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Binding energy correction to the kinematics of quasifree scattering
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(Received 10 November 1983)

A model is developed which accounts for the observed momentum shift of 10—50 MeV/c between
experimental results and distorted wave impulse approximations. Kinematical effects of the binding

energy and the Fermi momentum in reactions of the type 3 (x,yz)B are considered to be responsible
for the shift. Several examples are discussed.

I. INTRODUCTION

Medium and high energy nuclear reactions are often
analyzed by a "quasifree" scattering approximation. An
incoming particle interacts only with a nucleon or with a
substructure of the target nucleus. The remaining part of
the target nucleus remains a spectator. Such reactions are
of the type (p,2p) (Ref. 1), (a,pa), and many others. In
general, we may designate these reactions by A(x,yz)B, in
which the residual nucleus B is the spectator. The projec-
tile x interacts with a fragment of A, (A —B) initiating
the reaction x+(A —B)~y+z. This approximation is
assumed to be applicable when the de Broglie wavelength
of the projectile is small compared to the internuclear dis-
tances. In first approximation, plane waves for the in-
coming and outgoing particles are used. The introduction
of distortions or of rescattering will improve the fits. The
second order approximation decreases the cross section in
the region of small momentum transfer by as much as an
order of magnitude. The plane wave solutions will not
satisfy without additional assumptions the required ortho-
gonality between initial and final states.

In the elementary treatment of quasifree scattering one
assumes that neither the incident particle nor the interact-
ing fragment or the spectator suffers from any binding
forces. Not only is the free scattering matrix used, but
also the kinematical effects due to the binding are neglect-
ed. In more realistic treatments the binding is considered
in a bound transition matrix. In addition, multiple
scattering processes have to be taken into account inside
the nuclear medium, especially in those cases when the in-
coming particle is strongly interacting. This applies for
pions in the 3,3 resonance region in particular.

Thies calculated the quasielastic pion scattering on ' 0
and compared his results to the Schweizerisches Institut
fiir Nuklearforschung (SIN) experiment by Ingram et al.
He uses essentially a distorted-wave impulse approxima-
tion (DWIA). The incoming pion interacts with a nu-
cleon, forms a 6 which propagates through the nuclear
matter. The optical potential for the distortions is gen-
erated by the t operator which also produces the transi-
tions. The T matrix is evaluated at the value of the final
nucleon momentum. A shift in the position of the quasi-
elastic peak as a function of incident energy and scatter-
ing angle is attributed to a change of the kinetic energy
operator for the 4. Above resonance, the quasielastic
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FIG. 1. The experimental points for 800 MeV protons scat-
tered from carbon and the results of a distorted wave calculation
(Ref. 7). The shift of the peak of 22 MeV/e is predicted by the
model presented here.

peak is shifted towards larger energy losses, below reso-
nance towards smaller ones. The calculated values for ' 0
are at 130' pion angle

18 MeV at 240 MeV,

—11 MeV at 115 MeV,

in approximate agreement with the experiments. Howev-
er, unfortunately, the experimental points around the peak
are missing such that a precise determination of the peak
position cannot be made.

The case discussed here is complicated due to the pion-
nucleon resonance. Even though this calculation takes
many aspects of the interaction into account a kinemati-
cally induced shift due to the binding of a proton to the
nitrogen core has not been considered.

Chrien et al. observed the quasielastic scattering of
800 MeV protons from different nuclei at several angles.
Figure 1 shows the experimental points for carbon and the
results of a DWIA calculation. The peak position is off
by 22 MeV/c. Such a shift has been observed in
numerous experiments and it is generally believed to be
caused by the binding energy. In this paper we develop a
simple kinematical model which accounts for the shift in
Fig. 1 and has been successfully applied to many experi-
ments.

One can easily show how the shift comes about by con-
sidering an interaction in the longitudinal direction. Let a
particle be bound with an energy Q in a potential hole. A
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projectile of mass mi and momentum pi enters the poten-
tial to collide with the bound particle. Upon entering, the
projectile causes the potential to recoil with momentum
p„=m i Q/pi. After the collision the changes of momen-
tum of the two particles due to their emerging from the
potential cancel and, therefore, they do not contribute to
an additional recoil momentum. The potential still recoils
with momentum p, and this p, has to be subtracted from
the momentum of the projectile. It corresponds to the
shift observed in experimental momentum distributions.

Using the basic idea given above we will discuss the in-
teraction in more precise terms. Figures 2(a) and (b)
represent the interaction. Figure 2(a) deals schematically
with the breaking up of the target of mass mz. The bub-
ble signifies the energy and the momentum which is taken
from the incoming particle to produce the recoil as
described above. Figure 2(b) presents the diagram of the
complete interaction. The upper vertex is the quasifree re-
action m~+m& —+m3+m4. To dissociate the target, m~
has to lose energy e and momentum 4p in the z direction.
According to our naive model b, p is in the direction of
p& ~

T&,p& and To,po are the kinetic energy and momentum
of the incident particle before and after the dissociation of
the target. Then Ap =p~ —po and e= T~ —To. The disso-
ciation energy e includes the Fermi energy which the frag-
ments may possess. Solving for bp and expanding the
square root we obtain

m)
Ap=

pi

The momentum Ap is taken up by the target m2. It is
the recoil momentum of mz as has been discussed above.
Consequently, the mornenta q and p5 of the fragments
which are diametrically opposed in the frame of the

recoiling target are not so anymore in the laboratory
frame. In the recoiling frame, q '+ p 5

——0. The primes
denote the recoiling frame. The velocity of that frame is
U„=by/rn2 in the z direction, v„=v„k. The relations for
the momenta of the fragments in the recoiling and in the
laboratory frame are

+mq vq (2a)

I

p5
——p 5+m5v,

for the energy in the laboratory frame, and

q /2m~+p5/2m, =@+Q,

(2b)

(2c)

in which Q is the binding energy. Expressing the labora-
tory momenta q and p& in terms of the momenta in the
recoiling frame in which the Fermi momentum actually is
defined and expanding the square roots again, we find,

m&+m5 q'2

mmmm 5 2
r

m
& m&+m5 q'2

Ap=
p) mpm5 2

—Q

(3)

The change of momentum is just what the naive model
predicted. In addition, however, the Fermi momentum
which m~ may possess in the frame of the target nucleus
is taken into account. The shift in momentum is equal to
the binding energy Q over the velocity of the projectile.
Abul-Magd, Hiifner, and Schiirmann also obtained this
result with different reasoning.

The calculation of the upper vertex interaction can now
proceed as in a normal two-body interaction with the in-
coming momenta po and q. In the impulse approxima-
tion, the off-shell interaction is replaced by an on-shell re-
action, in contrast to other calculations for which the am-
plitudes are taken at the "half-shell. "' For symmetrical
emission of particles 3 and 4, the center of mass angle in
the upper vertex is 90'.

In Sec. II we will discuss the complete relativistic
kinematics to calculate po and q and discuss some exam-
ples of the shift in the momentum spectra. In Sec. IV a
complete calculation for the quasifree elastic scattering of
5 GeV/c pions on He will be presented.

X
IYl)

P2
ETl2

kp p4 Z
m4

FICr. 2. The reaction A(x,yz)8 is represented. In (a), the in-
coming particle x with four-momentum p~ and mass ml col-
lides with the target nucleus A which is dissociated into m~ and
the recoiling nucleus B. The projectile loses four-momentum Ap
in this process. In (b), the comp1ete reaction is schematically
shown. The upper vertex, the collision between m~ and m~, is
now on shell.

II. KINEMATICS

The relativistic kinematics of the reaction A(x,yz)B
will now be discussed. The same model is used. As
shown before it presents a procedure for the construction
of an expression for the momenta po and q as a function
of the binding energy Q and the Fermi momentum q' of
m~ and m5. Figures 2(a) and (b) illustrate the interaction.
In the primed target nucleus, or recoiling frame, the frag-
ments satisfy the condition

q +p 5=0.
The Fermi momentum is one set of variables which de-
scribes the reaction. It is practical to call the reaction
plane that which is determined by the incoming momen-
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turn p&
——p~, and by q. The angle 8~ is between q and

pi. Figure 3(a) shows the coordinate system and Fig. 3(b)
indicates the target nucleus which is fragmented into m~
and m 5. The incoming particle gave up energy
e=E~ —Eo and three-momentum in the z direction
Ap =p~ —po. The momentum po and total energy Eo still
satisfy Eo —po ——m i. At any instant, energy and momen-
tum will remain conserved. In a four-vector notation we
have

p~n =pr +p2 =po+0 +p5

(p;. po—)'=(q+p5)'=(q'+p5 )',
PIn =P]+P2 ~ (9)

The Fermi momentum q' is a variable of the reaction and
we can solve for the three-momentum po in terms of the
Fermi energy E~ =(q' +m~)' and E5 ——(q' +mq)'

sufficient for the determination of the velocity B of the
nuclear frame moving in the z direction. The four-vectors
satisfy the following relations:

and for the upper vertex,

po+9' =p3+p4 . (7)

Po
—— [p—iM +E;„(M m —is)'i ],

S

M =0.5[s+mi (Eq+—E5 ) ] .

Condition (5) requires a nuclear frame, the recoiling target
nucleus, which moves in the laboratory. This condition is

I

One can express po also in terms of experimental quanti-
ties from Eq. (6),

po (p(pin p5cos85) +E34 Ip —w 1 [E34—(pl —p5cos85) ] j )![E34—(pl —pScos85) ]

p = —,(mq —s —m i
—m 5

—2p ip5cos8g+ 2E;„E5),1 2 2

E34 ——E;„—E5 ——E3+E4 .

(12)

It is now necessary to calculate the velocity of the nuclear
frame B, which determines q and p5 in the laboratory.
The invariant squared energy s expressed in the moving
system is

s (Eq +E5—) —m,Eo=
2(Eq +E5 )

and three-momentum,

s =(Po+q +P5 ) =(Pi+P2) (13) Po =«o' —xiii )'"
Equation (13) determines po, i.e., the momentum of mi
after the target nucleus is dissociated in the frame of the
target nucleus. The energy of po is

since mi remains on shell. As in Eq. (11), E~+E~ is the
total Fermi energy in the moving nuclear frame. The vec-
tors p i and p o are always in the z direction of the coordi-
nate system. Therefore, we write them as scalars.

The velocity of the nuclear frame is the difference of
the velocities of po in the laboratory and, in the recoiling
frame

8,= poEo —poEo

EoEo —popo
(16)

Finally, a Lorentz transformation will transform the mo-
menta and energy of p& and q' into the laboratory sys-
tem"

p5=p s+BX 8 p s+Es@+1

y=(1 B) '~ and analogou—s for q' .

(17)

mi P
po Eo

5 p5 K5

Fllq q Eq
It can be shown that for p i /Ei «c the results of the rela-
tivistic expressions are equal to those derived in the Intro-
duction.

The remaining kinematics for the upper vertex is now a
straightforward two-body interaction which takes place
on the mass shell, in four-vectors,

Y;
Z

FIG. 3. The coordinate system used in the calculation. The
target A of mass m2 dissociates into m~ and m5. The frag-
ments have three-momentum q and p5, respectively. These de-
fine the x-z plane.

po+9'~p3+p4 ~ (19)

Equation (19) shows that the upper vertex is dependent on
the Fermi momentum through q and po. En the regular
impulse approximation po corresponds to the incoming
momentum and the vertex is dependent on q only. Here,
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for reaction (19) the three-momentum po and the energy
Eo of mi decrease with increasing Fermi momentum. As
a consequence, the momentum transfer in (19) is not as
large as the momentum transfer between pi and p3. It is
here that the ordinary impulse approximation will require
Fermi momenta larger by as much as 100 MeV/c to ex-
plain the observed large momentum transfers between pi
and p3. In addition, the momentum distribution will not
be symmetric around q=0. This model limits the max-
imum possible Fermi energy. Namely, po has no rea)
solution if

mi(mi+m2) ~1. (20)
M

Or, one cannot borrow more energy from the projectile
than its kinetic energy. This is not a limitation in the
kinematics. However, it forbids reactions in which a vir-
tual subthreshold particle m& mediates the reaction such
that the kinematic energy of mi is not sufficient to pro-
duce m~ and m5 from the target mq. At medium ener-
gies at which these approximations can be used the above
is rarely a limitation. Other consequences of this model
will be a shift observed in the quasifree scattering of a res-
onance for m~ and mz, away from the free particle reso-
nance.

In generaI, the interaction at the upper vertex wiH pro-
duce the particles m3 and m4 which are not in the reac-
tion plane xz of Fig. 3(b). However, if m~ has spin 0 or
spin —,

' the final products will remain in the xz plane. '

This makes possible an experimental check whether or not
the reaction proceeds according to the diagram.

III. MOMENTA SPECTRA

Two types of experiments are suitable for the quasifree
scattering analysis, these are inclusive and exclusive reac-
tions. In the former„one arm experiments, only the
kinematics of one particle are determined. A very large
number of such experiments exist. Out of space con-
siderations we will discuss only some examples, though
the model has been tested on many other experimental re-
sults.

It is assumed that the incident particle collides with one
nucleon, either a proton or a neutron. In a one arm exper-
iment the Fermi momentum of that nucleon cannot be
determined explicitly. The resulting momentum distribu-
tion of the scattered particle is a function of the density
distribution of nucleons, p(q ). That density distribution
will have a maximum at the Fermi momentum q'=0 as
long as a particular shell cannot be singled out.

Chrien et al. measured the quasielastic scattering of
800 MeV protons from different elements. These authors
analyzed the data by a DULIA calculation. Figure 1
shows a momentum shift of 22 MeV/c for the peak of the
distribution for ' C. All impulse approximation results
have similar shifts. In Table I we present their observed
peak positions and the ones obtained in our calculations
for which q'=0 MeV/c is assumed. The agreement is
good. Only some representative data are shown, all others
fit as well.

Other hadron incident experiments have shown equally
good agreement. Bunker et al. ' observed a shift of about

TABLE I. Quasielastic scattering of 800 MeV protons (Ref.

Target

'Li

Angle
(deg)

13
15
20
30

Experimental
peak position

(GeV/c)

1.39
1.37
1.30
1.14

Calculated peak
position
(aeV/c)

1.3878
1.3757
1.3096
1.1.398

Li 11
30

1.415
1.113

1.4122
1.1433

11
15

1.41
1.37

1.4086
1.3655

Pb 15
20

1.37
1.31

1.3705
1.3064

10 MeV/c between the experimental data and the results
of a plane-wave impulse approximation (PWIA) calcula-
tion. We predict a shift of 12.7 MeV/c. A similar result
is obtained for the reactions Li(p, pa) and Li(a, 2a) at
64.3 MeV as observed by Jain et al. ' who shift their
curves by 5 MeV/c. In this case we predict 2 MeV/c.
Recently, the quasifree scattering of pions from He and
He with incident energy between 300 and 475 MeV has

been measured. At 60' the experimentally observed peak
position agrees with the prediction. At larger angles, 90'
and 120', no pronounced quasielastic peak is found. ' The
experimental results of pions scattered from ' O in the
resonance region are a special case. Since the cross sec-
tion for the pion nucleon cross section changes rapidly
one may not obtain the peak position in the quasielastic
scattering at zero Fermi momentum. A small Fermi
momentum (q=0.05 GeV/c) such that the total incident
momentum for the upper vertex is po+q will give com-
plete agreement. The upper sign occurs when po is below
the resonance, the minus sign above the resonance. This
makes the cross section for the upper vertex larger than
for q=0, whereas the nucleon density for such a small q
is still almost maximal.

Three-body final state reactions in which the full
kinematics are measured can be used for the determina-
tion of the internal parameters, which for this model are
the Fermi momentum and the kinematics of the scattering
vertex. In principle, the equations given above can be in-
verted such that q and the scattering angle of the upper
vertex can be determined from the values of p3, pq, and
Ps-

Qf the recent p,2p experiments with good energy reso-
lution the data published by Frankel et al. ' have been
analyzed. For 0.8 GeV protons incident on Li, a back-
ward proton at 150 of momentum 0.35 and 0.4 GeV/c
was detected and a forward proton with 1.35 and 1.32
GeV/c. The cross section peaked at about 16 and at 18,
respectively. From this result, for which, of course, ener-
gy and rnornenta are satisfied, one can deduce that the
peak in the cross section corresponds to a proton recoiling
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and a He collides with the incident proton. Since the
momentum and angle of the backward proton are known,
one can determine the Fermi momentum of the He sub-
structure of Li. Weber and Miller proposed such reac-
tions.

An inclusive experiment by the same authors, ' detect-
ing the forward protons only, showed peaks in the cross
section at approximately the same angle as for the coin-
cidence measurements. These results can be explained by
a Fermi momentum q'=0 and a recoiling He. At
8~=16' the proton momentum is p3 ——1.356 GeV/c, and
at 8~= 18', p3 ——1.329 GeV/c, in good agreement with the
experiment.

IV. THE 5 GcV/c Hc{m,m p) H REACTION

At CERN the reaction He(n. ,~ p) H at small
momentum transfer has been studied. The particles were
identified and the full kinematics was measured. ' Che-
vallier et al. ' and Faldt calculated the quasifree pion
scattering cross section by making use of several diagrams
and they obtained fairly good agreement with experi-
rnents. In this section we would like to recalculate the
cross section on the basis of the present model. We will
not introduce any free parameters and use the same densi-
ty distribution as in the work of Faldt.

The cross section for two incoming spinless particles
and a final state of one spinless and two spin —,

' particles
1s

d0
dt

=50e ' mb/(GeV/c) (26)

The (W) cross section has not been measured. However,
the (m He) cross section was measured by Nomofilov
et a/. According to Glauber's multiple scattering the
cross section for single scattering from H should be ( —,

'
)

of the cross section for the scattering from He. There-
fore we use the cross section parametrization:

d0 9 d0
dt yH 16 dt 4H

In this model the scattering is on the mass shell, there-
fore the incoming pion has four-momentum po and the
four-momentum of the fermion m&, either a proton or a
triton, is q.

The quantity n in formula (22) designates the number
of substructures in "He. If mz is a proton n=2, and if
mq is H~ n =1.

The cross sections are derived for the cases in which ei-
ther the proton or the triton is the transferred particle mz.
These cases can be identified in the experiment. The ele-
mentary scattering cross sections for the upper vertex are
taken from experiments and they are parametrized for
small momentum transfers, which is the case in this ex-
periment. For the (~) cross section the following
parametrization for small t is used:

1 d p3 m4d p4 m5d p50=
I &i —U21 (2m) 2E3 (2m) E4 (2n) E5

=310e ' mb/(GeV/c) (27)

The probability density is
X ~ (pi+p2 p3 p4 p5—). — —(2~)"

2E) 2E2
(21) W(q') =X' 1 1

a +q' P +q'

a=(2pB~, )' =0.846 fm

P= 1.12 fmL,S

%'e use the notation given by %eber: '

Q I
& I'=nm2&g&Ls(q') g 1(~41&q l~q) I' (2»

(28)

2J;+1 E5 Eq
4& m5 mq

(24)

The T matrix element for the quasifree scattering is ob-
tained from the elementary pion m& scattering cross sec-
tion which is known from experiments,

(2m. )X 5 (po+q p3 p4) ~

(25)

The indices refer to the states of the particles as presented
in Fig. 2(b).

The single particle probability density is

6'(q') = g R LS(q'), (23)
(2m') LS

in which the primed quantities are in the nuclear system.
The factor X takes account of the transformation of the
nuclear system to the laboratory system,

'

For the discussion of the results of the calculation we
have to review the kinematics of the experiment. The 5
GeV/c quasifree scattered m. is detected only to the left-
hand side in a 3 to 5 GeV/c interval with momentum
transfer, 0.005 ( r (0.15 (GeV/c) . Tritons were detected
to the left-hand side as well as to the right-hand side in an
angular interval between 45' and 135' and with mornen-
tum 0.24 or 0.36(pr (0.6 GeV/c. The lower limit of
0.24 GeV/c was used as a cut for the momentum distribu-
tions of the triton, whereas the limit 0.36 was used for the
angular distributions of the triton.

If a triton is observed on the same side as the scattered
pion, on the left-hand side, then the majority of the events
are of the type triton spectator and the pion scatters from
the proton. In this case only events are detected for which
the Fermi momentum of the He is large ()0.2 GeV/c);
the probability density is smaH and consequently, the
cross section will be small. Conversely, if the triton is
detected on the right-hand side it has been scattered by
the pion to that side and the proton which is not observed
is spectator. In that case the pion can scatter from a tri-
ton which possesses very little or no Fermi momentum
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into the range above 0.3 GeV/c. The observed cross sec-
tion for the process is as expected an order of magnitude
larger than the former one. The density distribution as
given by (28) drops rapidly for increasing q'. The calcu-
lated cross section turns out to be two orders of magni-
tude larger than for the scattering of the triton to the
left-hand side. This type of calculation does not take into
consideration the fact that the final state has to be orthog-
onal to the initial state. Fujita and Hiifner showed that
this condition may reduce the cross section by an order of
magnitude. They derived a function for this "orthogonal-
ity defect" for the fragmentation of He. Therefore, their
parametrized function is directly applicable. Since the
Fujita-Hiifner formula reduced the cross section by too
large a factor, another inhibition factor was tried which
derives from the occupation of states in a Fermi gas
model

1000-

V

~o 100—
C9

Xl

CL

'a

I

(0)

W(q)q dq

(2m. )

(29) 10-

where W(q) is the density of states as given by formula
(28) and V is the nuclear volume in fm . Since complete
occupation of all states may be at q=O, V is set by this
condition. For V=4mroA/3, the radius ro is slightly
larger than normal (about 1.6 fm).

Faldt assumed that the probability of finding H in a
He is about 0.8. This is in accordance with estimates by

Greben. The same factor is used in the present calcula-
tions.

For the presentation and the comparison with the data,
the calculated cross sections have to be integrated over the
experimentally observed ranges. The variables for the cal-
culation are the magnitude of the Fermi momentum, its
angle with respect to the incoming particle, and the
scattering angle in the upper vertex. In principle, an
analytical calculation of the Jacobian for the transforma-
tion of these variables to the experimental variables is pos-
sible. However, since the equations become rather com-
plicated we used a constant interval stepping for the inter-
nal variables and added the cross sections in each experi-
mental bin. The calculated cross section in a bin is then
the summed value over the number of times each bin has
been entered. Both the intervals of the stepping and the
bin size were changed for a check on the quality of the
method. The presented curves are drawn through the
center between two bins. As in Ref. 19 the theoretical
cuts do not agree precisely with the experimental cuts.

Two groups of curves are shown each for the right scat-
tered and for the left scattered triton. As mentioned be-
fore, the right scattered triton is the result of the vr being
quasifree scattered from the triton, where the proton is
the spectator, whereas for the left scattered triton the tri-
ton is the spectator.

Figures 4(a) and (b) show the momentum distribution of
the triton for both sides. The drawn curves are for the
Pauli blocking in the plane wave approximation, the dot-
ted curve is obtained by making use of the Fujita-Hufner
function. In Fig. 4(b), for the left scattered triton the
dash-dotted line shows a contribution from pions
quasielastically scattered from the triton. The latter reac-

I I I I I I

{L1 0.2 0.3 0.4 0.5 0..6 0.7
p, I GeV/c)

I

(b)

V

C
U

~ 1—
XJ

0.1 '

0
i

0.1 0.2 0.3 0.4 0.5 0.8 0.7
p, IGeVge)

FIG. 4. (a) The reaction He(m, m p) H. The momentum
distribution of right scattered tritons (Refs. 19 and 20). The full
curve is the result of the present calculation and Pauli blocking
of formula (29). The dashed curve is the result with the Pauli
blocking of Ref. 24. The cuts in all figures are the same as in
Ref. 19. (b) The momentum distribution of left scattered tri-
tons. The full and dashed curves have the same meaning as in
(a). The dot-dashed curve is the result of a calculation in which
the proton is the spectator possessing such large Fermi momen-
tum to the right that it can balance the momentum of the pion
and the triton to the left.
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(0)100

10—
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-0.8 -0.4 —0.2 0

COS 8

I 1 t

0.2 0.4 0.8

(b)

1.0

tion is possible only when the triton possesses very large
Fermi momentum. Its contribution consequently is more
than one order of magnitude down.

Figures 5(a) and (b) show the angular distribution of the
triton. The Pauli blocking reduces for right scattered tri-
tons the cross section by a factor of 10. However, it

seems that for these tritons the assumed inhibition is
slightly too large, so that a dip shows at the peak position.
A very small change in the amount of blocking would in-
crease the cross section to the experimental points at
cos0,=0.1 and cos0,=0.2 for which q is close to zero
momentum without changing the other parts of the curve
appreciably. The Fujita-Hufner formula reduces the cross
section by more than a factor of 10. Unfortunately, the
triton momentum cut in the momentum distribution is
not the same as the cut in the angular distribution mea-
surement.

Figure 5(b) shows the least agreement with the experi-
mental data. Since the single scattering cross section is
small it is possible that contributions from double scatter-
ing become important. The pion would scatter first from
a proton and afterwards from the triton. Simple kinemat-
ics show that the cross section would peak at about
0,=90'. A very approximate estimate yields a cross sec-
tion which is of the same order as that for the single
scattering. The double scattering amplitude would inter-
fere with the single scattering. Such a calculation, howev-
er, is beyond the present model. The Fujita-Hufner block-
ing reduced the cross section by an order of magnitude
and therefore it is not shown in Fig. 5(b). An additive in-
terference between the two curves of Fig. 5(b) would result
in better agreement with the first four experimental
points. However, the present calculation does not contain
any phase information.

Except for the curves in Fig. 5(b), the fits are as good as
those obtained by Chevallier et al. ' Also, these authors
remark that a simple impulse approximation is not able to
give any result which resembles the data. This calculation
is much less elaborate and more accessible to any varia-
tion in parameters.

V. CONCLUSIONS
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FIG. 5. (a) The angular distribution of tritons scattered to the
right from the reaction He(m, m p) H. Both curves have the
same meaning as in Fig. 4(a). The Pauli blocking of formula
(29) is too much for small Fermi momentum. (b) The angular
distribution of tritons scattered to the left. The meanings of the
curves are the same as in Fig. 4{b). In this case the Pauli block-
ing of Ref. 24 reduces the cross section by more than an order of
magnitude and it is not shown.

The examples presented above which are all hadron in-
duced reactions are in good agreement with experiments.
The correction proposed by this model is only kinemati-
cal. Distortions, multiple scattering, and the propagation
of incident or produced particles through the nuclear
medium have to be considered in addition. The scattering
matrix should be taken inside the medium. This model,
however, used a scattering amplitude which is on shell.
Unless this amplitude changes rapidly with energy the
model is very effective in predicting the peak position of
quasielastic scattering. It is unlikely that distortions will
shift the peak position in momentum spectra. They will
decrease the cross section by a slowly varying function of
the momentum. However, double scattering may induce
peaks or valleys as a consequence of phase relations be-
tween amplitudes which are difficult to incorporate in a
model as simple as the one presented here.

Lepton induced reactions may have to be discussed
separately. Moniz et al. discuss the observed shifts of
the peak position which increase with decreasing
scattered-electron energy. For a Fermi gas model excel-
lent agreement has been obtained with the data of Refs. 8
and 26. However, the Fermi mom. entum width and the
separation energy are free parameters. The latter is about
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20 MeV for light elements and about 40 MeV for heavy
elements.

The present model with the proper binding energy of
the proton and zero Fermi momentum calculates the peak
position at 0.384 GeV/c instead of about 0.375 GeV/c ex-
perimentally. This discrepancy could be due to a small er-
ror in the incident or scattered electron energy. However,
the shift is A dependent to a greater amount than the
present model would predict. Rosenfelder attributes the
shift to the exchange parts of the two-body interaction.
In a local ordinary optical potential bound state and con-
tinuum state interactions seem to cancel completely. The
binding energy correction should apply. One may have to
consider that the electron nucleon interaction consists of
two contributions, the longitudinal or Coulomb part, and
the transverse part or current interaction. Therefore, one
cannot assume that the peak position corresponds only to
zero Fermi momentum. The shifts can be explained by
the introduction of a small amount of Fermi momentum
which for ' C is only 50 MeV/c. This is actually less
than one would expect from the peak position in the den-
sity distribution of the p-wave proton. But it is more
reasonable than the large energies used in Ref. 8.

Unfortunately, more data and more extensive calcula-
tions will be necessary for a better understanding of the

cause of the shift in lepton induced reactions. Even worse
is the situation for pion production experiments. The
large momentum mismatch in such reactions makes one
believe that simple quasifree reaction interpretations are
not appropriate and that triangle diagrams will be re-
quired to fit the data. Some attempts in this direction
seemed promising. This model makes possible on-shell
calculations in triangle diagrams.

At present we can conclude that the model gives good
fits for hadron induced quasifree reactions at incident en-
ergies above 100 MeV. The calculations of the cross sec-
tions are so simple that they can be carried out on small
computers. The applicability of the model for lepton in-
duced reactions is not yet completely understood.
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