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A new approximation method for potential scattering is proposed. The usual idea of linearizing
propagators in eikonal approximation is incorporated with the second Born approximation in this
method such that the scattering amplitude retains more accurate low order Born terms. Conse-
quently, the linearized propagator is dependent on the specifics of the potential. The new formula
thus obtained gives spectacular improvements to usual eikonal formulas. Interestingly it works also

for scatterings at not so high energy.

I. INTRODUCTION

For scattering of a particle of energy E by a potential
of strength ¥V, and range a, eikonal approximation has
been shown to be valid as long as Vy/E <<1 and ka >>1
(k=V2mE /#). Basically eikonal approximation sug-
gests that the particle propagates linearly inside the poten-
tial and results in a useful closed formula for scattering
amplitudes. Among them, the Glauber amplitude' has
been used most successfully in the studies of particle col-
lisions in atomic and nuclear physics.?

Eikonal approximation, however, suffers from the limi-
tations that it is good only for high energy scattering at
small angles. In pion-nucleus scattering at medium ener-
gy of 100—300 MeV, ka is actually not much greater than
one and the validity of the eikonal approximation in this
case is therefore questionable. Not surprisingly, numeri-
cal calculations®>~> show fairly large errors in the Glauber
approximations when the energy is not high enough to en-
sure that ka >>1 and | ¥V, | /E <<1. In fact it has been
pointed out>* that even the second Born approximation is
more accurate than the Glauber approximation for the
weak coupling case in which

| Volask=(|Vy| /k*)ka) <1 .

This paper reports a new approximation scheme in
which the usual eikonal approximation method is general-
ized to incorporate with the second Born approximation.
Consequently the resulting formula for scattering ampli-
tude contains the dominant real part as well as the dom-
inant imaginary part of the second Born term and yields
spectacular improvements to the Glauber formula. The
importance of including the real part, Ref, B,» in an eikonal

formula has been pointed out before by Byron et al.*
They noted that a vast improvement for Yukawa poten-
tials is achieved by simply adding Refp, to the Glauber
amplitude.

In the present approximation method, an eikonal-type
amplitude is formulated from a generalized eikonal propa-
gator which consists of some arbitrary parameters. These
parameters are then determined in such a way that both
the dominant real part and the dominant imaginary part
of f B, are retained. The determination of parameters, in-
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terestingly enough, amounts to adjustment of the propaga-
tion momentum inside the potential and, therefore, is
dependent on the specifics of the potential.

Closely following the work of Sugar and Blanken-
becler,® I begin with a brief introduction of T matrices in
Sec. II. With the parametrized linearized propagator, an
eikonal-type 7T-matrix element is obtained. The deter-
mination of parameters involved is then discussed in Sec.
III and carried out in Secs. IV and V for Gaussian poten-
tials. The resulting new formula for scattering amplitude
is then numerically tested in Sec. VI. The results from the
present method, the Glauber method, and the second Born
approximation are closely compared with the exact values.
It is shown that the new method works excellently for a
much wider region of scattering angle even when the ka
value is not much greater than one and the ¥, /k? value is
not much smaller than one. Equally impressive results
are obtained for exponential potentials which are briefly
reported in Sec. VII. The paper ends with a conclusion in
Sec. VIIIL

II. FORMULATION

A. Lippmann-Schwinger equation

Our purpose is to solve for the T matrix satisfying the
well-known equation

T=V+VGT =V +TGV (1)

in an approximate, but simple and closed form. In (1), G
is the free Green’s function given by

G(p)=(k*—p>+ie)~!. 2

The units in which #i=5m =c=1 are used here and
throughout the paper. k is the magnitude of the momen-
tum K (or k') of incoming (or outgoing) projectile in the
c.m. system, which is scattered by the potential V.

In order to solve T, I shall approximate the free Green’s
function by a linearized propagator to be discussed later.
Here we note, following Sugar and Blankenbecler,® that if
the Green’s function is separated into two parts

G = G;+G|NG =G;+GN,G; , (3)
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where

N,=G['-G~!, @)
Eq. (1) becomes

T =T,+TGN,G|T; , (5)
where

T,=V +T,G,V =V +Vg,V (6)
and

81=G;+G/Vg . @)

B. Linearized propagator

A general linearized propagator which restricts the
propagation in some direction Z can be written as

G,‘1=2a(/3—Pz)+i6 s (8)

where a and B are parameters with the dimensions of a
momentum. Note that the direction of the propagation %,
a, and B are all arbitrary at this point. Our purpose is to
choose them in such a way that the error involved in the
present approximation scheme is small. I shall come to
this point later. Here we see that (8) gives the familiar
propagators if the parameters are chosen as follows: For
the projectile of initial and final momenta K and X',
|K|=|k'| =k and A=2+(k+Kk"), () if a=B=k and
2||K, G is nothing but the usual eikonal propagator, (ii) if
a=k, B=A, and Z||A, G is precisely the propagator in
the Glauber approximation,' (iii) if a=B=A, and Z]|A,
G, is then the propagator resulting in the Abarbanel-
Itzykson amplitude,’” and (iv) if a=B=k, and Z||A, G is
the propagator used in the approximation method report-
ed earlier by the present author.’

It should be noted that the propagator (8) in the spacial
space is

— __L 2 iBp,
Gi(p)= - 8%(p)0(pyle 7 . 9)

This clearly indicates that the propagation is in the z
direction with the momentum . It should also be noted
that the difference between G;~! and the exact G ~! is

N=(Pp—a2)—(a—BP—(k?—p?) . (10)

C. Scattering amplitude

The approximation scheme proposed here uses the
linearized propagator (8) as the lowest order term in place
of the exact Green’s function in (1). The free parameters
in the linearized propagator are then to be determined by
demanding that the neglected contribution from higher
order terms is small.

With G~G/, the lowest order T matrix is given by (6).
The lowest order full Green’s function g;(T¥,T’) is the
solution of the differential equation
g, T)=8F—1")+V(P)g(T,T") .

.0
B+i

2a 5

Thus

(T, T )=G|(FT—T")e~XTT" (11)
where

X(F,T)=X(T)—X(F") , (12)
and

- 1 z - '
X(@)=5— [ v(Edz .
The lowest order T-matrix element is then
(K'|T; | K)=(K'|V+ VgV |Kk)
_ 1 3, —iA(T) (=
—<TB>+2ai fd re ALDY ()
X fj V(fn)eiA(?')dzl ,

(13)

—

where T=(x,y,z) and ¥'=(x,y,z'), §=k—Kk’,
A(T)=K-T—Bz +X(T),
A(T)=K"T—Bz +X(7),

and (T ) is the first Born given by
(Tp)= [ d T TV(D).

When the propagation of the particle is not all the way
along the incident direction, there are in general two hard
scatterings in our approximation scheme where the
changes of direction occur. In (13), one such hard scatter-
ing takes place at T' with a sudden phase change (or
momentum transfer) of kK —3%. The particle then contin-
ues in the Z direction, accumulating a phase X(T,7”’). It is
then scattered into the final direction at T with another
sudden phase change of 52— K’ Obviously, when B=k,,
(13) reduces to the familiar eikonal-type form:

(K'|Tg | Ky= [ d T TV (P)e =X (14)

With the above-mentioned specific choices of a, 8, and Z,
this gives the usual eikonal amplitude, the Glauber ampli-
tude,! or the Abarbanel-Itzykson amplitude.” They are
known to work for small-angle scattering at high energy.

Equation (13) at this point is merely a solution to the
T-matrix equation with the linearized propagator. The
crucial question is whether it has anything to do with the
solution of the exact T-matrix equation. My purpose next
is to choose a, B, and the Z direction such that Eq. (13)
gives a good approximation to the exact solution.

III. DETERMINATION OF PARAMETERS

The exact T matrix is related to T; through (5) and,
therefore, the T-matrix element is related to (k' |7} | k)
through

(K'|T|K)=(K"'|T; | K)+{(X'|TGN,G,T; | K) . (15)

It is then obvious that (X '|T;|K) is a good approxima-
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tion of (k| T | K ) if the second term above, i.e.,
AT=(K'|TGN,G|T;|K) , (16)

is small compared with the first term. Thus the smallness
of AT is the natural validity condition of our approxima-
tion scheme. The parameters a, 8, and the z direction,
therefore, have to be determined such that AT is small.

AT, however, is a complicated function of a, B, and Z.
Fortunately, there is some understanding of AT at high
energy from past work which can be made use of here for
the purpose of determining the parameters. It is known
that an eikonal-type approximation, especially Glauber’s
approximation, works at small angle at large k.¢ This
means that at large k and small 6, AT is small if Z||A,
a=k, and B=A. In fact it has been proven that the
Glauber amplitude with this choice selects out in each
term of the Born series the dominant contribution (to or-
der k~') which is alternatively real and
imaginary.>* The Glauber amplitude, consequently, has a
rather simple form as given in (14). However, the fact
that the Glauber terms do not have both the dominant
real term and the dominant imaginary term seems to limit
its accuracy quite severely. For a weak coupling case, for
example, the Glauber approximation does not work as
well as the second Born approximation. This was studied
by Byron et al.* They pointed out that this is because of
the missing real term in the second Glauber term. In fact
Byron et al. showed that the mere inclusion of the real
part of the second Born term to the Glauber amplitude re-
sults in spectacular improvements for Yukawa-type po-
tentials.

It is thus clear that the Glauber choice is a good one for
small-angle scattering at high energy, but the second Born
term needs to be considered more carefully. Accordingly,
I choose the parameters 2, a, and S8 in our formulation to
be consistent with the Glauber approximation by assum-
ing Z to be parallel to A and

a=k +Aa, B=k+AB, (17)

where Aa and AP are correction terms which are much
smaller than k for forward scattering at large k.® I shall
then determine Aa and AR such that both the dominant
real term and the dominant imaginary term of the second
Born term are kept in our approximation formula. To
this end I need to consider the second Born term of AT in
(16)

AT,={(X'|VGN,G,V|K),
which, from (3), can be rewritten as
AT2=<E'I VG,N,G,V +VG|N,G;N,G,V + - - - | E) .

(18)

Note that G; has a pole at =/ and N, is small at the
pole if a~B~k. The first term in (18) is therefore the
dominant term for small-angle scattering at large k.6
Thus, to the lowest order in Ny, I have

AT,={(X'|VGN,G,V | k) . (19)

From (9), this becomes

e—tﬂz

© P, =
fz e~ NIy (Fdz!

1 3
ATZ:_Z;?fd r

> (20)

. z Y]
XNle‘B’[ f_ eMTIY(F)dz!
where N, in the coordinate space is given by

Ny=—V*42aiV,—k*+2a8,

MO =k-T—Bz,
and .
AM(T)=k"T—Bz .
After integrations by parts, (20) can be reduced to the
simpler form:

AT,= __22? f d3r V(?)e—ik(?’)

z
XNY [ dz'(z —2)P(F")e T
- 1)
where
N{ =—V?4+2i(a—B)V,—(k?—pB?) . (22)
Thus our objective is to find a and B such that AT, of
(21) is small. In general, this depends on the details of the
potential V(T') and requires a more quantitative analysis.
In the following, I shall consider spherical potentials,
especially Gaussian potentials and Yukawa-type poten-
tials.

IV. SPHERICAL POTENTIAL

For a spherical potential V' (7)=V(r), Eq. (21) can be
rewritten in a more convenient form. First, V2 and V,
operations can be carried out easily. I obtain

AT2:TA+TB+Tc+TD, (23)
where 1
Ty=— [deid T2, (24)
4 4a? f
TB:—iaZZZBfd3reia'?V(r)e—i“’
x [T dazvirne, (25)
2 N .
TC.—_————(k2;ZB) fd3re‘q"zV(r)e"”“
x [7 avirne, (26)

and q
TD=——40[2 fd3,. V[T Ty (p)]e—in

X f_zw dz'(z —2')V [P T Ty (p)]

D% eixz’ , (27)

where k=A —p.
Noting that

z?lV(r)=rl al;;r) ,

I can further reduce T to the following, after a few alge-
braical steps:
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N L c— 2 ) z L
TD=_Ei2—fd3re'q" 1+ - lia—p) l1+192—r — Lz e [* dzveie (28)

Combining T4, Ty, T¢, and Tp, I have

ATy =z Ui +ds+J5+04) (29)
a

where
Ji=— [ & TTA+ignIvVr?,
Jy=i2(A—a) [ dPre! T TV (r)e—ix
X fj dle(r;)eiKz' ,
J3=2A—p) [ d’re'T T2y (r)e i
z N
X [ dz'virne™
and
Js=—kq-* fd3reia'??LV(r)e_i”’
z P
X [ dz'vire™ .

For a given potential, @ and 8 can now be determined
by minimizing AT, in (29). To examine how the present
formulation actually works, I have carried out the numer-
ical computation for Gaussian potentials and Yukawa-
type potentials. In the following the results for Gaussian
and exponential potentials are reported.

V. GAUSSIAN POTENTIAL
For a potential
V(r)=Vye"/e* (30)

TV(r)=—a?/2V V(r) and the integrals J;, J,, J3, and J,
in (29) can easily be seen to become

Jy=— l—g% I,

Jy=i2(A—a)I',

J3=(A?—BaX(I —ikl')
and

J4=—ixg—2‘:1—21' ,
where

I= [ d*re'T7y? (31)
and

I'= fd3r e T Tye—in f_z_wdz' Veir' . (32)

f=—

n+n'

[
Thus the error AT, can be rewritten in terms of two in-
tegrals I and I’ of (31) and (32):

AT, = ([~ 1= pa)
4a

+i[2(A—a)—x(k2—BHa®I'} . (33)

With proper choices for @ and B, AT, can actually be
made to vanish in this case. The choices are obviously

B=k(1—1/k%a*)'/?
and

a=+[A+k(1—1/k%?)!?].

(34)

(35)

It is interesting to note that, for Glauber’s amplitude
(a=k and B=A), the error AT, is

(ATZ)Glauber:Z%[(%qzaz—l)I +2i(A—K)I'] .

Noting that the Glauber amplitude is made up of terms
like I/V, and I'/2k, one sees that the error involved in
the Glauber amplitude is large unless the scattering is
nearly forward such that g%a%<<1 and (A—k)/k <<1.
Even then the error is of the order V,/k>

VI. NUMERICAL RESULTS

With a and 8 determined, the approximate formula (13)
can now be evaluated. Equation (13) yields the scattering
amplitude from potential V'(r):

e 1 3, i T —ikz —iX(T)
f=fs Py— fd re V(r)e

X f—z_delV(r')eiKz’-‘-iX(?’) s (36)

—

where T=(x,p,2), T'=(x,,2'), §=k—K ', k=A—P,
D U
XM= [ V(T
fa=—zl; [ TV,

and the z axis is in the direction of A =+(k+k ).
For a Gaussian potential of (33), I find

V?TV()G
4a

where ®(p) is the error function of argument p, and the

integrations over x and y in (36) can be carried out if

exp(+iX) is expanded in series. The scattering amplitude
(36) then becomes

X(T)= e~/ (5 a) | 37)

e—q2a2/4(2+n +n')

Me—qzazM_ Via* & n VoaVim
4 8ia 4a

n,n'=0

where

Inn' ’ (38)

nln'l(24+n +n')
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TABLE 1. Cross sections for Gaussian potential at ( ¥y, k,a)=(—2,4,0.75).

(7]
0° 30° 60° 90° 120°
Exact 1.422(—1) 4.215(—2) 1.429(-3) 1.06(—5) 3.59(—7)
Eq. (38) 1.423(—1) 4.214(—-2) 1.417(—3) 1.00(—5) 2.76(—17)
Second Born 1.439(—1) 4.299(—2) 1.528(—3) 1.56(—5) 6.68(—7)
Glauber 1.390(—1) 4.162(—2) 1.569(—3) 2.37(—-5) 1.11(—6)
TABLE II. Cross sections for Gaussian potential at ( Vy,k,a)=(—2,4,0.5).
6
0° 30° 60° 90° 120° 150°
Exact 1.253(—2) 7.312(—3) 1.663(—3) 2.10(—4) 2.3(—6) 3.9(—6)
Eq. (38) 1.254(—2) 7.316(—3) 1.656(—3) 2.05(—4) 2.1(—6) 3.0(—6)
Second Born 1.260(—2) 7.368(—3) 1.687(—3) 2.17(—4) 2.6(—6) 4.8(—6)
Glauber 1.224(—2) 7.163(—3) 1.657(—3) 2.25(—4) 3.1(—-5) 7.5(—6)
TABLE III. Cross sections for Gaussian potential for k=2,a=1 at 8=0° and 60°.
— Vo/k? 1/4 172 1 372 2 4
— Voa /4k 1/8 174 172 3/4 1 2
0=0° Exact 2.03(—1) 8.24(—1) 3.21(+0) 6.59(+0) 1.02(+1) 1.7(+1)
- Eq. (38) 2.04(—1) 8.30(—1) 3.22(+0) 6.43(+40) 0.94(+1) 1.2(+1)
0= 60° Exact 2.64(—2) 1.03(—1) 3.66(—1) 7.03(—1) 1.02(+0) 1.3(40)
- Eq. (38) 2.63(—2) 1.01(—1) 3.49(—1) 6.09(—1) 0.75(+0) 0.5(+0)
I, = f ® dz e —iKaz, —zch"(z) It is interesting to note that the second Born approxima-
- z . tion may actually be more accurate than the Glauber for-
X f W dz'e’ e~ Q" (—z') . (39)  mula for the weak coupling case, especially when ka is

In (39), the parameters a and « are determined from (34)
and (35) to be

a=5[A+k(1—1/k%?)'/?]
and
k=A—k(1—1/k%a?)!?

For various values of ( Vy,k,a) (38) is computed and com-
pared with exact values from phase shift analysis in
Tables I-III and Figs. 1—7. It is evident that the present
formula works excellently for wide ranges of (Vy,k,a)
values and scattering angles. More specifically, I have the
following comments in order.

(A) In general the present approximate formula works
excellently for small angle scatterings at high energy. The
resulting cross sections agree with the exact ones well
within 10% for all angles ranging from 0° to 60° if ka> 1
and | V| /k*<1. For the wide ranges of V,, k, and a
values I tested, 0 <ka <8 and O< | V| <20, the present
formula is consistently far superior to either the Glauber
formula or the second Born approximation.

(B) For the weak coupling case for which Vya/k <<1,
the accuracy of the present formula is truly outstanding.

not much greater than one. The present formula with the
more accurate second order term works remarkably well
in this case even for not so high energy. This is illustrated
in Figs. 1 and 2 for (¥Vj,k,a)=(—2,4,1) and Tables I and
II for (—2,4,0.75) and (—2,4,0.5). It is evident that the
results from Eq. (38) agree with exact ones within 10%
for a wide range of scattering angle (up to over 100°). In
fact, the resulting scattering amplitudes in Figs. 1 and 2
reproduce excellently the exact ones for all angles from 0°
to 140°. The accuracy in the resulting cross sections for
small angles is even more impressive as can be seen in
Tables I and II.

(C) For a stronger coupling case, the present formula
continues to give good results for small-angle scattering as
long as ka>1and | V| /k*<1. The amplitude resulting
from Eq. (38) continues to reproduce overall structure of
exact amplitude for all scattering angles and gives excel-
lent agreement (within 10%) with exact results for angles
ranging from 0° to about 60°. This is illustrated in Figs. 3
and 4 for ( Vy,k,a)=(—12,4,1) where the results from the
Glauber amplitude are also included. The resulting cross
sections relative to the exact ones are depicted in Fig. 5.
It should be noted that the present formula behaves like a
good small-angle approximate formula should: It always
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10° o L \\ . FIG. 2. The imaginary part of the amplitude of Fig. 1.
20° 60° 100° 140°  @°  Again the result from the present method agrees with the exact

FIG. 1. The real part of scattering amplitude from Gaussian
potential at ( Vy,k,a)=(—2,4,1). Note that the result from the
present method is indistinguishable from the exact one from 0°
up to about 90°.

gives the best agreement at 6=0° and then the gradual de-
viation at larger angles. It is also interesting to note that
the present formula works remarkably well even for the
case in which ka is not much greater than one. In fact it
works surprisingly well even for the case in which
| Vo | /k? is not smaller than one. This is best illustrated
by the result for (| ¥y |a /k,ka)=(3,2) in Fig. 5 and leads
to the next observation.

(D) For a fixed value of ka or | V| /k?, the Glauber
formula works better if | Vy|a/k is smaller. This is
more evidently so for the present formula as can be seen
in Figs. 6 and 7. Apparently this is because of low order
Born terms which become more dominant as | ¥y |a/k is
smaller. Since it retains the low order Born terms more

one indistinguishably for angles up to about 90°.

smaller | ¥ |a/k: For scattering angles between 0° and
40° its accuracy is consistently within 10% if ka >2 as
long as | ¥V |a/4k <1. This is more evident in Table III
where numerical values of cross sections are listed for
Vo=—1to —16 at k=2 and a=1.

VII. EXPONENTIAL POTENTIAL

I have further tested the present approximation scheme
with Yukawa-type potentials, especially, the exponential

potential of the type
V="Ve . (40)

The minimization of AT, for the exponential potential
yields

accurately, the present formula actually works better for a=k 41)

TABLE IV. Scattering amplitudes for exponential potential at ( ¥y, k,a)=(—6,5,1/1.45).

0° 30° 60° 90°

Real Imaginary Real Imaginary Real Imaginary Real Imaginary
Exact 3.8851(+0) 5.376(—1) 1.829(—1) 1.267(—1) 1.27(-2) 1.67(—2) 3.0(-3) 4.1(-3)
Eq. (36) 3.8849(+0) 5.382(—1) 1.833(—1) 1.256(—1) 1.21(=2) 1.66(—2) 2.2(—3) 3.8(—3)
Glauber 3.8563(+0) 5.321(—1) 1.900(—1) 1.286(—1) 1.55(—2) 1.94(—2) 3.9(-3) 5.4(—3)
Second Born 3.94(+4-0) 5.43(—1) 1.89(—1) 1.36(—1) 2.11(—=2) 2.15(—2) 4.9(-3) 6.0(—3)
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FIG. 3. The real part of scattering amplitude from Gaussian
potential at ( Vp,k,a)=(—12,4,1). Note that the difference be-
tween the present method and the exact result is distinguishable
only after 35°.
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FIG. 4. The imaginary part of the amplitude of Fig. 3.
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FIG. 5. The relative cross section, the ratio of the cross sec-
tions resulting from various approximation methods to the exact
cross section, for scattering from Gaussian potentials. The
numbers in the parentheses are the values for ( | ¥, |a/k,ka).
Note that the ratio of these two numbers gives the value for
| Vo| 7k
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FIG. 6. The relative cross section for scattering from a
Gaussian potential at fixed ka. The numbers in the parentheses
are the values for (| Vo | a/k,ka).
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FIG. 7. The relative cross sections for Gaussian potentials at
| Vo| /k*=+. The numbers in the parentheses represent
(| Vo|a/k,ka).

With the a and « so determined the approximate formula
(36) is then computed for various values of V), k, and a.
The results are again excellent. The improvement to the
Glauber result is spectacular. Typical results are given in
Table IV and Fig. 8. Scattering amplitudes resulting from
(36) and the Glauber formula are compared with the exact
ones in Table IV for (¥y,k,a)=(—6,5,1/1.45). Both the
real and imaginary parts from (36) agree excellently with
the exact ones for angles up to about 70° in this case. In
general, I found that the present method works for an ex-
ponential potential just as well as for a Gaussian potential.
It works not only when | V| /k*<<1 and ka >>1, but
also when | ¥, |a/4k <1 and ka >1. This is illustrated
in Fig. 8, where the resulting cross sections relative to the
exact ones are depicted for various values of
(| Vol|a/k,ka).

VIII. CONCLUSION

Starting with the generalized eikonal propagator with
adjustable parameters, I have obtained a new eikonal-type

~————This Method
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FIG. 8. The relative cross section from exponential poten-
tials. The numbers in the parentheses are the values for
(| Vol|arsk,ka).

scattering amplitude which is shown to work excellently
for elastic potential scattering when | ¥ |a/4k <1 and
ka > 1. The essential ingredient in the present approxima-
tion method is the determination of parameters such that
more accurate low order Born terms are retained. Conse-
quently, the present formula results in spectacular im-
provements of the usual eikonal formula in the high ener-
gy region where |V, |/k?<<1 and ka >>1. More in-
terestingly, the present formula continues to work well in
the medium energy region where | Vo |a/k <4 and ka is
slightly greater than one and promises to be useful in the
studies of pion-nucleus scattering in the 100—300 MeV re-
gion.

Note added in proof. Instead of minimizing the error as
is done in this paper, the parameters a and f3 can also be
determined by direct comparison with the second Born
term in the case it is known. For Gaussian potentials, this
yields slightly different but consistent results as discussed
in a recent paper [T. W. Chen, Phys. Rev. D 29, 1839
(1984)].
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