ alone [calculated in the uniform approxima-
tion (2.32) and (2.41)]. The dotted line is the free energy ob-
tained when fluctuations in both o~ and 0; are accounted for
[(2.32) and (2.33)], but is indistinguishable on this scale from the
exact free energy (dashed line).
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1 1F~—j X+ +
2X 2X

(2.26)

which differs from the variational result (2.16), when cal-
culated per particle, by 0 (1/X).

When T-T„ the two deformed saddle points are too
close to each other and the approximation breaks down.
Indeed, the mean-field approximation is worst around T,
as can be seen from Fig. 6, where the fractional error of
the approximation is plotted versus T. In the next subsec-
tion, we shall show how to modify the approximation in
that region.

PF[P,~,',~.']=Co, (2.29a)

PF[P,ar' ~']= —4ki+ko . (2.29b)

Here (os, cr, ) is the spherical saddle point and (o~,o,') is
one of the two deformed points. To evaluate the numera-
tor integral in (2.20), we first transform the integration
variables to ( u, z):

—PI'[13 ~y , ]
gOydOz8

zJgzg0230

PF[P,cry, o, ]=g(u)+gp+ —,'z2 .

The simplest choice for g in our case is

g(u)= —,
'

u ——,'g)u'.

(2.27)

Here, go, g~ are constants (which depend on T) and are
known as the control parameters. When g~ &0, the right-
hand side of (2.27) has one saddle point and two degen-
erate minima, while when /~ &0 it has a unique real
minimum. This is identical to the saddle-point topology
of F. Note that there is no linear term in u since the two
deformed saddle points are always degenerate and that at
the transition temperature g&

——0. The constants g'o, g& are
determined by the conditions that the saddle points of F
be mapped onto those of g:

D. Inclusion of fluctuations:
The uniform approximation

A generalization of the saddle point method is known
in the literature as the uniform approximation. ' ' This
approximation is valid in the transition region where the
saddle points coalesce, as well as far from it where it
reduces to the saddle point approximation. Since the uni-
form method yields a universal analytic expression for the
partition function' (for a given topology of saddle
points), it is instructive to apply it in our case.

At any given temperature, we define a mapping
cr~,o,~u, z which will map pF onto a simpler analytic
function with the same saddle point topology:

+b „u[u(u —g, )] z"

+c „u [u(u —g))] z"], (2.31)

where a „, b „, and c „are the expansion coefficients.
The coefficients aoo, boo, and coo (which we shall denote
by ao, bo, and co, respectively) are found from the values
of the Jacobian at the three saddle points. The uniform
approximation is obtained from (2.30) by keeping only the
m =n =0 terms in expansion (2.31). The partition func-
tion in (2.20) |s then approximated by

Z (P)=2e '[aoIo($~, 0) +coIq($~, 0)], (2.32)

' 1/2 1/2
2 2

PUao = U
7T —detFo

(2.33a)

' 1/2 1/2
2 2co=2 PUco=2

detF )

J(u,z) =B(err, cr, )/B(u, z)

is the Jacobian of the mapping. The next step is to ex-
pand J in terms of a quantity which vanishes simultane-
ously at all of the saddle points, e.g. , u (u —g&):

J(u, z)= g Ia „[u(u —g'))] z"

O. is

O.I6—
I l l

*~
/'

Q. I4— /

G.l2— I
F FexaCt

O.IG — I
Fexacf

0.08 —'

i

O.Ge-f
I

l l l l l —detFO'

(2.33b)

I„($„0)=I du u "e (2.34)

In (2.32), I„($,,0) are universal analytic functions defined
by

0.02L
0 00--"---- -------

~ ~ ~ I ~ ~ ~ *~ ~

l l ~ k I l l l l l

0 lO 20 30 40 50

FIIG. 6. As in Fig. 5, but for the fractional error in the ap-
proximate free energies (F F,„„&)/

~
F,„„&~

. —

The universal functions I„of ttUo arguments were intro-
duced in Ref. 13. Here we have a special case in which
the second argument is zero. A nonzero second argument
characterizes a first order phase transition which can
occur when the two deformed minima are not degenerate.
The function Io($~,0) can be expressed in terms of the
parabolic cylinder functions U and V or in terms of Bessel



Y. AI.HASSID AND J. ZINGMAN

functions of fractional order which are more useful for
numerical calculations.

At a given temperature, all of the parameters which
occur in (2.32), namely go, gl, aq, and co, are completely

determined from FO,F, and det(FO') det(FI') by (2.29)
and (2.33). Note that these equations also hold above the
critical temperature ( T & T, ). In that case, the only real
saddle point is the spherical one (cr~, o, ) and the two de-
formed saddle points become complex. Although these
saddle points are not physical, they still have to be taken
into account in (2.29} in order to determine the mapping.
Especially just above T, these points are close to the
spherical one and, therefore, affect the saddle-point ap-
proximation. For these points, we still have
o', =—1/(2U), but the oz which satisfies (2.24) is purely
imagI'nary As T. continues to increase, A, becomes purely
imaginary, too. In this case, since g is a periodic function
oil tile lmaglnaly Rxls, (2.24R) 11RS Illally lmaglnary solu-

2.0

C
I 4 I

25/4~
Z(P)-2 e

1/ detF I

(2.35)

The result (2.35) is exactly what we obtain if we evaluate
(2.20) by the saddle point method. (For T((T, only the
two deformed saddle points contribute and their contribu-
tions are equal. ) In the limit T~O we have from (2.35)

PF=(PFI —ln2) ——,
' In[V 27 /(X —1)],

where Fl is given by {2.26). Note that (13FI—ln2) is the
approximation for PF when fluctuations are neglected
(taking into account the degeneracy of the two deformed
points). We see from (2.36) that the fluctuation correc-
tions for PF in the limit T +0 are finite an—d negative.

(ii) T»T,
Here g, is negative and large in magnitude. Using

(19.8.1), of Ref. 26, and neglecting the co term we find

23/2
Z(P)- (2.37)

QdetFO

which is again just the saddle point approximation of
(2.20). Indeed, for T»T, there is a single real saddle
point (the spherical minimum).

tions for 1,, among which we choose the one closest to the
real axis. Figure 7 shows the temperature dependence of
the control parameter gl and of the "normalized" expan-
sion parameters ao and co (continuous lines) for the Lip-
kin model with %=50 and +=147. The uniform free
energy calculated from the partition function (2.32) is in
very close agreement with the exact one„as Figure 6
shows.

%'hen T ~& T, or T ~~ T, the saddle points are well
separated and the uniform approximation should reduce
to the ordinary saddle point results.

(i) T((T,
In this case g, is positive and large. We can then use

the asymptotic expansion of V [see (19.8.2) in Ref. 26] to
find

O.ie-
UJ

LL

Q.l2
LU

~~0.08—
(A

~~ 0.04—
LLj

I/OaoT /I

I/4
Co

E. Inclusion of fluctuations in the order parameter only

For a general many-body system, the determinants in
(2.33) are still infinite dimensional. A more practical, but
cruder, approximation is one in which only fluctuations in
certain constrained directions which play the role of order
parameters are taken into account. For instance, these
directions were chosen in Ref. 13 to be the quadrupole de-
formations of the nucleus. In the present model, the order
parameter is o„,and we can compute the free energy "sur-
face":

0.000 &Tc
20

I

30 40
I l

50

FIG. 7. The temperature dependence of parameters in the
uniform approximation [see (2.32)] for the Lipkin model. Top:
Control parameter gI vs temperature T. Bottom: "Normalized"
expansion coefficients ao and co vs temperature T as calculated
from (2.33) (dashed hnes) and (2.41) (solid lines). The coeffi-
cients have been scaled by T—+'~ as shown in the figure.

F[P,~y]=minF[&o„o, ] I ~
CTz

(2.38)

The free energy of {2.38) is plotted versus o„ in Fig. 8,
for the same temperatures as in Fig. 4. Indeed, it exhibits
most of the features of the phase transition seen in the
more detailed picture of Fig. 4. For instance, the saddle
points are the same in both pictures. As for the fluctua-
tions, we hope that those in all "other" directions (o, in
our case) would to a large extent be canceled in the
numerator and denominator of (2.20) and that the approx-
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FIG. 8. Free energy F [see (2.38)] of the Lipkin model versus
the order parameter o„, at different temperatures (those of Fig.
5). These curves are used to calculate the free energy represent-
ed by the full lines in Fig. 5.

pF[p, oy) =
~ u ——,giu +Co . (2.40)

The final result for the approximated partition function is
in the form (2.32). The numerical control parameter g& is
exactly the same as that of Sec. II D. The only difference
arises in the coefficients ao, co which are now given by

' 1/2
pU

7r

pU

7r

' 1/2
U

Qo=

' 1/2

ll

1/2

(2.41a)

1/2

(2Alb)

imation be based on fluctuations in the important direc-
tions only:

—P+[I3 ~y l

z(p)= (2.39)

will be reasonable. The normalization integral in the
denominator of (2.39) is obtained from that in (2.20) by
minimizing the "action*' in the o., direction (i.e., setting
o, =0). This is the same approximation as is used in the
numerator. %e note that this normalization integral is
also temperature dependent.

Equation (2.39) can also be evaluated by the uniform
approximation. The mapping is a one-variable mapping
(o.„~u) such that:

Here Eo and F i' refer to ordinary second derivatives of F
(with respect to o„at the spherical and deformed configu-
rations, respectively). The expressions (2.33a) and (2.33b)
for ao and co in Sec. II D differ from (2.41a) and (2.41b)
also by an additional v2v normalization factor. This is
related to the presence of a second direction for fluctua-
'tions in the former calculation. Indeed, in the limit
N =0(j=0) we have F=2uo„+Uo'„F=2uo~, and thus
detF&' contains an additional factor of 2U as compared
with Eo ~

The coefficients ao and co calculated from (2A1) are
plotted in Fig. 7 (dashed lines) and are of the same order
of magnitude as the ones calculated from (2.33). The free
energy calculated from (2.32) and (2.41) is shown by the
continuous line in Fig. 5. We can see that the inclusion of
fluctuations in the order parameter alone already provides
a significant improvement over the mean-field free energy
and accounts for much of the difference between the
mean-field and exact free energies (see also Fig. 6).

The transition approximation, a power series expansion
of the free energy about the spherical solution~7 valid for
T-T„can be derived for the one-dimensional case,

,where we can expand the free energy F to sixth order
around the spherical solution. The final results for ao
and co in terms of the derivatives of F at the critical point
are the following:

ao(T, ) =

co(T, )=—

+ (iu)

63/4 y (us)

40 [F'"')7'

(2.42a)

(2.42b)

III LIPKIN MODEL
ENTROPY AND LEVEL DENSITY

(3.1)

and then calculate the energy from E =E+TS. In Fig. 9
we plot the entropy versus the energy, which is also con-
sidered to be a fundamental relation in thermodynamics.
The critical energies at which the phase transitions occur
are shown by arrows. We see that the mean-field entropy
(dotted-dashed line) lies below the exact entropy (dashed
line) for all energies, but that the inclusion of the fluctua-
tions in the order parameter (continuous line) improves
the mean-field results substantially. When the (static)
fluctuations in the other directions are taken into account
as well (dotted line), the agreement with the exact entropy
is very good, except near the ground-state energy.

Since all of the energy curves are rnonotonically in-
creasing with temperature, it follows that 8 (PE)/BP &0
everywhere, and therefore that all of our approximations
produce free energies which are thermodynamically staMe.
Note that the maximal energy attainable by the "exact"

A. Entropy

We must first find the entropy as a function of tem-
perature by using
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curve is the center of gravity of the Lipkin spectrum. To
reach higher energies we have to introduce negatiue tem-
peratures. Also note that the critical energies, which cor-
respond to the critical temperature T„are different in the
various approximations.

To calculate the entropy in the mean-field approxima-
tion, note that, since

FIG. 9. Approximate and exact entropies S as a function of
energy E. The various curves are essentially the Laplace
transforms of the corresponding curves in Fig. 5. The monoton-
icity of the different curves indicates that all of our approxima-
tions are thermodynamically stable. Arrows indicate critical en-

ergies which correspond to the critical temperature in the vari-
ous approximations.

S(T=0)=in[2 i X l(X —1)] . (3.4)

This entropy is finite (=1.16 for X =50 and 7= 1.47), as
opposed to the exact one which vanishes at T =0.
Indeed, as already discussed in Sec. IIB, the approxima-
tion employing only time-independent fluctuations is not
expected to be good at very low temperatures. However,
as soon as T) 1 the above approximatio~ is valid. The
static fluctuation corrections have no effect on the energy
at T =0(2.36), which is still equal to the mean-field result
(2.26).

( E) es(E)
2 mh

(3.5)

where b, = —BEIBp is the energy variance in the corre-
sponding canonical distribution. Note that due to their
thermodynamic stability (see Sec. III A) all of our approx-
imations satisfy —BEIBP&0, so that b. above is always
rea/. Note also, however, that when T~O, 6~0 and ap-
proximation (3.5) breaks down.

In the mean-field limit, analytic expressions are easily
obtained from (3.3). At T=T, there is a discontinuity
given by

B. Level density

The many-body level density p(E) is given from (1.1) as
the inverse Laplace transform of the partition function
Z(p). There exist exact numerical methods for the inver-
sion of Laplace transforms which use only real values,
but here we shall consider only the saddle point approxi-
mation, which yields the standard expression for an aver-
age level density

BI IB~,=BFIB~,=0
BE
BP

BE U

Bp T =z. 2T,
(3.6)

at the equilibrium configuration, it is enough to take in
(2.21) a partial derivative with respect to T at constant cr~

and cr, . We find for the entropy

SMF!T) = in/ pA,g'Ig—
and for the energy

E =u(2cr~+cr, ) Ag'/g . —

(3.2)

(3.3)

Here g and A, are as in (2.8) and (2.22), and crz and cr, are
taken to be at their equilibrium values. Since the transi-
tion is of second order, the mean-field entropy and energy
are continuous at the transition, but their derivatives are
not. When T~0, g'Ig~ j and from (3.2) we find
SMF —+0, as does the exact entropy. The mean-field ener-

gy at this limit is given by (2.26). At the opposite limit,
T~ ao, the mean-field entropy approaches 1n(%+1), i.e.,
the logarithm of the number of states, as for the exact en-
tropy.

To find the fluctuation corrections to the entropy we
have to use the uniform expression (2.32) in (3.1). The re-
sulting expression is quite complicated and instead we
have calculated the derivative numerically. Simpler ex-
pressions can be obtained in the limits T« T, or T))T,
by using the saddle point formulas. For example, when
T~O, we find from (2.35)

p(E)= +5(E E)— (3.7)

where E; are the energy levels of the many-body system
Experimental level densities, however, are usually aver-

The uniform expressions are more complicated and thus
we have chosen to calculate the derivative numerically.
The various level density curves are plotted in Fig. 10
versus energy. We see that the mean-field approximation
underestimates the exact level density (i.e., the one ob-
tained from the exact free energy) by a factor of -2.
When fluctuations in cr~ only are included, we get about
70% of the exact level density, and most of the rest is ac-
counted for by fluctuations in the cr, direction. Note that
these level densities diverge at the ground state energy. It
is easy to show that the mean-field density diverges like
T '~, so that its integral (which gives the number of
states) is still finite. The "jump" in the mean-field level
density which is seen in Fig. 10 is a result of the discon-
tinuity (3.6). No such discontinuities are observed in the
uniform curves as they are smoothed out by the fluctua-
tions. It is important to keep in mind that the level densi-
ty which we are referring to is an auerage level density.
The exact level density is, of course, a highly singular
function
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aged over a certain width. To obtain such an average lev-
el density from (3.7), we have applied a Strutinsky-type
smoothing

l E —E-
P(E)= —g f (3.8)

where the smoothing function f is

f(x)=I.st (x )e (3.9)

Here L,~ is a generalized Laguerre polynoIDial. The en-
ergy interval y and the order M of the polynomial are
chosen such that p(E) in (3.8) will be insensitive to
changes in y and M. The average level density compares
quite well with the one derived from (3.5) using the exact
entropy, as seen in Fig. 11. Significant deviations are ob-

I I I I I I I

I ) III I I I I I I I I I I I I I I

0.0 I

-40
I

-30
E

FIG. 11. The dashed line level density of Fig. 10 [obtained
when the exact free energy is used in (3.51] compared with an
average level density (full line). This average level density is ob-
tained from the exact level density with a Strutinsky-type
smoothing (3.8) and (3.9) with y=1.75 and I=3.

FIG. 10. Level densities p in the Lipkin model versus energy
E. The various level densities were calculated from (3.5) by us-

ing the corresponding curves of Figs. 5 and 9. Energy is mea-
-sured in units of e and p in units of e '. Arrows are as in
Fig. 9.

served only near the ground state energy where the classi-
cal approximation (3.5) breaks down. This figure also in-
cludes the spectrum of the present system. We see that
near the ground state energy, where states appear in al-
most degenerate doublets, the average level density is
about 2. However, this density drops quickly to an almost
constant density of about 1, as the states become nearly
evenly spaced (note that the average distance between lev-
els is -e= 1). Since the level density (3.5) diverges at the
ground state energy, its drop has to be steeper than that of
p so as to provide the same number of states below a given
energy. Note that the average level density (3.8) is sym-
metric around the mean energy (g,.E;)/(%+1) of the
Lipkin spectrum. Therefore, it is enough to estimate the
level density below this point, and we can avoid the intro-
duction of negative temperatures.

IV. SUMMARY AND DISCUSSION

In tllls papcl, wc llavc illvcst1gatcd tllc valldl'ty of VRrl-

ous approximations for the nuclear partition function and
for the many-body level density in the context of an exact-
ly solvable many-body system —the Lipkin model. %'e
conclude that, since the nucleus has a finite number of
particles, density fluctuations around the mean-field
equilibrium configuration can contribute significantly to
the nuclear partition function. These fluctuations are im-
portant especially in the vicinity of a phase transition be-
tween two different types of nuclear shapes. Generally
the fluctuation corrections lower the free energy and in-
crease the level density calculated in the mean-field ap-
proximation. Another effect of the fluctuation correc-
tions is to smooth out various singularities of the thermo-
dynamic functions which exist in the mean-field theory at
the transition point.

Since the inclusion of time-dependent fluctuations in-
volves the difficult problem of solving the finite
temperature RPA equations, ' we have investigated the
more practical approximation in which only static fluc-
tuations are considered and found it to be very good for
temperatures which are not too low. However, in realistic
situations, even this approximation is quite impractical,
and instead we use an approximation in which only time-
independent fluctuations along certain constrained direc-
tions are taken into account.

We conclude, from our model calculations, that when
the important constraints have been identified, the latter
approximation can account for a significant fraction of
the difference between the averaged exact level density
and the mean-field density. This approximation requires
only the knowledge of the free energy surfaces for the
constrained variables at different temperatures. While
calculations of these surfaces for realistic nuclei by the
constrained Hartree-Pock method may still be hard, '
they are certainly possible by the Strutinsky method gen-
eralized to fimte temperature. '" lt would be interesting
to carry out such calculations since we can then use the
above approximation to evaluate fluctuation corrections'
to nuclear level densities, previously calculated using real-
istic independent particle schemes. '

Another important direction which we are currently
following is the application of the methods developed in
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this work to more complicated but realistic group Hamil-
tonians. The advantage of such Hamiltonians is that ma-
jor simplifications occur in the application of our approxi-
mation methods. Most important, the number of relevant
degrees of freedom is reduced considerably. For instance,
when only static fluctuations are considered, the number
of fluctuating variables is always finite, and the functional
integrals reduce the ordinary integrals. Also, several
quantities, such as the free energy surface, can be evaluat-
ed analytically by using group theoretical methods. Al-
though the numerical diagonalization of such group Ham-
iltonians can become extremely hard, if not impossible,
when the corresponding representation of the group in-
cludes a very large number of states, our approximation
schemes remain tractable. Such a situation occurs, for ex-
ample, in polyatomic molecules which can be described by
coupled SU(4) groups. ' In these cases, our methods can
be used to evaluate the level density at high excitation en-
ergies.

ACKNOWLEDGMENTS

One of us (Y.A. ) would like to thank S. Levit and R.
Balian for many useful discussions during the early stages
of this work. We are both grateful to F. Iachello for valu-
able discussions and to D. A. Bromley for his comments
and critical review of our manuscript. This work was
supported in part by the U. S. Department of Energy
under Contract No. DE-AC02-76ER03074.

APPENDIX A: COMPUTATION OF (J;Ji )

1J = coth L+ 1 — coth (A, .L)L
2 2 A,

2 2 2

——P& XL.
2

(A4)

APPENDIX 8:
THERMODYNAMIC STABILITY IN

THE MEAN-FIELD APPROXIMATION

We shall denote by p the single-particle density matrix
corresponding to a D which is an exponential of a one-
body matrix. We show that if, for a given p the mean-
field solution p is stable, i.e., 5&(pF[p,p]) &0, then the
thermodynamic function pF(p)=ming[p, p] is convex
at that point, i.e.,

5 [PF(P)](0 . (81)

Note that under general and independent variations of D
and p in (2.5) we have the following:

and

5(PF„„[P,D) )=Tr5D(lnD +PH)+5P(H ) (82)

Using (A2) and (A4) we obtain

—,((J~J )+(JiJ;))=~, +coth 5;, , (A5)
iAJgp
g2 2 2 'i '

where x is given by (2.12).

We rewrite (2.10) as
5 (pF„„[p,D])=Tr(5D51nD)+Tr5 D(lnD +pH)

+25P5(H) . (83)
(Al)

and take a derivative with respect to pA, i to find

Tr(J;Lie ~~ ' )= g"— + 5;J, (A2)2

where

B(pk.i )

(A, —P 'sinhAP)( A, J ) A,

(A3)
sinhkP J . sinh(AP/2)

~p x'p
The last equality in (A3) is a group property and can be
easily proved by using the spin- —, representation of SU(2).
Relation (A3) can be inverted to give

However, along the mean-field solution p, the first term
on the right-hand side of (82) vanishes so that

5[/3F(P)] =5P&H ) .

Taking directly the variation of (84) we have

5 [PF(P)]=5P5(H) .

(84)

(85)

An alternative expression for 5 [pF(p)] is obtained from
(83) where D is taken to be the mean-field solution at p
and D +5D the one at p+5p. Comparing this expression
with (85) we find

5 [pF (p) ]= —Tr(5D5 lnD) —Tr5 D (lnD +pH ) . (86)

On the other hand, the right-hand side of (86) is just
5~(pF[p,p]) in —which the second variation is with

respect to a 5p along the mean-field solution. Since the
Hartree-Pock solution is assumed to be stable, (Bl) fol-
lows immediately.
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