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In a recent paper, a calculation of the self-consistent mN t matrix in nuclear matter was presented.
In this calculation the driving term of the self-consistent equation was chosen to be a static approxi-
mation to the free mN t matrix. In the present work, the earlier calculation is extended by using a
nonstatic, fully-off-shell free mN t matrix as a starting point. Right-hand pole and cut contributions

to the I'-wave mN amplitudes are derived using a Low expansion and include effects due to recoil of
the interacting mN system as well as the transformation from the mN c.m. frame to the nuclear rest
frame. The self-consistent t-matrix equation is rewritten as two integral equations which modify
the pole and cut contributions to the t matrix separately. The self-consistent mN t matrix is calcu-

lated in nuclear matter and a nonlocal optical potential is constructed from it. The resonant contri-

bution to the optical potential is found to be broadened by 20/o to 50% depending on pion momen-

tum and is shifted upward in energy by approximately 10 MeV in comparison to the first-order opti-
cal potential. Modifications to the nucleon pole contribution are found to be negligible.

I. INTRODUCTION

In a recent paper, ' a new organization of pion-nucleus
scattering was presented. This organization is based on a
Goldstone-diagrammatical treatment of the many-body
problem and is centered around a self-consistent, effective
pion-nucleon t matrix in the nuclear medium.

This effective t matrix is found by solving an integral
equation which serves to replace the free pion propagator
in elastic (AN) intermediate states of the AN t matrix by a
pion propagator distorted by the optical potential which
describes elastic scattering of the pion from the residual
nuclear system. The effective t matrix is self-consistent in
the sense that the optical potential, which dresses pion
propagation in this integral equation for the effective t
matrix, is calculated using the same effective t matrix. By
allowing the intermediate state pion to interact with the
residual nuclear system, channels associated with the
many-body degrees of freedom of the nuclear system are
introduced into intermediate states of the effective t ma-
trix. The effective t matrix therefore reflects the possibili-
ty of flux being lost to absorption or knockout channels
involving many nucleons. The self-consistent t matrix has
been calculated or estimated within a variety of
models.

By using the Goldstone method, the new organization
of m.-nucleus scattering described in Ref. 1 can extend the
concept of the self-consistent t matrix to include all possi-
ble contributions to the m-nuclear optical potential. For
example, modifications to the optical potential arising
from scattering from corrdated nucleon pairs may be in-
cluded dynamically by adding diagrams involving the
Brueckner g matrix. Antisymmetry effects can be includ-
ed by including diagrams involving nucleon exchange.
Because the Goldstone method is based on field theory, it
is also possible to consistently include contributions aris-
ing from the crossing symmetry of the basic free mN t
matrix and from nonsequential scattering effects where

two scattering events overlap in time.
In addition to the description of the organization of m

nucleus scattering, Ref. 1 also included a simple model
calculation of the self-consistent m.N t matrix in nuclear
matter. In this calculation, the I'-wave, right-hand cut
and pole contributions to the free m.N t matrix were used
as driving terms in the self-consistent t-matrix equation.
For simplicity, effects associated with two-nucleon corre-
lations, antisymmetry, and the crossed mN amplitudes
were neglected. These effects have been examined in Ref.
8 in connection with a calculation of pion double scatter-
ing contributions to the pion-nucleus optical potential.
Although nucleons were allowed to recoil freely above the
Fermi sea between scattering in the calculation of Ref. 1,
the mN t matrices were static in that the interacting mN

pair represented by the t matrix was not allowed to recoil
or propagate. The choice of the static t matrix was made
only to simplify the calculation which was intended only
to study the qualitative effects of self-consistency. The
self-consistent t matrix was used to obtain a m-nuclear op-
tical potential. Comparison of this self-consistent optical
potential with the first order optical potential calculated
with the free mN t matrix showed several differences.
The resonant contribution is broadened and shifted to a
slightly higher energy as a result of multinucleon excita-
tions in intermediate states of the effective t matrix. This
broadening is therefore dynamical in origin. The ex-
istence of intermediate states where the pion is absorbed
on two or more nucleons increases the magnitude of the
imaginary part of the optical potential at and below
threshold. In solving for the self-consistent t matrix, an
effective t matrix was calculated where intermediate state
pion propagation was dressed by the optical potential de-
rived from the free t matrix rather than the self-consistent
t matrix. This effective t matrix differed by only a small
amount from the self-consistent t matrix. Physically, this
suggests that intermediate states involving two-nucleon
excitations provide the dominant medium modifications
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to the mN t matrix.
Although the simplicity of the static mN t matrix is

useful in performing simple model calculations where
only qualitative features are to be studied, the static ap-
proximation does some violence to the physics of the nN.
interaction. This approximation neglects the transforma-
tion from the mN center-of-mass frame (where the partial
wave decomposition of the t matrix is defined) to the nu-
clear rest frame (where the nucleon wave functions are de-
fined). This transformation modifies the scattering angle
which appears in angular momentum projectors in the t
matrix and introduces a nonlocality in the t matrix result-
ing from the recoil of the interacting AN pair. When the
nonstatic t matrix is averaged over the Fermi sea to obtain
the optical potential, these frame transformation effects
result in a substantial broadening of both pole and
resonant contributions to the optical potential compared
to the static optical potential.

A self-consistent m.-nuclear optical potential calculated
with a nonstatic r matrix is therefore expected to exhibit
broadening due to the introduction of many-nucleon inter-
mediate states and due to the transformation of the t ma-
trix from the m N center-of-mass frame to the nuclear rest
frame. The first effect is dynamical in nature while the
second is kinematical.

The object of this paper is to present an extension of the
calculation presented in Ref. 1 by using a nonstatic nNt.
matrix to calculate the self-consistent mN t matrix in nu-
clear matter. This is motivated by the possibility that the
kinematical broadening may tend to wash out the dynami-
cal contribution. The present calculation shows that this
is not the case. Indeed, all of the qualitative features of
the static calculation are preserved in the nonstatic calcu-
lation.

In order to calculate a nonstatic self-consistent t ma-
trix, it is first necessary to obtain an expression for a free,
nonstatic mN t matrix expressed in the nuclear rest frame.
Section IIA outlines the derivation of a fully-off-shell,
free t matrix from field theoretical considerations.

The transformation properties of the mN t matrix make
it convenient to recast the self-consistent t-matrix equa-
tion in the form of two integral equations. These two
equations, which express separately self-consistent modifi-
cations of the pole and cut contributions to the t matrix,
are presented in Sec. IIB. The pole modifications are
written in a form which emphasizes medium modifica-
tions to absorption vertices and nucleon propagation.

Section III A contains the details of a calculation of the
nonstatic self-consistent t matrix in nuclear matter along
with the corresponding optical potential. The results of
this calculation are presented in Sec. IIIB. Section IV
presents a discussion of the calculations presented in this
paper and states conclusions which may be drawn from
this work.

where the right-hand part T N and the left-hand part
T N are related by the crossing of the external pion lines
as illustrated in Fig. 1. Clearly the values of the right-
and left-hand contributions as functions of the external
variables will differ considerably.

Since it is not possible at this time to calculate the ~N
scattering amplitude from some basic theory such as
quantum chromodynamics (QCD), it is necessary to use a

(b) (c)

matrix. Since in this organization the t matrix is used in
constructing complex Goldstone diagrams which describe
the scattering of the pion in the presence of nuclear exci-
tations, a number of requirements must be imposed on the
free t matrix.

If the underlying theory describing the mN interaction
is assumed to be a local relativistic field theory then the
n.N scattering amplitude is a Lorentz scalar function of
six Lorentz scalar combinations of the three independent
external momenta. These features of the amplitude are
necessary to its use in the m.-nucleus many-body problem
for two reasons. The first is that since the t matrix is to
be used as an element in many-body diagrams, the squares
of the pion and nucleon four-momenta will not, in gen-
eral, be constrained by the usual mass shell condition, i.e.,
k &m~, p &m, etc. The second reason is that in a
Brueckner-Goldstone approach to the many-body problem
the basis used to describe the nucleon states is an indepen-
dent particle basis where the wave functions for these
states are expressed in the nuclear rest frame. It is there-
fore convenient to express the m.N t matrix in this same
frame. If the scattering amplitude is a Lorentz scalar
function of Lorentz scalar combinations of the external
four-momenta it is a trivial matter to express the mN t
matrix in any Lorentz frame.

The self-charge-conjugate nature of the pion implies
that the mN t matrix is symmetric under the crossing of
the external pion lines which is equivalent to the inter-
change of variables k~ —k' and a~P, where k and k'
are the initial and final pion four-momenta and a and P
are the corresponding isospin indices. As a result of this
symmetry the full t matrix can be written as

II. THEORY

A. m.N t matrix

OR OL
T7r N

The fundamental building block of the organization of
m-nucleus scattering as described in Ref. 1 is the free AN t

FIG. 1. Diagrams representing the decomposition of the
crossing symmetric, free mN t matrix into right-hand and left-
hand contributions.
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phenomenological representation of the offshell mN am-
phtude which respects the Lorentz transformation and
crossing properties of the amplitude as far as possible.
Such a phenomenological amplitude can be constructed by
means of the Low expansion of the amplitude. As out-
lined below, half-off-mass-shell amplitudes parametrized
in terms of experimentally determined forward scattering
amplitudes and a form factor can be used to reduce the
Low expanded amplitudes to a simple quadrature. '

For the energies considered in this paper the dominant
contribution to the scattering amplitude is from the reso-
nance in the P33 channel. Therefore, for the purpose of
this paper, the discussion is specialized to the P-wave con-
tributions to the amplitude although it may be generalized
easily to include the S-wave contributions if a more accu-
rate description of scattering near threshold is required.
Since it involves little extra work, all P-wave cut contribu-
tions to the scattering amplitude (that is contributions as-
sociated with branch cuts in the amplitude) are retained in
the calculations presented here. These contributions to
the free t matrix are represented by Fig. 2(c).

In order to obtain a reasonably complete physical
description of ~-nucleus scattering, the nucleon pole con-
tribution to the Pl 1 scattering must be included. This
contribution in which a pion is absorbed and then remit-
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7rN

TORC
wN

FIG. 2. Diagrams representing the decomposition of the
right-hand cut contribution to the free mN t matrix into pole
and cut contributions.

ted is represented by the diagram of Fig. 2(b). Inclusion
of this contribution in the free r matrix to be used in the
many-nucleon problem will give rise to intermediate states
where the pion is absorbed and one or more particle-hole
pairs are excited.

From Eq. (39) of Ref. 13, the cut contribution to the
mN scattering amplitude Fp can be written as

&p's'
1
j'p(0)

I p "s" k "y & &p "s",k "y
I
ga(0)

I
ps &

cok +E(p") ko p i—v)— —

where k and p are the pion and nucleon four-momenta, a
is the pion isospin index of the initial mN state, and s is
the spin of the nucleon. k', p', P, s', and k", p", y, s"
are the corresponding quantities for the final and inter-
mediate states, respectively. It should be remembered that
the intermediate states in the Low expansion are on-shell,
asymptotic states with nucleon and pion energies
E(p")=(p" +m )'/ and cok-=(k" +m~)'/, where m
and m are the nucleon and pion masses. If the initial
and final state pions are allowed to be off mass shell, then
the matrix elements of the pion source current operators
j are half-off-shell matrix elements and the resultant am-
plitude F$ is fully off shell.

It should be noted that while the pions are off shell
(k +m, k' &m ) in calculating these amplitudes the
nucleons are not (p =p' =m ). It can be shown that us-
ing such amplitudes in the many-body problem is
equivalent to neglecting components in the nuclear wave
functions associated with nucleonic excitations having the
same quantum numbers but larger mass than the nucleon
such as the Roper resonance. '

Equation (1) is not covariant. This loss of covariance is
the result of the truncation of the expansion in intermedi-
ate states to include only the mN intermediate state contri-

bution to Fp . The expansion can, of course, be carried
out in any reference frame and one would expect that the
physical importance of any particular intermediate state
should not be dependent upon the choice of frame. For
this reason, the noncovariance of Eq. (1) should not be a
problem. Since the mN scattering amplitude will be used
in conjunction with nuclear wave functions, it is most
convenient to carry out the Low expansion in the nuclear
rest frame. The various energies and momenta in (1) are
therefore designated in the nuclear rest frame. The ma-
trix elements of the pion source current are most con-
veniently expressed in the mN c.m. frame where a partial
wave decomposition can be performed. The transforma-
tion between these two frames can be carried out by intro-
ducing the four-momentum

L =k+p =[(L'+W')'/', L],

where L=k+ p is the total three momentum of the mN
pair and W is the total c.m. energy or invariant mass of
the intermediate state mN pair. For convenience, the total
starting energy of the m.N pair will be written as
e=k +p . By a trivial use of the 5 function, (1) can be
rewritten as
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W2+L2 1/2 d k" d~Rc f + X g g I J P 53(L k ii
~p ii)5[( W2+ f 2)1/2 E(~ ii)]

2(2~) ( W2+ L 2)'/2 z, & z, cok E (p")

X (p's '
~
j~(0)

~ p "s",k "y ) (p "s",k "y
~ j (0)

~
ps )

The quantity enclosed in large curly brackets is an invariant and may therefore be calculated in any frame. The most
convenient frame is obviously the aN c.m. frame where the pion source current matrix elements can be written in terms
of the partial wave expansion

( —k . s",k,".m. y ~
J~(0)

~

—k, s) =4m g fzI ~(k,",kc m )II (y, a)P1 ( —k," s", k, —s),
/, I,J

(3)

where k, and k," are the pion initial and intermediate state four-momenta as measured in the center of mass of the
intermediate state rIN pair and k.. and k .are unit 3 vectors for this momenta. 1, I, and J are the orbital angular
momentum, isospin, and total angular momentum labels of each partial wave. f2I ~ is the partial wave amplitude and
II and P1 are the isospin and angular momentum projection operators for each partial wave. Using expansion (3) dong
with the idempotency relations for the projectors

and

X I ~& ~ [P1 ( —k,".m. s', —k c"ms")P1 ( —k,"ms", k, m s)—]=5@5IIP1 ( —k,'ms', —k, m s)
rr c.m.

S

g III(P,y)II'(y, a) =5I,I 11'(P,a),

(4a)

(4b)

Eq. (2) becomes

d ( W2+L2)1/2 00

( W +L )' e i' —I—,1J

dk," k,"
5[W —cok „E(k," )]-

cok „E(I," )
c.m.

Xf2I, 2J(kc"m, ykc. m. )f2I,~(kc m. ,kc m )II'(P,a)P1 ( —k,' m s', —k, m s)

The half-off-mass shell amplitudes can be parametrized by a factorable form,

f2I 2I(Q p) = f2I 2z(QiQ),I pl 4(p)
( )6

where p is a form factor and the forward on-shell elastic scattering amplitude f2I 2J(q, q) can be written in terms of mea-

sured phase shifts as

1 — ' &2I,2J
~ I

( )
4m W ri2I,2Je-

zi, 2J 9'

This along with the condition for elastic unitarity,
II

lmf'2I~(t ",k,' )= '
~f'2I2I(k,",k," )

~

',
can be used to write the fully off-shell amplitude as

PRc 4 y
d( W2+I 2)'/2

(W +L )' e iq
~
k,"—

~

— 0 (kc.m. )

X g II (P,a)P1( k,' s', —k, s)lm—fzIZZ(kcm, kc'm ) .
1,I,J

The external momenta k and k' are expressed here in the m.N c.m. frame rather than the nuclear rest frame as desired.

By again using the four-momentum I, the p-wave projection operators can be written in an arbitrary frame as
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and

u(p's') —1 u(ps)
y.I.
m

P i (p 's,ps) =
4m I [E(p) —m] [E(p') —m] I

y.I. p'Lp. L
8'u(p's'}3 1+ u(ps} p' p+

Pi (ps ps)=- P&—(p's,ps),
477 I [E(p)—m][E(p') —m] J

'I2 [E(p)+m][E(p')+m] (lob)

(p L)'
k c.m. = —p +

(p' I )'
c.m. — p +

If it is assumed that the momenta p, p', and L are much
smaller than the masses m and W, Eq. (9) along with Eqs.
(10) and (ll) can be expanded in powers of momentum
over mass. Keeping only terms up to first order in the ex-
pansion, the scattering amplitude may be written as

m - 8' —m-
k, = — p — L =k — L.

W 8' (14b)

The P-wave angular momentum projection operators and
isospin —,

' and —, projection operators are

~Rc 4 y" dW
m+I 8'+ —e—i g2$'

P(k,' )P(k, )

P (k," )

Q', (k,', k, )=o"k,' cr k,

Q3(k,', k, )=3k,' .k, (15a)

x g tmh2I, 2I(W)k~ A2I(p, a)

Xg~X, Q2I(k', ~,k, ~ )X, , (12)

—Qg(k,', k, ),
A|(P,a}= ,

' rpr-
A2(P, a)=5p —Ai(P, a) .

(15b)

where the definitions

and

f2I, 2I(kc.m. kc.m. } 4~kc. m. ( W}h 2I, 2I( W}

III (P,a) =g', .A„(P,a g, ,

4~k', k, P2I( —k,' s', —k, s)

=g, Q2I(k,",k, )X,

(13a)

(13c)

The r~'s are the usual Pauli matrices and g, and X, are the
isospin and spin Pauli spinors.

The amplitude described by (12) can be further simpli-
fied by replacing the invariant mass W in the recoil ener-

gy contribution to the denominator L /2W and in (14) by
the resonant mass m~. In principle, this should be the
Inass of the lowest resonance in each channel but since the
amplitude is dominated by the P33 amplitude in the re-
gion of interest, the mass of the b, is used here to describe
the recoil mass in all channels. Equation (14) now be-
comes

have been used. The m.N c.m. momenta are related to the
nuclear rest frame momenta by k,' =k ' —5L,

and

(14a) k, =k —5L,
where 5=(m~ —m)/m~. An off-shell partial wave am-
plitude can now be identified as

01RC
2

"2I,2J
2m~

d W p (k," )Imh 2I, 2I( W)

m m+V —8'+i q2m'

The right-hand cut contribution to the free t matrix can be written as

L 2

T N (k'P, ka;p', p)= —4m g hzI2I e—
I J 2m

P(k,' )P(k, )
A2I(P, a)Q2I(k c', kc ~ )

')/ 2' k '1/ 2CO k
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This t matrix is an operator in the spin-isospin space of
the nucleons.

From Ref. 14, Eqs. (19) and (20), the right-hand nu-
cleon pole contribution to the amplitude can be written as

Ft'r.'——+ g.[(p' —L)']g.[(p —L)'N~

u(p's')( yL +m—)u (ps)
5t'uttra t

e E(L)—+i r}

If the momenta are assumed to be small compared to the
nucleon mass, (19) reduces to

3g (0) Qj(k ', k)A)(P, a)
P(k')P(k)

4m L2 —m+Eg
2P1

where the form factor has been written as

g.[(p —L)'] =g.(0)0[(p —L)']

mm gz(0)
g (0)= 2

(20)

(21)

The pole contribution to the free t matrix can be writ-
ten as

T N (O'P, ka;p', p)= 4~h ~—

u (p's')y5rtr( y L +m)y5r u (ps)

e—(1.'+ m
')'"+ig

where L =[(L +m )'~, L] is the four-momentum of the
on-shell intermediate state nucleon. This may be simpli-
fied to yield

g.[(p' —L)']g.[(p —L)']
2'

nuclear rest frame. Because of the difference in mass of
the intermediate states of these two contributions, the ef-
fects of the transformation from AN c.m. frame to nu-
clear rest frame result in different recoil energies and an-
gle transformations in the angular momentum projection
operators for the pole and cut contributions. For this
reason, it is convenient also to separate the self-consistent
~N t matrix into a pole and a cut contribution. Once this
separation is made it is instructive to rearrange the pole
contribution to the self-consistent t matrix in a manner
which emphasizes the physical meaning of the modifica-
tions to the nucleon pole term in the nuclear medium.
The self-consistent t matrix satisfies the equation

TnN TmN + TmN E K —KN ——X(co —KN ) +i rt

1

E —E —EN+i' (24)

where T N is the free mN t matrix, T N is the self-
consistent nNt rn.atrix, Q is the Pauli operator which
projects onto unoccupied nucleon states, E is the starting
energy of the m.N pair, K =(m —V )'~, and
KN ———VN/2m. The first term inside of the large brack-
ets is the mN propagator where the nucleon is restricted to
unoccupied states and the m propagates in the presence of
an optical potential given by the m self-energy X. For the
present, the optical potential for the nucleon is ignored.
The second term in large brackets is the free ~N propaga-
tor. The effective t matrix given by the self-consistent
equation can therefore be viewed as the free t matrix plus
terms which correct for Pauli blocking and pion distortion
in intermediate states of the t matrix in the presence of
the nuclear medium. The self-consistency arises because
the m self-energy X is calculated by taking the nuclear
ground state matrix element of the self-consistent t matrix

L
X 2' Ai(P, a)Q', (k ', k) &= &Po I

~ N I 4o& . (25)

where

P(k')P(k)
X

+2Cilk +2COk
(22)

I ORP

2m

3g (0)
16m.m L 2 —P7l +E'g

2ppz

(23)

B. The self-consistent t matrix

In the previous subsection, expressions were derived for
the pole and cut contributions to the free t matrix in the

Note that the pion momenta appearing in the angular
momentum projection operators are those measured in the
nuclear rest frame. This is consistent with the recoil mass
of the intermediate state of the pole term being the nu-
cleon mass m. This can be seen by making the substitu-
tion m~~m in Eq. (16). The crossed amplitudes can be
obtained by simply applying the crossing relations to (18)
and (22).

TOR TORP + TORC
mN mN nN (26)

as illustrated in Fig. 2. In a similar fashion the sdf-
consistent x matrix can be separated into pole and cut
contributions

~m'N ~eN + TmN
R RP RC

This is represented by the diagrams in Fig. 3 where the
cross-hatched circle represents the free AN t matrix, the
cross-hatched box represents the self-consistent t matrix,
upward going solid lines represent particles, downward-
going solid lines represent holes, dashed lines represent
free pion propagation, and double dashed lines represent
pion propagation in the presence of an optical potential.
In general, the free and self-consistent t matrices in (24)
and (25) contain both left- and right-hand contributions.
For the purpose of the following discussion only the
right-hand pole and cut contributions are included. In-
clusion of the crossed amplitudes will be discussed in a
subsequent paper.

The right-hand contribution to the free t matrix can be
written as the sum of a pole and a cut contribution
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FIG. 5. Diagrammatic representation of the equation for the
right-hand cut contribution to the self-consistent t matrix.
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G = G' + O'XG
FIG. 3. Diagrammatic representation of the self-consistent

t-matrix equations.

as illustrated in Fig. 4 where the hatched line represents
the self-consistent nucleon pole and the hatched box
represents the self-consistent right-hand cut.

The self-consistent equation (24) can now be divided
into two integral equations:

mN mN + nN ( nN nN)

+ T~N (G —GP)T + T~N (S~N —S~N)T~N,

(28b)

which are represented by the diagrams of Figs. 5 and 6.
This separation is made so that (28a) contains no pieces
which contain a single nucleon pole. Note that (28a) has
the same form as the full self-consistent equation (24).
The full self-consistent t-matrix equation (24) is recovered
by simply adding (28a) and (28b).

(0)

ee,
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7T N ( q1lN ~ATTN ) ~N

FIG. 4. Diagrams representing the decomposition of the
right-hand cut contribution to the self-consistent t matrix into
pole and cut contributions.

FIG. 6. Diagrammatic representation of the equation for the
right-hand cut contribution to the self-consistent t matrix.
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, /X

S +SV„S
FIG. 9. Diagrammatic representation of the dressed nucleon

propagator.

FIG. 7. Diagrammatic representation for the effective mNN
vertex in the nuclear medium.

fwN fn'N + TmN( +n'N'+ mN)f n N' (30)

It is useful to rewrite (28b) in a form which better illus-
trates the meaning of the self-consistent modifications to
the nucleon pole contribution. This reorganization is sug-
gested by considering the diagrams of Fig. 6. Figures 6(b)
and 6(c) suggest a medium modification to the pion ab-
sorption vertex while Fig. 6(d) suggests a nucleon self-
energy insertion. The self-consistent pion absorption ver-
tex can be written as

f N=f'N+f'N(& N + N)T N (29)

where f N is the free pion-nucleon absorption vertex and

f N is the corresponding self-consistent vertex. The equa-
tion is represented by the diagrams of Fig. 7 where the
solid dot represents the free vertex and the empty dot, the
self-consistent vertex. A similar equation can be written
for the pion emission vertex,

which is represented by the time-reversed diagrams corre-
sponding to those of Fig. 7. A nucleon self-energy can be
defined as

I N f wN( +mN +~N)fwN f AN( +mN +nN)

=f'N(& N
—&'N)f'N

+fmN( +nN+n'N) 'TnN( +n'N '+n'N)f nN'
(31)

S=S +S VNS, (32)

where S is the free nucleon propagator and S is the
dressed nucleon propagator. This equation is represented
by Fig. 9 where the cross-hatched line represents the
dressed nucleon propagator and the solid line, the free nu-
cleon propagator.

In the notation used above, the pole contribution to the
free t matrix can be written as

which is represented by the diagrams of Fig. 8, where the
hatched triangle represents the nucleon self-energy. Using
this nucleon self-energy, a dressed nucleon propagator can
be defined as

(33)

while the pole contribution to the self-consistent r matrix
can now be written as

=f NSf N (34)

which is represented by Fig. 10. This can be verified by

Ik

FIG. 8. Diagrammatic representation of the contributions to
the nucleon optical potential generated by the self-consistent t-

matrix equation.

FIG. 10. Diagrammatic representation of the right-hand pole
contribution to the self-consistent t matrix expressed in terms of
medium modified pion absorption and emission vertices and the
dressed nucleon propagator.
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simply substituting (29), (30), (31), and (32) into (34) «
reproduce (28b).

It is necessary to make some comment about the nu-
cleon self-energy defined by (31). It should be remem-
bered that the diagrams used to define the quantity above
are time-ordered Goldstone diagrams where upward-going
nucleon lines represent particles above the Fermi sea while
downward-going nucleon lines represent holes in the Fer-
mi sea. The nucleon self-energy defined by (31) acts only
on particles above the Fermi sea and therefore corre-
sponds to an optical potential for nucleons in excited
states. This is a rather unusual collection of contributions
to the nucleon optical potential and will have little resem-
blence to phenomenological optical potentials. In addi-
tion, if a realistic optical potential is used to provide wave
functions for particle states in the Goldstone treatment of
the nuclear many-body problem, the nucleon self-energy
generated as part of the self-consistent m.N r matrix will
double count certain contributions to the realistic optical
potential. If the dressing of particle lines is important to
the calculation, the optical potential used for this purpose
should be used to generate S in (34) rather than the self-
energy given by (31).

III. CALCULATIONS

A. The self-consistent t matrix in nuclear matter

Now that a model for the fully-off-shell free n.N t ma-
trix has been presented along with a statement of the self-

I

consistent equations, the self-consistent t matrix can be
calculated once a model for the nuclear wave function is
provided. The difficulty in solving these equations for
finite nuclei can be appreciated by noticing that the self-
consistent t matrix equations are basically three body in
nature since they involve the interaction of a pion, a
valence nucleon, and the residual nuclear core. Given the
large number of partial waves required to describe the
scattering of the pion from the nuclear core, it is not clear
whether such a calculation is presently possible.

The qualitative features of the self-consistent t matrix
can be studied, however, by calculating it in nuclear
matter where the nuclear wave functions are plane waves
and the pion is elastically scattered only in the forward
direction. This was the approach of the "simple solvable
model" calculation of Ref. 1. The simplicity of this cal-
culation was obtained at the expense of using a static
model for the free m.N r matrix which corresponds to set-
ting L=0 in (16), (18), and (22). By doing this, the Fermi
motion and angle transformation effects due to the frame
transformation are suppressed. This results in a pion
self-energy which fails to contain the nonlocalities associ-
ated with intermediate state propagation. Another serious
defect arises from the fact that the nucleon pole contribu-
tion to the t matrix is represented by a simple pole as a
function of the pion energy, which translates to a similar
simple pole in the self-energy.

In nuclear matter, the equation for the right-hand cut
contribution to the self-consistent t matrix (28a) can be
written as

T~g(k'P, ka;p', p)=T z (k'P, ka;p', p)+ g J d q &gq (k'P, qy, p', L —q)2'r

T~(qy, ka;p. ',p),
e E(L q) coq +—i g— —

8( ~L—q ~

—kp)

E(L q) —co~ —X—[q, e——E(L q)]+i g—

where T ~z is given by (18), E (p) =—m +p /2m, and

a=co B+E(p)—
is the starting energy of the m.N pair, B represents an average nuclear binding energy in nuclear matter, and kF is the
Fermi momentum and E(P) =p /2m. As an ansatz, the self-consistent right-hand-cut t matrix is assumed to have the
orm

~RC RC P(k,' ) P(k, )
T~~———4mghpg~ e—,L A2I(P~lX)QzJ(k,'~, k, ~ ) (36)

I J 2Plg 2cok~ 2cok

which is of the same form as (18) with the modification that the amplitude hpg2J may now have some extra dependence
on the total pair momentum L,.

For the purpose of simplifying the calculation, two approximations are introduced. The first is that the spin flip con-
tributions to the angular momentum projection operators are neglected, that is

Q~(k,', k, )=(J+1/2)k,' .k, (37)

By dropping such terms, the complexity of the coupling between various spin-isospin channels is greatly reduced. This
should not seriously change the qualitative results of the calculation. The second modification is to replace the center-
of-mass momentum in the off-shell form factors by the pion momentum in the nuclear rest frame,
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P(k, ) -=P(k) .

Since the primary effect of the form factor in this calculation is to act as a cutoff in the internal loop momentum in-
tegrals, this should have no qualitative effect on the results of the calculation

For this calculation, the form factors are chosen to be of a Gaussian form,

(3&)

where p is the form factor mass.
With these approximations and using the idempotency relation for the isospin operators (4a), the self-consistent equa-

tion (35) can be separated into expressions for each isospin channel and becomes

RC
2

k c.m. kc.m. H2I
Zm~

ORC L 2

,L =k,' .k, H2I
2m~

L 2 I
e— f(e, k,', k, , L)Hzz e—

where

H2I =47T g (7+ I/2)h 2I 2J

H 2I =477 Q (J+ 1 /2 )h 2I 2J
J

SIlCl

(39)

f(e, k,', k, ,L)= P (q)k,' q, q, k,
2(2m. )'

8(
I
L—q I

kF)—
X '

e E(L q—) coq ——X[q—,e —E(L —q)]+i' e—E(L—q) —coq+ig
(40)

The function f, in general, contains contributions to many partial waves. Here, we are only interested in the P wave-
contribution. Therefore, only the part off proportional to k,' k, and independent of the direction of L is retained.
It is then possible to rewrite (39) as

Rc L ORc L2 2

HzI e—,I. =H2I @-
2m' 2m'

ORC
2—H2I @-

2m'

2

F(e,L)H21 e—,LRC

2m'
(41)

where

m ~ dqq 2
8(e—8' —e+)

F(e,L)= P (q) dS'
16' L o coq

—~ 8' —coq —X(q, 8')+i ri

where

m8'
Qo=

qL

1 2(1—uo)8(1+uo)8(1 —uo), (42)8 —6)q + l tj

W = I' e+E(L)+E(q)—m. —

The self-consistent H amplitude is now found by a simple algebraic solution of (41) as

RC
2

H2I e—,L
2m'

HORC
2I

LE'—
2mg

+F(e,L)
(43)

A similar procedure can be used to solve (28b) for the self-consistent pole contribution. This gives

H I e—,I.RP

2m
4nh (e —L /2m)

L 2
HoRc

2m'
L2

+4mb e— F(e,L)
2m

2

1 —F(e,L)H
&

e—,LRC

2m~
'



30 NONSTATIC, SELF-CONSISTENT mN t MATRIX IN NUCLEAR. . . 643

where F is again defined by (42). Using (43) this can be rewritten in a form which is more suggestive of the alternate
form of the pole contribution to the self-consistent t matrix (34),

2

IIRP

2m

L 2
4m-h'~P e-

2Pl

F(E,L)
L 2

1+H i E— F(E,L)2' g

1+ Hi E— F(E,L) 1+4mb E
one L 2

2m~ 2171

L 2

1+H i" E— F(E,L)
2172 g

(45)

Therefore, both pole and cut contributions to the self-
consistent t matrix can be found easily once the function
F(E',L) defined by (42) is known. To calculate F, it is
necessary to have an expression for the self-energy X,
which in principle should be calculated from the self-
consistent t matrix, which we are trying to find. A practi-
cal approach to this self-consistency problem is to iterate
in approximations to X. This is done by first calculating
X which is calculated from the free t matrix. This ean
then be used in (42), (43), and (44) to provide an estimate
of the self-consistent t matrix which can be used to pro-
vide a new estimate of X. This procedure is continued un-
til there is little variation in successive estimates of T N.
The static t-matrix calculation of Ref. 1 showed this to be
a very rapidly convergent procedure. Indeed, it was found
that a good estimate of the converged result was obtained
by the initial calculation using X=X . For this reason,
this approximation with some modification is used in the
results presented below. Self-consistency can, of course,
be obtained by iteration, but this should provide no quali-
tative changes in the result.

Before simply using X in the calculation of F, some
thought needs to be given to the effect of Pauli blocking
on the self-energy. The effect of Pauli blocking on the
resonant contribution to X is to shift the energy and nar-

row the resonance by excluding a portion of the phase
space available to intermediate state nucleons. These ef-
fects are in the opposite direction to those which form the
introduction of the many-nucleon degrees of freedom
which provide a downward shift and a broadening of the
resonance. Therefore, the cut contribution to the self-
energy calculated from the free t matrix is actually a
better approximation to the self-consistent self-energy
than is the Pauli corrected self-energy. The Pauli block-
ing of the nucleon in the intermediate state of the nucleon
pole contribution to the self-energy calculated in nuclear
matter tends to reduce the size of the pole contribution to
the self-energy. Since the imaginary part of this contribu-
tion to the self-energy corresponds to the absorption of
the pion on a nucleon, neglect of Pauli blocking in this
contribution will tend to overestimate the role of absorp-
tion in the self-consistent t matrix. Unlike the cut contri-
bution, introduction of the many-nucleon degrees of free-
dom does not significantly modify the nucleon pole con-
tribution to the self-consistent t matrix. Therefore, for a
first approximation to the nucleon pole contribution to
the self-energy, we use a form calculated using the free t
matrix with the inomentum of the intermediate state nu-
cleon constrained to be larger than the Fermi momentum,

g f (k)k I d3p 8(kt;
~ p ~

)8(
~
k+p

~
kt)—

Xp (k,co)=
2m cok (2n) p (k+ p) )

CO+ +l'g
2P7l 2m

g'P (k)k

16m IQ)k

k —co 8(co)2'
kkFi~ 2mt08(2kF —k)8—

kkF—co 0 co — +
2m m

r

Pl kkF
kF QN 8(k 2k—F )8—

k m 2m

kkF+ 8(2kF k)8—I 2'
k+
2m

.+8(2kF k)—
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&( 2mcoln
B

k2
QN+

m

2

kp — QN ln
kkF

k+m QN+ kk~
2

2

+ 8(k —2kF) kF —QN ln
k

QN+ kkF 2mkF

kk, +k' (46)

where co=co Ban—d QN ——co —(k /2m). The cut contribution is calculated directly from the free t matrix and is given
by

yORC(k
$2(k)m& n&+(skF2/2m)+(kkF/m&) 2k2

d8'H (8')
2

+2(l' —m~)m5
12m kcok n~+ (skF'/'2m) (kkF /mg )— m~

L

kF — —I[(2m/5)(S' —Qg)]+[(m k )/(mg5 )]J'
mg5

'2

n&+ ( skF2 /2 m ) + ( kkF /m & )

+e ' ' —k ", de'HoRc(e)
m Q~ —(mk /25m~)

m k
X 2

+2(8' —mg)m5
m~

X I [(2m /5)( 8' —Qg)]
4mk

mg6

+ [(m k )/(m 5 )]I' (47)

a;(q)
X(q, @')-=g

, 8' —b;(q)
(48)

where a;(q) and b;(q) are complex functions of q. Since

where Qt, io (k /2m~) a—nd

HQRc y (I + 1/2)HoRc
I

The sum of (46) and (47) is then used as an approximation
to the self-consistent self-energy in (42) to calculate
F(e,L). The calculation of F(e,L) still poses some prob-
lems from a computational standpoint. Two levels of in-
tegration are displayed explicitly in (42) while the cut con-
tribution contains another explicit integration plus the
dispersion integrals (17) needed to calculate H2t giving a
total of four levels of integration. Further complication
arises from the analytic structure of the dressed propaga-
tor in (42). This propagator has branch cuts correspond-
ing to the cuts in the pole and cut contributions to X plus
a simple pole corresponding to a renormalization of the
free pion propagation pole. The positions of these singu-
larities in the complex X plane is dependent on the value
of the loop momentum q which complicates the selection
of quadrature points for evaluating (42). The calculation
can be made much more tractable by approximating the
self-energy X given by (44) and (47) by a sum of complex
simple poles

I

the cut contribution to X is dominated by the P33 reso-
nance, it is no surprise that it can be well represented nu-

merically by fitting it to a single complex pole. The main
defect of such an approximation is that the sharp thresh-
olds of the imaginary part of X are replaced by a func-
tion which has an imaginary part everywhere. Since this
approximation is used only inside a loop integral where it
is averaged over many values of the momentum q, it
should have no appreciable effect on the qualitative
feature of the self-consistent amplitudes. The sum of two
complex pole terms is used to approximate the pole con-
tribution to X in order to minimize the contribution of the
imaginary tail of the fitted form below the sharp thresh-
old exhibited by (46). Since it is difficult to fit such a
form to (46) for q &2kF where the Pauli blocking effects
become important, the form used for q &2k+ is simply
continued to the lower values of q. Pauli blocking is in-
cluded by multiplying the pole contribution by an addi-
tional function of q, which makes the integrated area of
the imaginary part of X& for each value of q the same for
the fitted function and the expression given by (46). Since
the imaginary part of X~~ corresponds to the strength of
absorption, this approximation will maintain the same
overall absorption strength as the "exact". XFFgiven by (46)
although it will be distributed somewhat differently.
Again, because of the sum over the loop moment, this
should be a good approximation. It should also be men-
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tioned that the absolutely sharp thresholds in the self-
energy in (46) and (47) are artifacts of the sharp theta-
function momentum distribution of the Fermi gas and
would not appear in any nuclear model with a more realis-
tic momentum distribution.

Once the self-energy is approximated by a sum of three
complex poles as in (48), it becomes clear that the dressed
propagator can be written as the sum of four complex
poles by rationalizing the propagator and rewriting it as a
sum of partial fractions

1 A;(q)
8' —co& —X(q, 8')+ig, , O' B—; (q)

(49)

The integral over 8' in (42) can then be done analytically.
The remaining integral over q can now be done easily
since the integrand contains only logarithmic singularities
which can be located easily.

The right-hand cut contribution to the self-consistent
self-energy can then be found from the self-consistent am-
plitude Hzc and is given by

dPP J dL L [(I—&)k' —&(I —&)L'+&'p']H co B+—m+ P$2(k) kF p +k

6m'~kk p —kI 2m
L 2

L,
2m'

The self-energy is related to the Klein-Gordon optical po-
tential +(k,co) (the invariant self-energy) by the relation

g(k, co) =2cok y (k, co) .

B. Results for the nuclear matter case

The nuclear matter calculation described in the previ-
ous subsection depends on three adjustable parameters, the
Fermi momentum kz, and the binding energy B, which
describe the average properties of the nuclear matter, and
a form factor mass p, which is used to parametrize the
half-off-mass-shell ~N amplitudes in terms of the on-
mass-shell forward scattering amplitudes according to (6).
For the calculations presented here, these parameters are
chosen to have the values kz ——1.9m„c, B =0.4m c, and

p =6.7227m c (the nucleon mass). For convenience the
phase shifts used in (7) are taken from a simple parametri-
zation.

In Ref. 1, it was shown that the self-energy calculated
using a static nN t matrix can be written in the form

k
X(k,co)= — P (k)8 (m) .

2COk

The separability of this self-energy is a consequence of the
use of a static approximation to the free t matrix. The
momentum dependence of this self-energy is contained en-
tirely in the off-shell ~ form factor and a kinematical
factor which reflects the use of only P wave con-tributions
to the t matrix in calculating X. In order to display the
additional momentum dependence of the nonstatic and
self-consistent self-energies, the dimensionless quantity,
which for convenience will be referred to as the dimen-
sionless self-energy

2cokX(k, cu)
W(k, co)=-

k P (k)

is plotted in Figs. 11—14 as a function of the total pion
energy co for fixed momentum values of 0.5m~c, 1.0m c,
and 3m~c, respectively. The real and imaginary parts of
W(k, co) resulting from three different calculations of X
are plotted in each figure. Curve 1 represents 8'(k, co)
calculated using the static approximation to the free t ma-
trix and serves as a reference for studying the momentum
dependence of the other two calculations since it is in-
dependent of k. Curve 2 is 8'(k, co), calculated using the
nonstatic free r matrix given by (18), and curve 3 is
W(k, co), calculated using the self-consistent amplitudes

I I I /

(
I t

k=0.5m~ c
I I

I
I I I I

(

l ( I I

)
I ( I I

k=l.Om c

32:

I0
I ~' I I

FICx. 11. Dimensionless self-energy calculated using static
(curve 1), nonstatic (curve 2), and self-consistent t matrices as a
function of pion energy co at fixed pion momentum k =0.5I c.

cu (m~ c~)

FIG. 12. As in Fig. 11,but with k = 1.0m c.



J. %V. VAN ORDEN 30

4 I i
}

i I I I

i

I I I I

i
t I

k = 2.0m~C

4 I f I I

(
I I I I

i
I I I I

)
I I I

k 50m ~c

Rel

3 2:
', ~1m'

Re

~ ~
~ ~ ~

I I

0
I I I I i, I I I !~M ''I I I

I 2

cu(m cz)

FIG. 13. As in Fig. 11,but with k =2.0m c.

(u {m c~)

FIG. 14. As in Fig. 11,but with k =3.0m c.

defined by (43). In order to simplify the discussion below,
the calculations represented by curves 1, 2, and 3 will be
referred to as static, nonstatic, and self-consistent, respec-
tively. In each of these four figures, an arrow marks the
energy of an on-shell pion having the same momentum as
is used in that figure.

Comparison of the nonstatic calculations (curve 2) to
the static calculation (curve 1) in Figs. 11—14 shows the
additional momentum dependence of the self-energy asso-
ciated with the kinematical transformation of the free t
matrix from the AN c.m. frame to the nuclear rest frame.
As the momentum k increases, the peak in the imaginary
part of the self-energy is moved to higher energy co and
the breadth of the peak is increased relative to the static
self-energy. This is primarily due to the recoil energy of
the intermediate state of the nonstatic t matrix and the
Fermi average of nucleon momenta. Notice also the rapid
decrease in magnitude of the peak in the imaginary part
of the nonstatic self-energy relative to the corresponding
peak in the static self-energy in going from k =0.5m c to
k = lm c. This is a result of the form of the pion c.m.
momenta defined by (16) which appear in the P-wave pro-
jection operators (15a). Since the pion c.m. momentum
depends on the total mN pair momentum L, it no longer
goes to zero as the laboratory pion momentum k goes to
zero when the nucleon momentum is nonzero. As a re-
sult, while the static self-energy X goes to zero as k the
nonstatic self-energy is finite at k=0 due to the Fermi
averaging. The dimensionless self-energy W for the non-
static calculation is therefore going as I/O as k ap-
proaches zero while the static 8'remains constant. These
contributions to the nonstatic self-energy which are finite

at k=0 would appear as S-wave contributions to the pion
optical potential in a finite nucleus calculation.

Comparison of the self-consistent calculation (curve 3)
to the nonstatic calculation (curve 1) shows the result of
introducing nuclear many-body degrees of freedom into
the intermediate states of the effective irN t matrix in the
nuclear medium. This introduces a dynamical broadening
of the resonance in addition to the kinematical broadening
of the nonstatic calculation. Notice that the imaginary
part of the self-consistent self-energy persists below the
threshold of the imaginary part of the nonstatic self-
energies. This is a direct signature of the absorption of
pions on two or more nucleons in intermediate states of
the effective t matrix. The full width at half maximum
and the peak position for each of the calculations in Figs.
11—14 is summarized in Table I.

The momentum dependence of the self-consistent self-
energy is summarized in Fig. 15. This figure shows the
imaginary part of the dimensionless self-energy corre-
sponding to the curves labeled Im3 in Figs. 11—14. In
Fig. 15, each of these curves is represented by a solid line
and labeled with the value of the pion momentum. The
shifting, spreading, and change in magnitude with in-
creasing pion momentum is clearly illustrated.

The dashed curve in Fig. 15 represents the imaginary
part of the static, self-consistent dimensionless self-
energy. This is calculated as in Ref. 1, but with the pa-
rameters specified at the beginning of this section. It is
clear that the momentum dependence of the nonstatic cal-
culation makes it impossible for the static self-consistent
calculation to provide a reasonable representation of the
self-energy over the range of momentum values. It should

TABLE I. Widths and positions of resonant contributions to the imaginary part of the dimensionless
self-energy for static, nonstatic, and self-consistent calculations at k=0.5, 1.0, 2.0, and 3.0m c.

k(m c) Static
FWHM (m„c )

Nonstatic Self-consistent Static
Peak position (m c )

Nonstatic Self-consistent

0.5
1.0
2.0
3.0

0.669
0.669
0.669
0.669

0.687
0.731
0.891
1.100

1.012
1.050
1.198
1.336

2.394
2.394
2.394
2.394

2.340
2.374
2.553
2.853

2.386
2.410
2.611
2.904
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2m~

F(e,L)
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for each absorption or emission vertex, while the nucleon
optical potential is given by

3g~
VN(e, L)=-

4m

Ql {m~c )

FIG. 15. Summary of the imaginary parts of the self-
consistent, dimensionless self-energy (curve 3) from Figs. 11—14
(solid lines). The dashed line is the imaginary part of the static,
self-consistent, dimensionless self-energy calculated as in Ref. 1.

also be noted that the large value of the imaginary part of
the static self-consistent self-energy in the region of the
pion threshold energy shows that the static calculation
overemphasizes the importance of many-nucleon pion ab-
sorption intermediate states.

Figure 16 shows the negative of the self-energy X for
on-shell pion momenta as a function of pion energy for
each of the three calculations as presented in Figs. 11—14.
The arrows indicate the on-shell energies for each of the
momentum values represented in Figs. 11—14. It is clear
that the nonstatic and self-consistent self-energies differ
considerably from the static self-energy. The self-
consistent self-energy is broadened substantially relative to
the nonstatic self-energy. Notice also that the real parts
of the nonstatic and self-consistent self-energies are
nonzero at ~=1m~c, which corresponds to k =Om~c as
was argued above.

As was shown above, the medium modifications to the
Pl 1 pole contribution to the effective r matrix can be
described in terms of a vertex modification and an optical
potential for the intermediate state nucleon. From (45) it

Figure 17 shows the ratio of the modified vertex to the
free vertex, f N lf ~N. Since the contribution of this term
comes primarily from the neighborhood of the nucleon
pole, and since the position of the pole is expected to
differ little from that of the free nucleon pole, the energy
at which the ratio of vertex functions is evaluated in this
figure is the energy of the free pole. The curves are
displayed as a function of L which is the momentum of
the intermediate state nucleon. It is clear that the real
part of this ratio differs from 1 by only a small amount,
while the imaginary part of the ratio remains close to
zero. Therefore, the vertex renormalization of the pole is

only a small effect.
Figure 18 shows the nucleon optical potential (55) at

the energy of the free nucleon pole as a function of the
nucleon momentum l.. As was mentioned above, this op-
tical potential consists of a rather peculiar subset of con-
tributions to the complete nucleon optical potential which
include only contributions containing the exchange of two
pions. One-meson exchange pieces and heavy-meson ex-
changes are not included. It is clear that the optical po-
tential, as shown in this figure bears little resemblance to
phenomenological optical potentials and is shown here
only for the sake of completeness of this discussion. If an
optical potential is to be used for nucleons above the Fer-
mi sea, a more realistic form of the optical potential
should be used in place of (55).
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FIG. 16. The negative of the self-energy as a function of pion
energy with pion momentum determined by the mass-shell con-
dition. The three sets of curves are labeled as in Fig. 11.
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FICx. 17. The ratio of the medium modified vertex function
to the free vertex function as a function of the nucleon momen-
tum L.
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FIG. 18. Contributions to the nucleon optical potential corre-
sponding to (55) as a function of nucleon momentum I..

IV. DISCUSSION AND CONCLUSIONS

It is clear from the results shown above that the calcu-
lation of the nonstatic, self-consistent mN t matrix in nu-
clear matter has all of the qualitative features which
would be expected from physical considerations. That is,
the resonance is broadened and shifted by the introduction
of additional intermediate reaction channels, and the pres-
ence of many-nucleon absorption channels lowers the
threshold of the imaginary part of the self-consistent opti-
cal potential relative to that of the first-order optical po-
tential. Some caution, however, should be used in at-
tempting to extract quantitative information from such
calculations due to certain complications which arise from
the properties of nuclear matter.

To understand the origin of one of these complications,
it is useful to consider the self-consistent r matrix calcula-
tion for a finite nucleus. The self-consistent t matrix is
constructed so as to sum a set of contributions to pion-
nucleus scattering where the pion scatters from a nucleon,
is scattered from the nuclear core, and then scatters again
from the valence nucleon. The self-consistent t-matrix
sums contributions which involve any number of reflec-
tions of the pion between the valence nucleon and the
core, where the initial and final scattering always occur on
the valence nucleon. In a finite nucleus where the nuclear
wave functions are localized, these multiple reflections
can only occur if the pion is always reflected back into the
region where the nuclear wave functions are non-
negligible. This back scattering requires that momentum
is transferred between the pion and the nucleons and that
the magnitude of the momentum which can occur in the
internal loop of the self-consistent t matrix is regulated by
the nuclear momentum distribution. In nuclear matter,
the nuclear wave functions are infinite plane waves, and
elastic scattering of the pion from the nuclear medium is
always in the forward direction. Therefore, the pion and
nucleon can continue to scatter without transferring
momentum to the medium, with the result that nuclear
rnornentum distribution does not regulate the magnitude
of the loop momentum in the self-consistent equation.
This momentum is then only regulated by the ~N off-

shell form factors and the results of the calculation will be
sensitive to the functional form of the form factor and the
form factor mass. For the purpose of the calculation
presented in this paper, a Gaussian form factor (38) with a
form factor mass equal to the nucleon mass was chosen to
avoid any problems which might arise from the use of
nonrelativistic kinematics.

The second complication has to do with the reactive
content of the effective t matrix. From unitarity con-
siderations and the form of the self-consistent t-matrix
equation, it is possible to relate the imaginary part of the
self-consistent self-energy to-a sum of exclusive reaction
cross sections characterized by the number and type of
particles in the final state, such as 1p-lh, 1p-lh-lm, 2p-2h,
2p-2h-lvr, etc. The expression for the reactive content of
the optical potential can then be used to test the calculated
optical potential for consistency with measurement of the
total absorption cross section, for example. Since nuclear
matter is infinite in extent and capable of absorbing pions,
any pion which is placed in nuclear matter will eventually
be absorbed. Nuclear matter, therefore, has a reactive
content which consists completely of absorption channels
such as 1p-lh, 2p-2h, 3p-3h, etc. Indeed, a careful exam-
ination of the reactive content of the self-consistent t ma-
trix in nuclear matter shows this to be rigorously true.
Since the total reaction cross section for m.-nucleus scatter-
ing is not composed entirely of absorption, this is a very
unsatisfactory situation. This problem is due entirely to
the fact that all elastic scatterings from nuclear matter are
in the forward direction. Naive approaches to a local den-
sity approximation of the self-consistent t matrix for fin-
ite nuclei will also have this problem with reactive con-
tent. A believable comparison of the effects of the self-
consistent t-matrix approach to ~-nucleus scattering with
data will require an actual solution of the self-consistent
t-matrix equations in a finite nucleus.

The conclusions which can be drawn from the calcula-
tion presented in this paper can be summarized as follows.

(1) The resonant contribution to the self-consistent pion
self-energy is 20% to 50% greater in width than the
first-order, nonstatic self-energy. The effective mass of
the self-consistent resonance is about 10 MeV greater than
the free resonant mass.

(2) The modification of the pion absorption and emis-
sion vertex resulting from the calculation of the self-
consistent ~N t matrix is negligible.

(3) The part of the self-consistent mN t matrix which
has the form of a nucleon optical potential can be isolated
and replaced by a better representation of the nucleon op-
tical potential. This eliminates any double counting
which may occur in the calculation of the self-consistent t
matrix.
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