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A new approximation method for potential scattering is proposed. The usual idea of linearizing

propagators in eikonal approximation is incorporated with the second Born approximation in this
method such that the scattering amplitude retains more accurate low order Born terms. Conse-
quently, the linearized propagator is dependent on the specifics of the potential. The new formula
thus obtained gives spectacular improvements to usual eikonal formulas. Interestingly it works also
for scatterings at not so high energy.

I. INTRODUCTION

For scattering of a particle of energy E by a potential
of strength Vo and range a, eikonal approximation has
been shown to be valid as long as Vo/E « 1 and ka »1
(k =v'2rnE /A). Basically eikonal approximation sug-
gests that the particle propagates linearly inside the poten-
tial and results in a useful closed formula for scattering
amplitudes. Among them, the Glauber amplitude' has
been used most successfully in the studies of particle col-
lisions in atomic and nuclear physics.

Eikonal approximation, however, suffers from the limi-
tations that it is good only for high energy scattering at
small angles. In pion-nucleus scattering at medium ener-

gy of 100—300 MeV, ka is actually not much greater than
one and the validity of the eikonal approximation in this
case is therefore questionable. Not surprisingly, numeri-
cal calculations show fairly large errors in the Glauber
approximations when the energy is not high enough to en-
sure that ka »1 and

~
Vo

~

/E && l. In fact it has been
pointed out ' that even the second Born approximation is
more accurate than the Glauber approximation for the
weak coupling case in which

~
Vp

~

a /k = (
~

Vo
~

/k')(«) && I

This paper reports a new approximation scheme in
which the usual eikonal approximation method is general-
ized to incorporate with the second Born approximation.
Consequently the resulting formula for scattering ampli-
tude contains the dominant real part as well as the dom-
inant imaginary part of the second Born term and yields
spectacular improvements to the Glauber formula. The
importance of including the real part, Ref&, in an eikonal

formula has been pointed out before by Byron et al.
They noted that a vast improvement for Yukawa poten-
tials is achieved by simply adding Ref& to the Glauber

amplitude.
In the present approximation method, an eikonal-type

amplitude is formulated from a generalized eikonal propa-
gator which consists of some arbitrary parameters. These
parameters are then determined in such a way that both
the dominant real part and the dominant imaginary part
of f~ are retained. The determination of parameters, in-

2

terestingly enough, amounts to adjustment of the propaga-
tion momentum inside the potential and, therefore, is
dependent on the specifics of the potential.

Closely following the work of Sugar and Blanken-
becler, I begin with a brief introduction of T matrices in
Sec. II. With the parametrized linearized propagator, an
eikonal-type T-matrix element is obtained. The deter-
mination of parameters involved is then discussed in Sec.
III and carried out in Secs. IV and V for Gaussian poten-
tials. The resulting new formula for scattering amplitude
is then numerically tested in Sec. VI. The results from the
present method, the Glauber method, and the second Born
approximation are closely compared with the exact values.
It is shown that the new method works excellently for a
much wider region of scattering angle even when the ka
value is not much greater than one and the Vo/k value is
not much smaller than one. Equally impressive results
are obtained for exponential potentials which are briefly
reported in Sec. VII. The paper ends with a conclusion in
Sec. VIII.

II. FORMULATION

A. Lippmann-Schwinger equation

G(p) =(k' —p'+te) (2)

The units in which A= —,m =c=1 are used here and
throughout the paper. k is the magnitude of the momen-

tum k (or k ') of incoming (or outgoing) projectile in the
c.m. system, which is scattered by the potential V.

In order to solve T, I shall approximate the free Green's
function by a linearized propagator to be discussed later.
Here we note, following Sugar and Blankenbecler, that if
the Green's function is separated into two parts

G = GI+GIXG =G(+GNIGI, (3)

Our purpose is to solve for the T matrix satisfying the
well-known equation

T = V+ VGT = V+ TGV

in an approximate, but simple and closed form. In (1), G
is the free Green's function given by
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where Thus

ÃI ——G

Eq. (1) becomes

T = TI +Ter Gr T

where

(4)

where

X(r, r ') =X(r)—X(r '), (12)

TI ——V+TIG)V = V+ Vgi V (6) X(r) = f V(r ')dz' .

Sr =GI+GI ~e .

B. Linearized propagator

(7)
The lowest order T-matrix element is then

( k '
~

TI
~

k ) = ( k '
~
v+ vgi v

~

k )

(T )+ f d3 e
—(A'(r)v(r)1

2cxl
A general linearized propagator which restricts the

propagation in some direction z can be written as

G(
' ——2a()33—p, )+ie,

where a and P are parameters with the dimensions of a
momentum. Note that the direction of the propagation z,
a, and P are all arbitrary at this point. Our purpose is to
choose them in such a way that the error involved in the
present approximation scheme is small. I shall come to
this point later. Here we see that (8) gives the familiar
propagators if the parameters are chosen as follows: For
the projectile of initial and final momenta k and k,

~

k
~

=
~

k'~ =k and Z= —,(k+k'), (i) if a=P=k and

z~
~
k, G& is nothing but the usual eikonal propagator, (ii) if

a =k, P =6, and z
~ ~

b„,Gl is precisely the propagator in
the Glauber approximation, (iii) if u=P=5, and z~~6„
GI is then the propagator resulting in the Abarbanel-
Itzykson amplitude, and (iv) if a=P=k, and z~~b„, G( is
the propagator used in the approximation method report-
ed earlier by the present author.

It should be noted that the propagator (8) in the spacial
space 1s

X f V(r ')e' '' 'dz',

(13)

where r =(x,y, z) and r '= (x,y, z'), q = k —k ',

A(r) = k. r —Pz+g(r),
A'(r) = k '.r —Pz+X(r),

and ( Te ) is the first Born given by

( T~) = f d r e' ' V(r) .

When the propagation of the particle is not all the way
along the incident direction, there are in general two hard
scatterings in our approximation scheme where the
changes of direction occur. In (13), one such hard scatter-
ing takes place at r ' with a sudden phase change (or
momentum transfer) of k —Pz. The particle then contin-
ues in the z direction, accumulating a phase X( r, r '). It is
then scattered into the final direction at r with another
sudden phase change of Pz —k '. Obviously, when P=k„
(13) reduces to the familiar eikonal-type form:

G((p) = . 5'(pi)8(p, )e
2(xi ( k '

~
TE

~

k) = f d r e' ' V(r)e (14)
This clearly indicates that the propagation is in the z
direction with the momentum P. It should also be noted
that the difference between GI and the exact G ' is

N&=(p —az) —(a —P) —(k —P ) . (10)

C. Scattering amplitude

2~ p+i g((r, r ')=5 (r —r ')+ V(r)g~(r, r ') .
az

The approximation scheme proposed here uses the
linearized propagator (8) as the lowest order term in place
of the exact Green's function in (1). The free parameters
in the linearized propagator are then to be determined by
demanding that the neglected contribution from higher
order terms is small.

With G=G~, the lowest order T matrix is given by (6).
The lowest order full Green's function g((r, r ') is the
solution of the differential equation

With the above-mentioned specific choices of a, P, and z,
this gives the usual eikonal amplitude, the Glauber ampli-
tude, ' or the Abarbanel-Itzykson amplitude. They are
known to work for small-angle scattering at high energy.

Equation (13) at this point is merely a solution to the
T-matrix equation with the linearized propagator. The
crucial question is whether it has anything to do with the
solution of the exact T-matrix equation. My purpose next
is to choose a, P, and the z direction such that Eq. (13)
gives a good approximation to the exact solution.

III. DETERMINATION OF PARAMETERS

The exact T matrix is related to T( through (5) and,
therefore, the T-matrix element is related to ( k '

~
T~

~

k )
through

( k '
~

T
~

k ) = ( k '
~

TI
~

k ) + ( k '
~

TGNgGI T(
~

k ) . (15)

It is then obvious that ( k '
~

TI
~

k ) is a good approxima-
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tion of ( k '
~

T
~

k ) if the second term above, i.e.,

b, T—= &k'i TGN, G, T,
i
k), (16)

is small compared with the first term. Thus the smallness
of b, T is the natural validity condition of our approxima-
tion scheme. The parameters a, P, and the z direction,
therefore, have to be determined such that AT is small.

b, T, however, is a complicated function of a, P, and z.
Fortunately, there is some understanding of AT at high
energy from past work which can be made use of here for
the purpose of determining the parameters. It is known
that an eikonal-type approximation, especially Glauber's
approximation, works at small angle at large k. ' This
means that at large k and small 8, AT is small if z~

~
b„,

a=k, and P=h. In fact it has been proven that the
Glauber amplitude with this choice selects out in each
term of the Born series the dominant contribution (to or-
der k ') which is alternatively real and

imaginary. ' The Glauber amplitude, consequently, has a
rather simple form as given in (14). However, the fact
that the Glauber terms do not have both the dominant
real term and the dominant imaginary term seems to limit
its accuracy quite severely. For a weak coupling case, for
example, the Glauber approximation does not work as
well as the second Born approximation. This was studied

by Byron et al. They pointed out that this is because of
the missing real term in the second Glauber term. In fact
Byron et al. showed that the mere inclusion of the real
part of the second Born term to the Glauber amplitude re-
sults in spectacular improvements for Yukawa-type po-
tentials.

It is thus clear that the Glauber choice is a good one for
small-angle scattering at high energy, but the second Born
term needs to be considered more carefully. Accordingly,
I choose the parameters z, a, and P in our formulation to
be consistent with the Glauber approximation by assum-

ing z to be parallel to 6 and

bT2 ——— d r e ' '' 'V(r ')dz' e
4a Z

XN&e'~' f e' '' 'V(r ')dz'

where X~ in the coordinate space is given by

Ni = V—+2ai V, —k +2aP,

A(r)=k r —Pz,
and

(20)

IV. SPHERICAL POTENTIAL

For a spherical potential V(r) = V(r), Eq. (21) can be
rewritten in a more convenient form. First, V', and V',

operations can be carried out easily. I obtain

5 T2 —Tg + Tg + Tc+ TD
where

d 3~ e l q ' I' P2
4

(23)

(24)

T~= i — d'r e' q' V(r)e
2a

A, '(r) =k '.r —Pz .
After integrations by parts, (20) can be reduced to the

simpler form:

b T2 ——— d3r V(r)e ii"i r —'i
4a

Z

XN& f dz'(z —z')V(r )e"i'i,
(21)

where

Ni = V'+2i—(a »V. —«' &—')— (22)
Thus our objective is to find a and 13 such that b, T2 of

(21) is small. In general, this depends on the details of the
potential V(r) and requires a more quantitative analysis.
In the following, I shall consider spherical potentials,
especially Gaussian potentials and Yukawa-type poten-
tials.

a= k+ha, P=k+4P, (17)

where Qa and 5p are correction terms which are much
smaller than k for forward scattering at large k. I shall
then determine b,a and bP such that both the dominant
real term and the dominant imaginary term of the second
Born term are kept in our approximation formula. To
this end I need to consider the second Born term of b, T in
(16)

b, T2 ——( k '
i

VGNi Gi V
i

k ),

dz'V r' e'",
(k —P )Tc —— d re'"''zV(r)e

2A

X f dz'V(r')e'"',

and
T d3r V [e(i/2) q r V( )~

—iaz
D

4

(26)

which, from (3), can be rewritten as

~ T2 ——
& k '

I
VGiN iGi V+ VGiNiG'iNi Gi V +

X f '
dz'(z —z') V z[ei'' i q ' V(r')]

(18)
Note that Gi has a pole at p =Pz and Ni is small at the
pole if a=P=k. The first term in (18) is therefore the
dominant term for small-angle scattering at large k.
Thus, to the lowest order in NI, I have

where z=b, P. —
Noting that

8 V(r)zVi V(r)=ri
az

~ eEKZ (27)

bT2 ——(k'
~

VGiNiGiv
(
k) .

From (9), this becomes

(19) I can further reduce TD to the following, after a few alge-
braical steps:
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T23
——— f d re'q'' ' 1+ V —i(b, —p) 1+2' 2 2

2
V~-'"' d~ V

4 00
(28)

Combining Tz, Tz, Tc, and TD, I have

14 T2 ———
(J) +J2+J3+J4),

4a

where

re'q ' 1+iq r P r

J2 i2——(h a)—f d re'q''V(r)e

(29)

I

Thus the error ET2 can be rewritten in terms of two in-
tegrals I and I' of (31) and (32):

2 t[ —1+(k p)—a ]I1

+i [2(4—a) —a(k —P )a ]I'] . (33)

With proper choices for a and p, AT2 can actually be
made to vanish in this case. The choices are obviously

and

X f dz'V(r')e'"*',

J 2(Z2 P2) f d3r ei q rZV(r)e —inz

&& f dz' V(r')e'"',

J4 = —Kq f d'r e q ' r) V(r)e

aIld
P=k(1 —1/k a )'

a= —,
' [b.+k(1 —1/k a )'/ ] .

(34)

(35)

(b, T2)G),„b„—— [(—,'q a —l)I+2i(b, —k)I'] .
4k

It is interesting to note that, for Glauber's amplitude
(a=k and P=b ), the error b, T2 is

&& f dz'V(r')e'"' .

For a given potential, a and P can now be determined
by minimizing b T2 in (29). To examine how the present
formulation actually works, I have carried out the numer-
ical computation for Gaussian potentials and Yukawa-
type potentials. In the following the results for Gaussian
and exponential potentials are reported.

V. GAUSSIAN POTENTIAL

For a potential

Noting that the Glauber amplitude is made up of terms
like I/Vp and I'/2k, one sees that the error involved in
the Glauber amplitude is large unless the scattering is
nearly forward such that q a «1 and (5—k)/k «1.
Even then the error is of the order Vp/k .

VI. NUMERICAL RESULTS

With a and P determined, the approximate formula (13)
can now be evaluated. Equation (13) yields the scattering
amplitude from potential V(r):

V(r)= Vpe (30) f d3r ei q ~ r V(r)e
—inz iX( r )—

S~ai
rV(r)= —a /2V V(r) and the integrals J(, J2, J3, and J4
in (29) can easily be seen to become && f dzi V(rl)e'nz +ix( r ')'

(36)

g QJ) ——— 1— I,
4

and

g Q
J4 ———i~- I',

4

where

J2 ——i 2(h —a )I',
J3 (6 p)a (I ——iaI')—, —

where r =(x,y,z), r '=(x,y, z'), q = k —k ', ~=A, —P,

X(r)= f V(r ')dz',

fz ——— f e'q'' V(r)d r,
4m

and the z axis is in the direction of b, = —,
' (k+ k ').

For a Gaussian potential of (33), I find

"(/n Vpax(-.) = ' .-'"'+""'w./. ) (37)

aIld

I= f d re'q 'V

f d3r ei q r Ve
—inz f dZi Veinz'

(31)

(32)

where 4(p) is the error function of argument p, and the
integrations over x and y in (36) can be carried out if
exp(+iX) is expanded in series. The scattering amplitude
(36) then becomes

Vpa v m.

4

4 oo—q a2/4

nn =07

n+n'
VpaV m —q a /4(2+n+n')

E -I,
4n n!n'!(2+n +n') (38)

where
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TABLE I. Cross sections for Gaussian potential at ( Vo, k, a) =(—2,4,0.75).

Exact
Eq. (38}
Second Born
Glauber

0'

1.422( —1)
1.423( —1)
1.439( —1)
1.390( —1 }

30

4.215( —2)
4.214( —2)
4.299( —2)
4.162{—2)

60'

1.429( —3)
1.417( —3)
1.528( —3)
1.569{—3)

90

1.06( —5)
1.00( —5)
1.56( —5)
2.37( —5)

120

3.59( —7)
2.76( —7)
6.68( —7)
1.11{—6)

TABLE II. Cross sections for Gaussian potential at ( Vo, k, a}=(—2,4,0.5).

Exact
Eq. (38}
Second Born
Glauber

00

1.253( —2)
1.254( —2)
1.260( —2)
1.224( —2)

30'

7.312(—3)
7.316(—3)
7.368( —3)
7.163(—3)

60'

1.663( —3)
1.656( —3)
1.687( —3)
1.657( —3)

90'

2.10(—4)
2.05( —4)
2.17( —4)
2.25( —4}

120'

2.3( —6)
2.1( —6)
2.6( —6)
3.1(—5)

150'

3.9( —6)
3.0( —6)
4.8( —6)
7.5( —6)

TABLE III. Cross sections for Gaussian potential for k=2, a = 1 at 0=0' and 60'.

—Vp/k
—Voa /4k

1/4
1/8

1/2
1/4

1

1/2
3/2
3/4

0=0' Exact
Eq. (38)

2.03( —1)
2.04( —1)

8.24( —1)
8.30( —1)

3.21(+0)
3.22(+0)

6.59(+0)
6.43(+0)

1.02(+ 1)
0.94(+ 1)

1.7(+ 1)
1.2(+ 1)

Exact
Eq. (38)

2.64( —2)
2.63( —2)

1.03{—1)
1.01(—1)

3.66( —1)
3.49( —1)

7.03( —1)
6.09( —1)

1.02(+0)
0.75(+0)

1.3(+0)
0.5(+0)

00 —E KQZ —2 llI„„= dze '" e ' 4"(z)

&( I dz'e'" e ' @"( —z') . (39)

In (39), the parameters a and v are determined from (34)
and (35) to be

~= —,
' [b.+k(l —1/k'a')'"]

and

k ( 1 I /k 2a 2
)
1/2

For various values of ( Vo, k, a) (38) is computed and com-
pared with exact values from phase shift analysis in
Tables I—III and Figs. 1—7. It is evident that the present
formula works excellently for wide ranges of ( Vo, k, a)
values and scattering angles. More specifically, I have the
following comments in order.

(A) In general the present approximate formula works
excellently for small angle scatterings at high energy. The
resulting cross sections agree with the exact ones well
within 10/o for all angles ranging from 0' to 60 if ka&1
and

~
Vo

~
/k &1. For the wide ranges of Vo, k, and a

values I tested, 0& ka & 8 and 0 &
~

Vo
~

&20, the present
formula is consistently far superior to either the Glauber
formula or the second Born approximation.

(B) For the weak coupling case for which Voa/k «1,
the accuracy of the present formula is truly outstanding.

It is interesting to note that the second Born approxima-
tion may actually be more accurate than the Glauber for-
mula for the weak coupling case, especially when ka is
not much greater than one. The present formula with the
more accurate second order term works remarkably well
in this case even for not so high energy. This is illustrated
in Figs. 1 and 2 for ( Vo, k, a) = ( —2,4, 1) and Tables I and
II for ( —2,4,0.75) and ( —2,4,0.5). It is evident that the
results from Eq. (38) agree with exact ones within 10%%uo

for a wide range of scattering angle (up to over 100'). In
fact, the resulting scattering amplitudes in Figs. 1 and 2
reproduce excellently the exact ones for all angles from 0'
to 140. The accuracy in the resulting cross sections for
small angles is even more impressive as can be seen in
Tables I and II.

(C) For a stronger coupling case, the present formula
continues to give good results for small-angle scattering as
long as ka&1 and

~
Vo

~

/k &1. The amplitude resulting
from Eq. (38) continues to reproduce overall structure of
exact amplitude for all scattering angles and gives excel-
lent agreement (within 10%) with exact results for angles
ranging from 0' to about 60'. This is illustrated in Figs. 3
and 4 for ( Vo, k, a) = ( —12,4, 1) where the results from the
Glauber amplitude are also included. The resulting cross
sections relative to the exact ones are depicted in Fig. 5.
It should be noted that the present formula behaves like a
good small-angle approximate formula should: It always
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10

(-2, 4, I j

Exact
T&xs method
Giali ber
2nd Born

E

10

10

10
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-5
10 20'

F
100 14'0

IG. 1. The real part of
potential at ( p k ) —

g p itude from Gaussiansca tenn am li

,a =(—2,4,1). Note that
o is mdistinguishable from

1020' 60o 100' 1

e
FIG. 2. The ima inarginary part of the amplitude of Fi . 1 ~

gain the result from the present method a ree
one indistinguishabl f

me o agrees with the exact
uis a y or angles up to about 90'.

gives the best agreement at 0=0' and then the radu

ormu a works remarkably well even for the
case in which ka is not much greater ther an one. In fact it

s surpristngly well even for the case in which

(D) For a fixed value of ka or i V i /k th

more evt ently so for the present formula as can b
in Figs. 6 and 7. A

a as can e seen
pparently this is because of lo d

Born terms which becom
ow or er

B 'c become more dominant as
i

Vo
~

a/k is
smaller. Since it retains the low order Born
accuratel, the rey, e present formula actually works better for

smaller
i Vo i

a/k: For scaor scattering angles between 0' and
its accuracy is consistently within 1

h

VII. EXPONENTIAL POTENTIAL

V= Vpe (40)

The minimization of b, T for the
yields

2 or the exponential potential

(41)

I have further tested the resent
with Yuk

e present approximation scheme
u awa-type potentials, es eciallu ', pecially, the exponential

60'

TABLE IE IV. Scattering amplitudes forp i u es or exponential potential at ( V k

00

p i u es or '
ia a 0 a)=( —65,1/1.45).

30 90'

Exact
Eq. (36)
Glauber
Second Born

Real

3.8851(+0)
3.8849(+0)
3.8563(+0)
3.94(+0)

Imaginary

5.376{—1)
5.382( —1)
5.321( —1)
5.43( —1)

Real

1.829( —1)
1.833( —1)
1.900( —1)
1.89( —1)

Imaginary

1.267( —1)
1.256( —1)
1.286( —1)
1.36( —1)

Real

1.27( —2)
1.21( —2)
1.55( —2)
2.11(—2)

Imaginary

1.67( —2)
1.66( —2)
1.94( —2)
2.15(—2)

Real

3.0( —3)
2.2{—3)
3.9( —3)
4.9( —3)

Imaginary

4.1(—3)
3.8( —3)
5.4( —3)
6.0( —3)
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to'
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l.O ( 1, 2 )

04 40

1.5

1.0
(3, 3)

This Method
6 $ auber
2nd Born

0

FIG. 5. Th e relative cross section, the ratio of the
tions resultin from

io o e cross sec-

g rom various approximation methods to the
cross section, for

e o s ot e exact
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~

Vo a/k ka .
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i V() i
/k~

o ese two numbers gives the value for

0.5

10 ( 3//'2, 3)

Qd
1.0

OI

CV+

~~ 1.5

!l.0
&a/4, »

0.5

10 1.5

1.0
( 3~8, 3 )

0.5

Oo 80
10

O 40' 80O 120
e
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e
oss section for scattering from aFIG. 6. The relative cross

aussian potential at fixed ka. The numbers in the aren
are the values for (
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With the a and a so determined the approximate formula
(36) is then computed for various values of Vo, k, and a.
The results are again excellent. The improvement to the
Glauber result is spectacular. Typical results are given in
Table IV and Fig. 8. Scattering amplitudes resulting from
(36) and the Glauber formula are compared with the exact
ones in Table IV for ( Vo, k,a)=( —6,5,1/1.45). Both the
real and imaginary parts from (36) agree excellently with
the exact ones for angles up to about 70' in this case. In
general, I found that the present method works for an ex-
ponential potential just as well as for a Gaussian potential.
It works not only when

~
Vq

~

/k &&1 and ka &&1, but
also when

~
Vo

~

a/4k & 1 and ka & 1. This is illustrated
in Fig. 8, where the resulting cross sections relative to the
exact ones are depicted for various values of
(

~
Vo

~

a/k, ka).

VIII. CONCLUSION

Starting with the generalized eikonal propagator with
adjustable parameters, I have obtained a new eikonal-type

scattering amplitude which is shown to work excellently
for elastic potential scattering when

~
Vo ~a/4k &1 and

ka & 1. The essential ingredient in the present approxima-
tion method is the determination of parameters such that
more accurate low order Born terms are retained. Conse-
quently, the present formula results in spectacular im-
provements of the usual eikonal formula in the high ener-

gy region where
~

Vo
~

/k &&1 and ka &&1. More in-
terestingly, the present formula continues to work well in
the medium energy region where

~

Vo
~

a/k &4 and ka is
slightly greater than one and promises to be useful in the
studies of pion-nucleus scattering in the 100—300 MeV re-
gion.

Vote added in proof. Instead of minimizing the error as
is done in this paper, the parameters a and P can also be
determined by direct comparison with the second Born
term in the case it is known. For Gaussian potentials, this
yields slightly different but consistent results as discussed
in a recent paper [T. W. Chen, Phys. Rev. D 29, 1839
(1984)].
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