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An analysis of the coupled Nm-New system is carried out using the Hamiltonian of the Chew-

Low theory. This Hamiltonian describes the interaction of pions with a static nucleon through the
virtual process N~~N+m. A set of three-particle equations is obtained whose solutions satisfy two-
and three-particle unitarity, as well as the discontinuity relations for the production amplitudes

(N+m~N+2m) in the subenergy variables, i.e., the energy of one of the final state pions. It is

shown that in order to satisfy the subenergy discontinuity relation, it is necessary to include all four
P-wave m.-N amplitudes as input to the three-particle equations. In particular, even though the 6 is
not an elementary particle in the model considered, its amplitude must be part of the input. The
analysis presented shows how to modify the standard three-particle equations to account for single

nucleon intermediate states. An expansion for the production amplitude similar to the isobar expan-
sion emerges from the analysis. An approximation for the nucleon propagator is obtained which in-

cludes the effect of two meson states.

I. INTRODUCTION

For the last couple of years the author has been analyz-
ing' model quantum field theories of the Lee model
type in an effort to develop a tractable theory for the cou-
pled Nm-Nmm. system. The Lee model" describes the in-
teraction of two fermions, V and X, with a scalar boson 8
through the virtual process V~~N+O. This model is
tractable because of the conservation of charge and
baryon number, and the lack of antiparticles in the theory.
The amplitude for the process N+8~N+ 8 was ob-
tained in Lee's original work, while the amplitudes for
V+8~V+8 and V+8~N+28 were first obtained by
Am ado.

In Ref. 1 (hereafter referred to as 1.) it was shown that
the amplitudes in the V-8 sector can be obtained from the
solution of an Amado-Lovelace ' type of three-particle
equation. The technique used in I. to derive this equation
depends in an essential way on the restricted nature of the
states in each sector of the Lee model, and therefore can-
not be used to treat realistic field theories.

In Ref. 2 a crossing-symmetric extension of the Lee
model, ' which contains an antiparticle 8, was analyzed,
and an Amado-Lovelace equation for V-8 scattering was
obtained. The technique used for deriving this equation is
based on a dispersion relation obtained from an exact for-
mal expression for the V+8~N+28 amplitude. The
dispersion relation is written in terms of the energy m of
one of the 8 particles in the final state. The function
dispersed, which is a part of the full production ampli-
tude, has a branch cut for m)IM where p is the 0 mass.
The discontinuity across the low energy end of the cut
(p &ro &Mt —MN+2p) is related linearly to the function
itself. By assuming this discontinuity is valid for all
m) p, a linear scattering integral equation is obtained.
This technique is closely related to an approach used by
other workers" ' to derive three-particle equations by
imposing subenergy unitarity and analyticity on the isobar
expansion for production amplitudes.

The dispersion relation approach developed to treat
V-8 scattering in the crossing-symmetric Lee model' is
not general enough to treat a system such as. the pion-
nucleon system. This is because a process such as that
shown in Fig. 1(a) does not occur in V-8 scattering, since
conservation of charge prevents a V and a 8 from combin-
ing to form a V or an N. The crossed process of Fig. 1(b)
does occur and when properly dressed becomes the Born
term for the Amado-Lovelace equations. In Fig. 1(b) the
solid hne, the wiggly line, and the dashed line are to be
identified with the V, the N, and the 8, respectively.

In order to see how to extend the methodology
developed in Ref. 2 to allow for the presence of processes
such as Fig. 1(a), an extension of the Lee model, con-
sidered some time ago by Bronzan' and Chen-Cheung, '

has been analyzed. In this extension there is an addition-
al W field introduced so that the basic processes are
VAN+0 and 8'~+V+0. The lowest order diagrams for

FKx. 1. Diagrams for Born terms. (a) Direct process, (b)
crossed process.
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V-0 scattering are those of Fig. 1 with the dash-dot line,
the 8' particle, and the other lines identified as above.
The analysis of this model shows that the physical pro-
cesses V+8~V+0 and V+0—+N+28 can be obtained
from a single amplitude which is the sum of two parts.
One part is the solution of a standard Amado-Lovelace
equation whose Born term is the dressed version of Fig.
1(b) and whose propagator is determined by the N-8
scattering amplitude. The other term involves the solu-
tion of the Amado-Lovdace equation and the W propaga-
tor. The techniques used to derive this result are not
peculiar to the model, since they rely mainly on unitarity
and analyticity in the subenergy and total energy vari-
ables, and hence can be applied to models for real systems.
Here we shall apply them to the Chew-Low model' ' '

for the pion-nucleon system.
The Chew-Low model describes the interaction of pions

with a static nucleon by means of the virtual process
N~~N+ m.. The N's and the m's are the only elementary
particles in the theory. The lowest order diagrams are
those of Fig. 1 with the dashed lines representing n's and
all other lines representing N's.

The equations we shall derive for the coupled Nm-Nn. m.

system are similar to those proposed some time ago by
Lovelace, but with important differences in the treatment
of processes such as Fig. 1(a), which give rise to the direct
nucleon pole in the m-N amplitude. The development
given here is somewhat more satisfying in that the struc-
ture of the three-particle equations is deduced from an
underlying quantum field theory.

An interesting consequence of the author s analysis is
that it is necessary to include all four ~-N elastic scatter-
ing amplitudes (P», P&3, P3&, and P33) as input to the
three-particle equations in order to satisfy the subenergy
dispersion relations obtained from the field theory. In
particular, even though the 6 is not an elementary particle
in the Chew-Low theory, its amplitude must be part of
the input to the Nm. ~ equations. A field theory with an
elementary 6 will lead to three-particle equations which
differ from those obtained here.

It is worth noting that an expansion for the production
amplitude that is similar to the isobar expansion emerges
from the present analysis. It does not need to be assumed
as was done in an earlier derivation' of equations for the
Nm. ~ system based on the Blankenbecler-Sugar' ap-
pi oach.

The outline of the paper is as follows. In Sec. II the
Hamiltonian for the field theory is given and the formally
exact expressions for the amplitudes for N+ m.~N+m.
and N+ m~N+ 2m are written. This section is essen-
tially an application to the Chew-Low model of the gen-
eral relations given in Sec. II of L, for static model Hamil-
tonians. The invariance of the field theory under spatial
rotations and rotations in isospin space is used in Sec. III
to reduce the number of amplitudes to a minimum. The
basic discontinuity relations are derived in Sec. IV. These
are the discontinuity of the elastic amplitude across its
right-hand cut in the total energy and the discontinuity of
the terms in the production amplitude across their right-
hand cuts in the subenergy variable. In Sec. V the struc-
ture of the three-particle equations is deduced from the

discontinuity relations in the subenergy variable. It is
shown in Sec. VI that the solutions of the three-particle
equations satisfy the discontinuity relation in the total en-
ergy variable if the driving terms in these equations are
properly constrained. In Sec. VII the modification of the
Amado-Lovelace ' equations that is necessary to account
for processes such as Fig. 1(a) is obtained. This modifica-
tion arises only in the nucleon or P~~ channel, and leads
to an amplitude which is the sum of two parts, one of
which is the solution of an Amado-Lovelace equation,
while the other part involves this solution and the nucleon
propagator. The analysis leads thereby to an approxima-
tion for this propagator which includes the effect of two
meson states. A brief analysis of the form factors and
propagators which are the input for the three-particle
equations is given in Sec. VIII. Finally, Sec. IX gives a
discussion of the results, a comparison with other relevant
work, and suggestions for the future.

II. THE CHE%'-LG%' MODEL

We take for the Hamiltonian of the system

a =M, + g f dk k'a', (k)a.(k)~„

+ g J dk k [a,(k)J„(k)+a„(k)J,(k)],

0'0= 0&

The nonzero commutation relations for the meson opera-
tors are

[a„(k),a, (p)] = 5„,. (4)

The physical one-nucleon states
~

r )+ satisfy

a ~r)+=M ~r)+,
where M is the physical mass and r is a cover index for
the z components of the nucleon's spin and isospin. Ac-
cording to Eqs. (2), (6), (7), and (11) of L, the one meson
states which solve

H
~
kyar)+=(M+cok)

~ kyar)+

can be written in the form

where Mo is the bare nucleon mass, and a„(k)and a„(k)
create and annihilate mesons with energy cok = (k +p )'
and index v. Here v is a cover index for m and n, the z
components of the mesons orbital angular momentum and
isospin, respectively, and

fo 477kU (k)
(2)

p [3(2') 2cok]'~2

where fo is the bare coupling constant and U(k) is a cut-
off function normalized to one at cok =0. The o. and r„
are standard components of irreducible tensor operators of
order one, e.g. ,
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(
k)sr)s= ss(k)+ Ps(k) r)

1

~+~, +~~—H " +
(7)

and satisfy the orthogonality relation

+ (pvs
I kyar), + —— 5 &5,„.5(p —k)

(8)

T„(pv,q)s;s) (s J„(p)=I J~(q)m+z —H"

+Jr(q) 1„(p)r)
1

This extension is the one that is usually studied in analyz-
ing one-meson elastic scattering in the Chew-Low
model. ' ' With this form the dependence on p and q is
determined by the cutoff function U(k), and the analytic
structure in z is easily determined by choosing physical
states for the intermediate states. The first term on the
right-hand side of (10) contains the direct pole at z =0
and the right-hand unitarity cut beginning at z =p, while
the second term contains the crossed pole at z =0 and the
left-hand crossing cut beginning at z = —p. It is impor-
tant to realize that the off-shell extension given by (10) is
not unique; two other possibilities have been discussed in
Ref. 19.

According to Eqs. (13) and (18) of L the two meson
states satisfy

H
I
pvqp, s )+——(M +co&+co&) I pvqps )+,

and have the orthogonality relations

+(pvq)Ms
I
kpo(r )+= [5(p —k)5 ~5(q —l)5„i

+5(p l)5„i5(q——k)5„]5,„.(12)

Explicit expressions for these states are given by Eqs. (14)
and (15) of L; however, we will not need them.

There are several equivalent expressions for the ampli-
tude for the production process N + ~ . N + 2m. The
ones that will be of use to us are given by

s Zs(q) J„(p)k)sr) ~(pv::qk)
+ M +co&+re—0 +

The plus and minus subscripts distinguish in and out
states, respectively.

From Eq. (12) of L the on-shell amplitude for one-
meson elastic scattering is given by

T,„(pv,kp;cok+ie)=+(s
I
J„(p)

I kyar)+, co~=~k, (9)

where the upper sign gives the physical amplitude. Com-
bining (7) and (9), we see that an off-shell extension of this
amplitude is given by

Here the initial meson is labeled by (k(Li, ) and the final
mesons by (pv) and (qA, ), and it should be stressed that
the above expressions are only equal on shell, i.e., when
coz+coz ——cok. The first form follows from Eqs. (19) and
(21) of L, while the second form can be shown to be
equivalent to the first by writing

I
pvs ) as in (7) and us-

ing Eq. (10) of L. The third form is obtained by writing
the S-matrix element as

(pvqls
I
kpr )+—— (pvqls

I
(

I
kpr )+—

I
kpr ) ),

and using (7) to determine the quantity in parentheses.

III. ANGULAR MOMENTUM AND ISOSPIN
ANALYSIS

where
I
M'N')+ is the nucleon state, is an unnormalized

eigenstate of total angular momentum and isospin with
eigenvalues ( JM) and ( TN), respectively.

In order to compress the equations it is convenient to
introduce the following shorthand notation:

(Pbl I
aa) =(J~IM'm

I
J.M)(T, IN'n

I
T.N), (14)

where a and P go from 1 to 4 and

1Ti=T2=J~=J3= 2
3

T3 —T4 —J2 ——J4 ———, , (15)

while p is a cover index for (mn), and a and b are cover
indices for (MN) and (M'N'), respectively. From the
properties of the Clebsch-Gordan coefficients, we have the
orthogonality relations

g (Pbp I
aa)(Pbp

I

a'a') =5 5„,
bp

g (Pbp
I

aa)(Pb'p'
I
aa) =5b~5&& .

(16)

From (10) and the tensor character of the J„,it follows
that we can write

g ( lsv
I

a'a') r„(pv,qlJ, ;z)( lrp
I
aa )

As is well known, the Hamiltonian given by (1) is in-
variant under spatial rotations and rotations in isospin
space. The key observation for exploiting this is that
J„(k)=J„(k)is an irreducible tensor operator of order
one in both spaces, therefore an expression of the form

n
I
TN)

= (pvs
I J~(q) lkvr&+

(pvql(s
I J&(k)

I
r )+, co~+co~ =cok . (13) Similarly, we have

=5~ 5, ,T (p, q;z) . (17)

g (pbv
I
a'a')(Isi,

I
pb) s Ji„(q) J,(p) kaa =5 ~ 5, ,F~(p,z, k), qadi +co =cok,

$A, + M+z —H +
(18)
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where we have introduced a one-meson eigenstate of total angular momentum and isospin by

~

k«)+ ——g ~
kps)+(is@

~
«) . (19)

We see from (13) that Fp(p, z, k) is a part of the production amplitude when z =co&+i E Here we are introducing a par-
ticular off-shell extension of this amplitude which is convenient for our purposes.

By using the orthogonality relations (16), we can invert (18) to obtain

s J~(q) J„(p)k« =g (lsd,
~

Pb)(Pbv ~«)FP(p, z, k), co&+co~=cok .(+ M+z —H + Pb
(20)

From (13), (19), (18), and (20), we find

g (Pbv ~a'a')(isA, ~Pb) (ques ~

J (p)
~
kaa)+ ——g (pqPu'a'~ J&(k)

~
r)+(1rp ~aa)

where

=5 5, ,[FI(p,coq+ie, k)+QCIrFr{q, cop+is, k)], co~+coq coI, ,
——

r

{21)

I pqp«&+ = y I
pvq~s &+ &»7

I Pb & &P»
I
«&

SA,
bv

(22)

is a two-meson eigenstate of total angular momentum and isospin labeled by na, with the nucleon and a pion first cou-
pled to Pb. The coefficients C~r arise because of the two possible choices for the pion that is first coupled to the nu-
cleon, and are given in terms of Wigner 6j symbols by

Tp 1T~ Jp 1 J~
C~ ={—) I' ~ ~(2T~+1)(2J~+1){2T +r1){2J +r1)~

r '2 r'2
In obtaining (23), we have used

g (Pbv
~

a'a') ( ls p,
~

Pb ) ( lsv
~ yg ) ( yg p ~

aa ) =5~ ~5„Cpr,
SP
bv

(24)

which follows from the standard expression for the 6j symbols in terms of a sum of products of four Clebsch-Gordan
coefficients. The matrix C~ is a real, symmetric matrix and satisfies

(25)

which follows from the properties of the 6j symbols.

IV. THE DISCONTINUITY RELATIONS

The amplitudes T (p, q;z) and Fp(p, z;k) defined by (17) and (18), respectively, have right-hand cuts in z for z )p.
The discontinuity across these cuts can be determined by using the identity

1 1

M +cok+ie —H M +cok —I, e —H
2mi5(M +cok—H. ), — (26)

and expanding the delta function according to

5(M+cok H)= I g ~x«—)+xm„de„5(cok—co„)+(xaa
~

aa

+ —,
' I g pqPaa )+pco~dcozqcoqdco~5(cok co& co~)+(pqPaa

~

—+-
8 p

(27)

where we have used (8), (12), (19), and (22). With the help of (17), (10), (26), (27), (9), (19), (21), and (25), it is straightfor-
ward to show that
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T (k, k;cok+ie) T—(k, k;cok i—e)= —2' kcok
~

T (k, k;cok+ie)
~

+ J pcozdcozqcoqdcoq5(cok —co& co—q)

I Fp(p ~q+ietk)
I

+ QFp (Acoq+ie&k)Cp&F&(q, co, +je,k)

p&cok &3p . (28)

This gives the discontinuity across the right-hand cut of the elastic scattering amplitude for energies below the three pion
threshold.

From (18), (26), (27), (19), (9), (17), and (21) it follows that

FI(p, coq+ie, k) FI(p,—coq ie, k—)= 2miqco—
q Tp(q, q;coq ie)[—Fp(p, coq+ie, k)+ g CIrFr(q, cop+i e, k)]

y

p & coq & 2p, cop +coq =N k

(29)

It should be emphasized that this relation is exact, moreover, the values of coq indicated are those that arise when

cok (3p. Using (28) and the fact that T~(p, q;z) is a real, analytic function of z for p and q real, we can write

+i5 { k)e sin5 (cok)
T (k, k;cok+ie)= —qi (k)

7Tkcok
cok Pp, (30)

where below the inelastic threshold g~ is one and 5 becomes the usual phase shift. The parameter ri~ is the ratio of the
elastic to the total cross section in channel a. Putting (30) into (29), we immediately obtain

FI(P,coq+ie, k) eP q—FP(P, coq ie, k) =—2m'iqcoq TP—(q, q;coq+ie) g CI&F&(q,coz+ie, k),
y

p & Q)q & 2p, cop +Qpq =Nk (31)

V. THE THREE PARTICLE EQUATIONS

We assume that the on-shell m.-N amplitude can be written in the form

gp(q)
TP(q, q;coq + )le= . , P (coq (2P, (32)

dP coq+ le

where dp(z) is a real, analytic function whose only singularity in the finite z plane is a right-hand cut for z &p, and
whose only zero is a simple zero at z =0 for a= 1, the nucleon channel. Justification for this is given in Ref. 19. We
normalize d

& (z) so that

lim d l (z) /z = 1 .
z~O

It follows from (30) that

(33)

2iSlico )

dP(coq ie)IdP(coq—+ie)=e q P (coq (2P (34)

If we define A~ by

A p(p, z, k)
FI(p,z, k) =gp(q)

p z

we find from (31), (32), and (34) that

CO&+6)& =Q)k &

p & coq & 2p~ cop +coq =Q)k

A &(q, co&+i e, k)
A p(p, coq+i e,k) Ap(p, coq —ie, k) = —2miqcoq g gp—(q)CIrgr(p)

dr cop+le

(35)

(36)
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A y(x, cok +l Eco' —z, k)
X

dy(cok+Ee —co+ )
(37)

where the ellipses indicate some function that does not
have a cut in z for p &z & 2p.

If we let

It is easy to see that we can satisfy this discontinuity rela-
tion with

gEE(x) CEEygy(p)
A p(p, z, k) = g dco„xco„

P Z —CO„

VEEy(p, q;z )=
VyEE

"(q,p;z), (44)

which is obviously true for BIy. It is easy to show that
(44) and (41) imply that

z (45)

VI. THREE PARTICLE UNITARITY

We shall show in the next section that these assumptions
about VER guarantee that the solutions of (41) satisfy the
unitarity relation (28).

A$(p, cok+iE co~, k—) =Xiii(p, k;cok+E'E)

we find

(38) In order to make the development of this section as
transparent as possible, it is convenient to introduce a set
of states

~
Pp) which satisfy

Xpl (p, k icok+le) = g f dco~xco~BEEy(p, x;cok +iE')
P

5(COp —
Coq )

&PP
~

ccq) =5EE
P~q

(46)

Xyi (x,k; Cok + l E')

X
dy(Cok + Et" Co+)—(39) and a set of operators X (z), V (z), and t (z) which are

defined by

( )
gEE q EE gyy P()C ()

py p~V~z =
Z —CO —COs' e

(40)

This suggests the existence of a linear integral equation of
the form

XEEy(p, q;z)= VEEy(p, q;z)

oo XCO& d CO++ g f Vpi(p, x;z)
EE dEI Z —Co~

&Pp i
X (z)

i yq ) =X)y(p, q;z),

&Pp
l

V ( )lrq&=V (pq; »
5(co~ —coq )

&PS IE(z)
I }'q&=5EE,

P Cop d y Z —
COq

In this notation (41) becomes

X (z)= V (z) + V (z)l(z)X (z),

= V (z) +X (z)E(z) V (z),

(47)

(48)

with

&&Xiy (x,q;z), where the second line can be shown to be equivalent to the
first by comparing iterations of the two equations.

From (48) it follows that

Vpy(P, q;z) =BEEy(P,q;z)+ W)y(P, q;z),
where IVEEy is some function that does not have the singu-
larity associated with the denominator in (40). We see
that BEEy(p, q;z) has a right-hand cut in z for z & 2iE, . We
assume that this is the only right-hand cut in Vpz, i.e.,

Vly (p,q; cok +i E ) VEEy (p, q;—cok ie)—

[1—V (+)E(+)][X(+)—X ( —)]

and

= V (+)—V ( —)+[V (+)E(+)
—V ( —)E( —)]X ( —), (49)

= —2qrlgp(q)Cpygy(p)5(cok —co& —coq), cok &p, [1+X (z)t(z)][1—V (z)t(z)]=1, (50)

and that

where in (49) (+)=(cok+ie) with cok &p. Using (50) to
solve (49) for the discontinuity in X, and rearranging the
result with the help of (48), leads to

X (+)—X ( —)=V (+)—V ( —)+X (+)E(+)[V (+)—V ( —)]+[V (+)—V ( —)]E(—)X ( —)

+X (+)tr(+)—E( —)+t(+)[V (+)—V ( —)]E(—)IX ( —) .

From (33), (30), and (32), it follows that

1

d~(cok+lE)
1 kcokg (k)

2lyi 5~E5—(cok)+
&

~(cok —p), Cok &2EEE .
d~(cok i@) —

~

d~(cok+EE)
~

(52)

If we take on-shell matrix elements of (51) and use (43),
(52), (45), (35), and (38), we find that Xii(k, k;z) satisfies
the discontinuity relation (28) with

Xii(k, k;cok+Ee)= T~(k, k;cok+Ee) . (53)

It should be kept in mind that as long as V satisfies
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(43) and (44) and d~ satisfies (52), X»(k, k;z) will satisfy
the unitarity relation (28). The importance of this will be
seen in the next section where we shall show how to in-
clude the direct nucleon pole in the three-particle equa-
tions.

Substituting this into (61), we find

& S(z)
I

=A, G {z)&g
I
[1+t (z) Y(z)],

where

G '(z)=M+z —M, —A, &g
I

t(z)
I
R(z)& .

(65)

(66)
VII. THE DIRECT NUCLEON POLE

From (23), it follows that

Using an equation like (50), it is easy to show that the
solution of (63) is

I
R(z)&=[1+Y(z)t(z}] Ig& . (67)

where A is the matrix that appears in the crossing rela-
tion

T~(k, k; —z) = g A pTp(k, k;z),
P

and satisfies

A =I.

(55)

(56)

~pr V»q;z) =&pigiV»a
g~(q)5r&, a= 1,M+z —Mo

In the Chew-Low theory the Born term satisfies (55). If
in (42), 8'pr is zero, then the Born term for (41) becomes
B~&(k, k;cok), which according to (40), (54), and (56) does
not satisfy (55). This inadequacy of the standard three-
particle equations was pointed out some time ago by
I.ovelace. The problem is that the standard equations do
not allow for intermediate states in which only the nu-
cleon is present. In Ref. 3 it is shown how to choose Wpr
in {42),so as to account for these processes.

%'e take

Replacing z by z', taking the adjoint, and using the fact
that Y(z) and t(z) have the property (45), we find

&R(z*)
I
=&g

I
[1+Y(z)t(z)],

which when combined with (65) and (64) leads to

X'(z)= Y(z)+
I
R(z)&AG(z)&R(z")

I

(68)

(69)

=R p(p;z*), (70)

and (69) becomes

Xpr (p, q;z) = Yp (pr, q;z)+R p(p;z)A G (z)R (rq;z) .

Writing out (62), (63), and (69) explicitl~, we see that
Ypr(p, q;z) satisfies (41) with a=1 and 8'pr ——0, Rp(p;z)
is the solution of

Rp(p;z) =6p)g((p)

qcoqdcoq+ g Bpr(p, q;z) Rr(q;z)

=0, (Ã =2,3,4, (57) (71)

I '(.)=B'(.)+ Ig&
'

&g I,+z p

where

&e lg&=~»g~(p)

From (48) and (58), we have

(58)

(59)

where Mo is the bare nucleon mass and A, is a dimension-
less constant, which we shall subsequently determine. Re-
verting to our operator notation, we can write (42) as

It is clear that G(z} is an approximation for the nu-
cleon propagator defined by

G~(z) = (r r), (72)

limzG(z)=
I

&r I "&+ I
(73)

where
I
r & is a bare nucleon state. Accordingly we re-

quire that G (z) have a simple pole at z =0 whose residue
is the nucleon's wave function renormalization constant,
r.e.,

X'(z) =B'(z)+B'(z)t (z)X'(z)+
I g & &S(z) I, (60)

with
It is straightforward to show that this allows us to write

&S(z)
I

= &g I [1+t (z)X'(z)] .M+z —Mo
(61)

J(z) —J(0)—zJ'(0)AGz=pz 1 —p

and

Y(z) =B'(z)+B'(z)t (z) Y(z) (62)

We introduce Y(z) and
I
R(z)& as solutions of the

equations
where

p —Zpf k

00 XQ)~dQ)zJ(z)= f gi(x) -R((x;z),
P

(76)

IR( )&= Ig&+B'( )t( ) IR( )&, (63) and

which allows us to express the solution of (60) in the form Z~ ——1+pJ'(0) . (77)

X'(z) = Y(z)+
I
R {z)& &S(z)

I
(64) We can determine p by demanding that the elastic
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The crossed pole, i.e., the A 1 term in (78), resides in
the Born terms B»(k, k;cok). This is not completely ob-
vious, but it is possible to see that this is so by studying
V-0 scattering in the Lee model. ' Upon comparing the
Born term in the Amado-Lovelace equations for V-8
scattering [see Eqs. (42) and (43) of L] with the represen-
tation of the elastic V-8 scattering amplitude analogous to
(10), it is found that the Born term carries the full crossed
pole. Here, this places a restriction on the form factor
gi(k). Comparing (40) on shell with (78), and using (54),
we see that we must require

~kg i«) 3 flim
2k ~ p

(80)

VIII. INPUT FOR
THE THREE-PARTICLE EQUATIONS

We conclude our analysis with some comments on the
form factors g~(q) and propagators d~ '(z) which supply
the input for the three-particle equations. Recall that
d~(z) is a real, analytic function of z whose only singular-
ity in the finite z plane is a right-hand cut beginning at
z =p, and whose only zero is a simple one at z =0 for
a= 1. As long as the d~(z) have these properties and Eqs.
(32)—(34), (79), and (80) are valid, the solutions of (41) will
satisfy the basic discontinuity relations (28) and (29), and
wiH have the correct residues at the direct and crossed nu-
cleon poles.

It is not difficult to determine the form of the d (z)
from their analytic structure. From Cauchy's theorem, it
follows that

o. (co)
d (z)=P (z)+ J dco (81)

where P (z) is determined by the behavior of d (z) at in-
finity, and

scattering amplitude have the correct residue at the direct
nucleon pole. The exact amplitude has the property '

2
3k f &ai —~+iT (k, k;cok+ie) ~ —,(78)

cok —+0 KCOk p

where f is the renormalization coupling constant, and the
5

&
term gives the direct pole. Using (53), (71), (74), and

(78), we obtain

p =—— lim
3 f . k

2 (79)
P ~k~0 cokB i(k;cok)

If we require G(z) to have this property then it follows
from (66) and (70) that d&(z) must diverge for large

~

z
i
.

Using this and invoking the constraint of simplicity, we
choose

2ih (co)
d (co ie)/d—(co+is)=e, co&p,

where, according to (34),

6 (co)=5 (co), p &co &2@ .

(86)

The functions ln[d~(z)/d~(00)] (a=2, 3,4) are analytic
except for the cut given by (86), and vanish at infinity.
The same is true for a= 1 if we replace d~(z) by d&(z)/z.
It follows almost immediately that

z ~ dco h&(co)
di(z) =z exp ——f7T P Co(CO —Z)

(88)
d~ S.(~)

d (z)=exp
7T P Co(CO —Z)

+=2,3,4 .

It is worth emphasizing that the cT~(co) in (85) and the
b~(co) in (88) are to a large extent arbitrary for co & 2p. It
should be possible to exploit this arbitrariness so as to
force the m.-N phase shift 5 obtained from the solution of
the three-particle equations [see Eqs. (53) and (30)] to be
the same as the phase 6 (co) in the elastic range, as re-
quired by (87). This self-consistency requirement implies
that it is somewhat misleading to refer to the three-
particle equations discussed here as linear.

It is interesting to note that if we choose the crudest ap-
proximations for the a = 1 form factor and propagator
consistent with (80) and (33), i.e.,

3 f k u (k)
'TT P Cok

P (z)=a z5 i+b
Imposing (33) on d i (z) and taking the other d (z) to be
normalized to one at z =0, we obtain

dco cTi(co)
di(z)=z 1+z

co (co —z)
(85)

ao dco cT~(co)
d (z)=1+zJ,a=2, 3,4.

P Co(CO —Z}

Another representation for the d~(z) can be obtained in
terms of their phases along the right-hand cut. We write

1
cT~(co&) =—Im d( co&i+@), co& &P,

7T d i (z)-z,
(89)

=cicoqgp(g), p &coq &2p ~ (82)

lim ZG~(z) = 1 .
z

(83)

We have used (30) and (32) in getting the second line of
(82).

We can obtain some information on d&(z) for large
i
z

i by considering our approximate result for the nu-
cleon propagator. According to (72) 2

3 fo y~d x u(x)
N - p

(90)

and use these in (76) with Ri(x;z) replaced by g|(z) [see
Eq. (70)], we then find from (66) and (77) that to lowest
order in the coupling constant

T '2
3 f0 - x'u'(x)

M =Mp —— + 0 ~ ~

p
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which agrees with the lowest order perturbation theory
calculations of these quantities. ' ' This is a rather con-
vincing check of a fairly complicated analysis.

IX. DISCUSSION

We have obtained a set of equations for the coupled
Nm. -N~m system whose solutions satisfy two and three-
particle unitarity, as well as the discontinuity relations for
the production amplitudes in the subenergy variable,
which is the energy of one of the final state pions. In or-
der to satisfy the subenergy discontinuity relation it is
necessary to include all four P-wave ~-N amplitudes as
input to the three-particle equations. The three-particle
equations obtained here for the P&s, P», and P33 cllall-
nels are similar to Lovelace's except for the inclusion of
the P&3 and P3~ m-N amplitudes in the input. In
Lovelace's approach, it would appear unnatural to in-
clude those amplitudes in the input as he argues that se-
parable T matrices should only be used in channels which
are dominated by bound states or resonances.

The treatment of the direct nucleon pole given in Sec.
VII is quite different from Lovelace's. As Eq. (71)
shows, the P» amplitude consists of two parts; the first
part F~r is obtained by solving Eq. (41) with Vpr ——Bpr,
which is a standard three-particle equation, ' while the
second part is obtained by solving Eq. (70) for the vertex
function R~ and using this function to construct the nu-

cleon propagator G(z) from Eqs. (74) and (76). The form
obtained here for the P» m.-N elastic scattering amplitude
[Eq. (71) with p =q =k, z =co~+if, and P=y=1] is
similar in structure to that found by other authors, with
the important difference that it includes the effect of
two-pion states. Thus the present work has the important
consequence of suggesting a way of including two-pion ef-
fects in existing models of the vr-N amplitude.

Somewhat beside the point, but still of interest, is the
fact that we have obtained a fairly sophistimted approxi-
mation for the nucleon propagator which can be used to
study the relation between the bare and physical nucleon
mass in the Chew-Low model, as well as the nucleon's
wave function renormalization constant. As pointed out
at the end of the last section the lowest order results for
these are reproduced when reasonable approximations are
made in the equations obtained here.

It is tempting to believe that equations for the Nw-Nmm

system that contain the P33 m-N amplitude as input
describe a situation in which an elementary 6 is present.
As the above remarks should make clear, this is not the
mse since the Chew-Low model does not include an ele-
rnentary 6 but still its amplitude must appear in the
three-particle equations. Numerical results indimte the
importance of this.

Some time ago Aaron obtained exact numeriml solu-
tions of Lovelace's equations for m-N scattering, and
found that the b, resonance is not obtained from the
three-particle equations if the P» amplitude is the only
input. In order to get the 5 resonance out it must be put
in. Aaron's results also indicate the importance of treat-
ing single-nucleon intermediate states carefully. As a re-
sult of the fact that his P~~ amplitude does not include

the second term on the right-hand side of Eq. (71), his P& &

phase shifts have the wrong sign at low energies. It is in-
teresting to note that his P&s-P&& phase shifts, which are
identical, change from negative to positive as the energy
increases. This contradicts solutions of the Low equation
for the Chew-Low model. Following Lovelace, Aaron
has not included the P~3 and P3~ amplitudes in his input,
and it is possible that this accounts for the unwanted sign
change. The author is currently studying this possibility.

The role of crossing symmetry in the equations ob-
tained here is somewhat unclear. Since the elastic m-N

amplitude has the correct residues at the direct and
crossed nucleon poles [see Sec. VII, following Eq. (77)], it
will satisfy the crossing relation [Eq. (55)] for pion ener-
gies co~ close to zero. How well this relation will be satis-
fied for energies co~)p is difficult to ascertain. This
question deserves further study. In any case, it is the
opinion of this author as well as others9' that it is
more important to treat three-particle unitarity carefully
than crossing. In fact it has been shown in the charged
scalar static model that for strong coupling, and particu-
larly at higher energies, production has a decidedly greater
effect on scattering than does crossing.

It should be possible to extend the analysis given here to
more realistic field theories for the m-N system. In partic-
ular, it is of some interest to see what modifications of the
three-particle equations arise when the underlying field
theory contains an elementary A. The cloudy bag model
provides a natural setting for such an investigation, as the
second quantized Hamiltonian obtained in this model is
essentially a combination of the Chew-Low model and the
Lee model, and describes 9 the interaction of m's with a
static N, 5, and R (the Roper resonance). It is clear that
one modification of the equations obtained here will be
the addition of a term to the P33 amplitude which will ac-
count for processes such as Fig. 1(a) where the intermedi-
ate particle is a A. This term will be similar to the direct
pole term in the P&] amplitude, and will obviously involve
the 5 propagator. Clearly there will also be additional
Born terms in order to account for diagrams such as Fig.
1(b) with the solid line and wiggly line representing dif-
ferent fermions.

Another important extension of the work presented
here will be the inclusion of recoil effects. The existing
literature on ~-N scattering with nonstatic nucleons
presents a somewhat confusing picture. In the relativistic
Aaron, Amado, and Young (AAY) (Ref. 17) model for the
New system it is found that the 5 resonance can be ob-
tained for a reasonable choice of the parameters; however,
in the static limit the resonance disappears. This agrees
with Aaron's static model results, since the AAY
model' only contains a P» input. The AAY results'
suggest that the recoil effect makes the "force" in the P33
channel more attractive. There are other calculations,
however, which indicate that the inclusion of recoil effects
makes the force in the P33 channel less attractive. These
calculations ' ' are based on relativistic generalizations of
the Chew-Low model. In light of the earlier remarks on
the importance of including all m-N channels as input to
the three-particle equations, it is possible that extending
the number of input channels in the AAY model' will
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bring the two sets of calculations into agreement on the
effect of recoil on the 6 resonance. This is of some im-
portance, since it is claimed in Ref. 30 that once recoil ef-
fects are taken into account it is not possible to generate
the 6 resonance with the basic process of the Chew-Low
theory, i.e., N~~N+m. This suggests that it is necessary

to have the b, occur as an elementary particle in the
underlying field theory, as in the cloudy bag model. It
will be very interesting to see if this turns out to be true,
as it would provide further support for the quark picture,
according to which the 4 is just as "elementary" a particle
as the N.
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