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The physical idea behind the present approach is that the (a,ab) reaction continuum consists

mainly of those particles a, b, following a quasifree knockout colhsion, which undergo an energy de-

gradation due to rescattering on their way out from the target nucleus. The Feshbach, Kerman, and

Koonin statistical two-body theory of the (a, b) reaction continuum is then extended to also describe

this exclusive continuum process. A computable expression for the direct (a, ab) continuum cross

section is deduced as a convolution integral over a doorway quasifree cross section and a number of
factors describing the probability of multiple rescattering of the quasifree particles on the residual

nucleus. The resemblance between the two-body and the three-body expressions is remarkable and

reflects their common physical support.

I. INTRODUCTION

To account for the continuum spectrum in nuclear re-
actions would appear at first sight to be a formidable, if
not impossible, formal as well as numerical task. Howev-
er, the pioneering work of Griffin and many other investi-
gations' which followed demonstrated that the job can be
approached using mostly the physics learned from the
earlier studies of reactions leading to the excitation of
discrete nuclear states. The basic idea which underlies
any of these theories is the multi-step (MS) character of
the microscopic nuclear collisions which determines a
hierarchy of nuclear excitations over the duration of the
macroscopic interaction.

For instance, in the exciton model of Griffin, the pro-
jectile, say a nucleon, strikes a nucleon in the target nu-
cleus thereby causing a two-particle —one-hole (2p-lh) ex-
citation, one of the particles being the projectile itself; as
the initial energy brought in by the projectile continues to
dissipate inside the target nucleus, subsequent nucleon-
nucleon (NN) collisions can lead to 3p-2h, 4p-3h, etc. , ex-
citations. At each stage, one or more nucleons may es-
cape into the final channel thus producing the continuum
spectrum of the reaction. Eventually, the projectile initial
energy spreads completely over a large number of degrees
of freedom of the nuclear system such that a statistical
equilibrium of the energy distribution is achieved. This is
the extreme compound nuclear state which evaporates
particles isotropically in the low-energy part of the contin-
uum. spectrum. Toward higher energies, the compound
particle emission becomes anisotropic, but still symmetric
about 90' c.m. , and is eventua1ly overwhelmed by the
direct particle emission peaking in the forward direction.
Thus the entire continuum can be thought to be composed
of an equilibrium (compound-evaporation) spectrum plus
a preequilibrium (direct+ compound) MS spectrum, ob-
tained by collecting the contributions from all the inter-
mediate np-( n —1)h interaction stages. The difference be-

tween various theories lies ultimately in how these stages
are modulated and summed together into a cross section.

All of the activity outlined above has been devoted to
the study of the continuum spectrum in the inclusive

(a,b) reactions, such as (p,p') or (p,n). In contrast, still

very little has been done to understand the continuum
coincidence spectrum in the exclusive (a,ab) quasifree
(QF) knockout reactions. Until now it has been cus-
tomary in the analyses of knockout reactions, such as
(e,ep) or (p,2p), leading to deep hole states lying in the
continuum, to draw smooth background lines in an arbi-
trary manner. However, there are reasons to expect that
the continuum background can be structured and thus
mock up some direct knockout characteristics. Such oc-
currences are obviously unwanted, but could perhaps be
accounted for if one had a formal description of the con-
tinuum background. Having such a formalism appears
even more desirable if one realizes that, in general, the
continuum represents a large fraction of all measured
events and in many cases could exceed the number of QF
single-step (SS) events corresponding to discrete nuclear
states. For example, a simulated Monte Carlo calcula-
tion for the quasifree (e,ep) scattering at 700 MeV on ' C
indicates that 35% (57%) of the protons knocked out
from the 0@3&2 (Osi&2) state eventually end up in the con-
tinuuIIl.

The present paper reports, apparently for the first time,
on an attempt to formulate a three-body theory of the
preequilibrium direct continuum spectrum. The aim will
be to obtain a simple framework capable of providing not
only theoretical developments but also a computable basis
for comparison with the experiment. It will be shown
that this task can be achieved by extending the Feshbach,
Kerman, and Koonin (FKK)' statistical two-body theory
of the inclusive (a,b) spectra to also describe the continu-
um direct (a,ab) processes. It will be pointed out that the
formalism presented here cannot be further extended, in
the general case, to the (a,abc) reaction continuum.
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II. MULTI-STEP THREE-BODY MODEL
FQR THE DIRECT ( a, ab) CONTINUUM SPECTRUM

The continuum direct reaction formalism which will be
developed here bases its premise on the multi-scattering
model which was considered recently in order to explore
the role of inelastic scattering in the QF processes. Before
we start to explain the details of the model we wish to in-
troduce a general framework for the description of such
reactions. In the simplest A (a,ab)S QF process, the pro-
jectile particle with atomic number a and mass mo ap-
proaching with energy Eo and momentum ko, after being
elastically scattered from the target nucleus with atomic
number 3, knocks out a particle with atomic number b

and mass mb residing with momentum k and binding
energy E in a certain quantum state v inside the target
nucleus. Then, the QF particles, i.e., the projectile a and
ihe knocked out nuclear particle b, scatter elastically from
the residual nucleus with atomic numer 5 =3 —b into
the exit channel with final energies Ei and E2 and mo-

rnenta k& and kz.
We make here the usual assumption that the core S, to

which the particle b is initially bound in the target nu-
cleus, is identical to the residual nucleus, i.e., it remains

merely a spectator with momentum kz ———k, which just
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FIG. 1. Diagrammatic representation of the 2 (a, ab)S

knockout scattering. (a) The single-step three-body scattering.
The zig-zag line indicates the particle interaction with the opti-
cal potential. The heavy line indicates the nucleus, the black dot
the struck particle-spectator relative motion wave function P„,
and the open circle a two-body type u = g,.E, .~„u (i,j ) nuclear
interaction. (b) The multi-step, three-body scattering. The
dashed lines indicate the interaction u = g,.~, b

.~su(i j ) of the
QF unbound particles with the S nucleus which produces cer-
tain modes, e.g., p-h, of nuclear excitations. The arrows point-
ing backwards indicate possible retrograde collisions of particles
taking up energy from the nucleus, although these are discarded
in the text on statistical likelihood grounds. The numbers in
parentheses denote the scattering stages of the particles a and b
on the nucleus S.

recoils after the knockout collision. Thus, the particles a
and b collide as if they were free, except for distortion ef-
fects and three-body kinematics. In this single-step reac-
tion, which is represented diagrammatically in Fig. 1(a),
the QF particles will be found along a kinematic locus re-
sulting from the energy conservation condition

E&+E2——Eo+E —Es ~ (la)

where Ez is the recoil energy of the residual nucleus S
and the binding energ~ E is the sum of the ground state
(g.s.) binding energy e, of particle b and the excitation en-

ergy e of the residual nucleus found in a quantum state
Q, i.e.,

E =e +e (lb)

However, not all the QF particles will lie on the
kinematic locus (la) when they leave the nucleus. A cer-
tain fraction of them which emerge from the first QF col-
lision with the energies E(i) —=Ei(i),E2(i) related by Eq.
( la), and the momenta ki t) = k t~ t), k2i &) related by
momentum conservation, will experience a series of subse-
quent collisions with the nucleus S. (Note the convention
which will be used throughout the paper of labeling vari-
ous quantities with the appropriate scattering stage num-
ber in parentheses. ) These collisions can degrade the ener-
gies and momenta of the particles which, by the time they
are finally scattered elastically into the exit channel, be-

come E(f) =Ei,E2 and k(f) —=k i, k2, and thereby no
longer lie on the original kinematic locus (la). We take
the point of view that the continuum spectrum in the
knockout scattering results mainly from these multi-step
nuclear interactions initiated by a QF three-body collision,
acting here as a doorway phenomenon, as represented di-
agrammatically in Fig. 1(b). Another source for the con-
tinuum events could also be the multi-nucleon decay of
the deep-hole states formed by the nuclear QF doorway
scattering, but this has been shown to be of a relatively
minor importance and therefore will not be considered
here.

The intention now is to implement these ideas within a
theoretical framework which should be as close to being
computable as possible. The exact transition amplitude
from the initial channel i to the final channel f of the
direct knockout scattering can be conveniently divided
into the single-step Tf,' and multi-step Tf; amplitudes(ss) (MS) ~

(2)

In the standard two-potential scattering theory, this is
written as

Tf ——(f
~

u +uGu
~

E).
where U represents the interaction giving rise to the direct
excitation of the target nucleus, and

G =(Eo+ig H)— (4)

with the implicit limit g —+0+, is the scattering Green's
function corresponding to the energy-shell Eo of the nu-
clear system described by the Hamiltonian operator

H =H, +H, +A+8', +8', + g u(i J) . (5)
i&j &a,b, S
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Consistent with the general practice of the two-potential
scattering formalism, the above division consists of terms
describing the kinetic and internal motion of the QF par-
ticles and the residual nucleus (Hi, Hz, and Hs ), the elas-
tic scattering of the QF particles ( Wi and W2), and the
residual particle interaction of the two-body type (u).
Since the final-state interaction between the QF particles
after the doorway stage will be neglected [in which case
the residual interaction will be taken as

T(ss) ~( —)y( —)
v
— y(+ )

where we introduced the new quantity

f~(R) =~y(ir)y~(R)(2~) 5( k)+ k2 —kp —k )

with the quantum numbers A,y in the parentheses fixed as
specified above. The integral over the internal nucleon
coordinates { J produces the two-body pseudopotential

u(i,j), v(r) = (e)e2
I

v eo@b &, (10)

an approxiination probably very good for lighter QF par-
ticles] the Hamiltonian (5) is separable and therefore the
Green's function (4) is solvable in terms of known two-
body states for the rescattering stages.

It is the first term of Eq. (3), represented by the dia-
gram in Fig. 1(a), that is usually considered in the stan-
dard distorted-wave impulse approximation (DWIA) cal-
culations to account for the single-step QF events from
the kinematic loci (la). Overlooking detailed antisym-
metry requirements and suppressing the explicit reference
to the spin and isospin quantum numbers, this transition
amplitude essentially has the form7

T(s ) y (y( —)y( —)(Ii (Ii @
~ ~

(Ii q y(+)&

X(2ir)'5(k, +k, —k, —k.), (6)

v, A, Q

x@bi({rbI)dsr({r~bI), (7)

where A „ir are the expansion coefficients, P is the b S-
relative motion wave function, and @&~ and 4&& are the
internal motion wave functions of the virtual cluster and
the spectator nuclear fragment, respectively. Next, the
overlap of the spectator wave functions before and after
the knockout renders the quantum numbers y identical to
the observed quantum numbers n describing the residual
state; also, the quantum numbers X will be taken to coin-
cide with those of the g.s. of particle b (@bi=C&b(s, )), as-
sumed to remain unchanged during the reaction.

Thus, Eq. (6) may now be written as

where Xp+', 7'~ ', and Xz
' are the distorted-wave func-

tions describing the elastic scattering of the projectile and
the outgoing QF particles on the target A and on the nu-
cleus S, respectively; the (+) and ( —) superscripts indi-
cate incoming and outgoing boundary conditions, respec-
tively; and 4p, 4&, 4&, N2, and N& are the internal
motion wave functions of the projectile a, the target 2,
the QF particles a and b after the doorway knockout col-
lision, and the residual nucleus S, respectively. The
momentum conserving (2~) 5-function results from the
integration over the plane wave describing the c.m.
motion of the whole a-A nuclear system.

We now wish to project out the virtual cluster b wave
function, before the knockout, from the target wave func-
tion 4z. The usual procedure is to perform a cluster
fractional parentage expansion as

in which the iteration of G =6 +6 v 6 leads to the
chain of scattering processes

G =G~+ G~v~Gp+ G~v~613v pGy +
involving an undefined number of intermediate nuclear
states a,P, y, . . .. Since the QF particles undergo a se-
quence of scatterings from one target particle to another
before emerging from the nucleus, it would be desirable to
describe process (11) in terms of such successive scatter-
ings occurring, most probably, through NN collisions.
We are thus led, almost inevitably, to the FKK (Ref. 1)
statistical theory of the multi-step direct implicit reac-
tions, which will be extended next to the (a,ab) knockout
reactions.

III. FUNDAMENTAL MODEL ASSUMPTIONS

Consistent with the FKK theory, we define the projec-
tion operators P and Q, such that

P =P, Q =Q, P+Q =1, PQ =QP =0, (12)

to divide the Hilbert space into two orthogonal subspaces,
H and &. H contains the open channels on the energy
shell Ep with at least two particles in the continuum and
the initial channel with just the projectile particle in the
continuum, and P contains the closed channels with all
the particles of the nuclear system bound. Each of these

where 4~ =—4p and 42=4&, and r is the distance between
the c.m. of the QF particles. In practice, instead of using
this double-folding interaction which would require some
technical manipulations, one usually prefers an impulse
zero-range approximation of (10), such as t(q)5(r), where
t (q ) is the t matrix for the free a +b scattering evaluated
at the asymptotic final relative momentum q
= —,(ki —k2) of the QF particles. This prescription, to-
gether with the factorization of the free a+& collision
cross section, although raising questions which are still
being investigated, reduces the problem of obtaining the
single-step QF cross section to a quite tractable integra-
tion.

The object of our interest here is, however, the multi-
step amplitude Tf; ', also represented by the diagrams of
Fig. 1(b), which we. expect to describe the three-body con-
tinuum events, with source contributions from a certain
number of possible orbitals of particle b. Presumably, we
are to associate these events with the second term of Eq.
(3), which has the three-body form

T(MS) g( —)g( —) 6 y(+ )
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subspaces are then partitioned again into sets of mutually
orthogonal subspaces H„and B„such that, loosely
speaking, increasing n corresponds to increasing their
complexity. What this really means depends on the
specific representation chosen for the nuclear states, e.g. ,

the shell model, the vibrational model, etc. Thus, in the
shell-model framework we will find it convenient to use
the p hla-nguage such that H„and B„will be the sub-

spaces of the (n+1)p nh s-tates.
To make the formalism computable by reasonable

means, the two fundamental FKK assumptions are also
adopted here:

(i) The chaining hypothesis It i.s assumed that, in both
H and B subspaces, the residual interaction v can induce
transitions from the nth stage only to the (n+1)st stages,
or on to the final state through elastic scattering; it is not
possible to miss a stage and effect the n ~n+2 transition,
for example. This condition will be expressed for the
open channel subspace H as

u„=0 if ln —m
l
)2,

with

(13)

Unm =Pn UPrn (14)

where

Ufi —PfUP;

uses the projectors P; and Pf on the initial and final chan-
nel wave functions, respectively, which operate in the H;
and Hf subspaces belonging to H. Furthermore, the nth
scattering stage amplitude

Tfi fnGnUn, n —1Gn —1 U21G1U1i
(n) (17)

where P and P„are the projection operators on the H
and H „subspaces, respectively.

Using this assumption we see immediately that Eq. (3)
can be written like its FKK two-body equivalent as

(n)
Tfi vfi + g Tf;

n+1
0'f '(k(, kq)= g g C„', '%'„', '(k), k2),

n e=n —1

(21)

is the part of Hamiltonian (5) diagonal with respect to the
disorted channel wave functions.

The chained transition amplitude (17) can also be used
for the multi-step compound reaction if the projectors P,
are replaced by Q„. But for either reaction, direct or
compound, one could make in practice the "never-come-
back" assumption that retrograde transitions

l
n )~

l

n —1), depicted by backward arrows in Fig. 1(b), can
be neglected. The physical grounds for this assumed ir-
reversible scattering through the sequence of stages n is
the rapid increase of the nuclear level density with in-
creasing complexity (or equivalently, n) of the configura-
tions from the subspaces H„or B„. Therefore, up to a
point, it is more likely that the particle scattering will lead
to exciting, rather than deexciting, the residual nucleus.

(ii) The random phase hypothesis. This is the statistical
assumption that the relative phases of matrix elements are
random, such that the only interference direct terms sur-
viving upon an averaging over the excitation energy U of
the residual nucleus S will be those involving the same
change in the momentum of the particles in the continu-
um. In contrast, no interference compound terms will
remain upon such averaging. To be more specific, we
should stress the point that, aiming at a theory of the con-
tinuum, we are not concerned here with cross sections for
reactions leading to individual final states, which are not
experimentally measurable, but rather with energy aver-
aged cross sections corresponding to groups of final states
characterized by the same quantum numbers such as the
angular momentum parity or the channel spin. These
states 4'„, ' involving only those channels with particular
momenta k& and kz of the emergent QF particles, which
represent the exit modes e from a stage n, are eigenfunc-
tions of the H« =P„HP„Hamiltonian. They form an ex-
pansion basis for the final state eigenfunction %f ' of the
Hzz =PHP Hamiltonian of the continuum as

uses the continuum FKK propagators

1
Gn =Pn

0+ I Hnn Un, n+16n+1Un+1, n

with

Hgf pg Ppf H Ppg 7

where

H "'=H1+H2+Hg+ 8'1 + 8'2

Pn (18)

(20)

where the expansion coefficients C„'f' are assumed to have
random signs. Here, introducing the e =n, n —1 exit
modes we mimic the FKK paper although, to be con-
sistent with our never-come-back assumption, only the
e =n+1 exit mode should actually be considered, even
though this may be less justified for larger n's

Invoking the above-mentioned statistical assumptions
and using the FKK chaining identity, the sum over the fi-
nal states of the modulus squared of the multi-step reac-
tion amplitude from Eq. (15) then becomes

(22)
n+1

Tfi Tfi = g g l
neGvn nn v—iGn —1 , v21Glvli

l

n, n', f n e=n —1

In order to obtain the projection operators for the above equation we will use the eigenstates 4' ' of the effective Hamil-an

tonian associated with each Green's operator (18) through the Schrodinger equation

[H„'„"'+u„„+&G„+~v„+~„]0" '=[k, i„iA' /(2m, )+kz~„ih' /(2m2)+e~ ]0'~ (23)

where, overlooking the Pauli principle, we take
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+a„X1(n)(k1(n) rl)X2(n)(k2(n) r2)@1(Ika l )@2( I kb I )@Sa„([4 b j ) (24)

with the distorted wave functions X1(„)and X2(„) describing the elastic scattering of the QF particles, @) and C»2 describ-
ing the internal motion of the QF particles which are assumed to remain in their ground states throughout the scattering
process, and Nsa describing the intrinsic state an with energy ea of the residual nucleus after the nth scattering stage.an 1l a~

The distorted wave functions obey the following normalization conditions:

f d r X '+—'n
( k ', r )X'+—'( k, r )= (2m. ) 5( k —k '),

f dr X' +—'*(k', r)X' '(k, r)=(2m. ) k 5(k —k')QS) '(Y(Q ) Y'(Q ))

(25a)

(25b)

where SI is the elastic scattering S-matrix element corresponding to a particular partial wave l, and the tilde denotes a
time reversal operation; also, the normalization of the intrinsic wave functions is given by the equations

(26a)

b l b

X f IId'5 —X, C'i(IN ])+.([4 I)=l
bj J =1 b

A —b i A —b

f Q d 5 „g @', (Ik bl)c'-s „(Ik bI)=5-
Io~ b I Iw~ b'I) m =1 m =1

(26b)

(26c)

P„=(2~)-'
~

e( ) &(e( )
~

. (27)

Unfortunately, the insertion of these operators in Eq. (22)
does not give an expression composed of transition ( T
type) matrix elements. One possible way out would be to
use the modified projector form'

P (2 )
—6S—1

~

@(+))((Ii( )

~an an

based on the known relations of the disorted waves

(28)

where I/I =
I cr, r, r I represents the aggregate of spin, iso-

spin, and position coordinates of the nucleons constituting
the nuclei. The 5-function constraint ensuring the c.m.
translational invariance in Eqs. (26) is usually discarded in
the shell model framework which should normally be em-
ployed for heavier nuclei.

Due to the fact that the relative motion distorted wave
functions X'+—' are not orthogonal, it is necessary to use a
biorthogonal set of states (24) to build the projection
operators P„, needed in Eq. (22), as

X'+'(k, r)=4m/(kr)gi Xi(k, r)(Y(Q„) Y(Q )),
I

(29a)

X' '(k, r)=4m/(kr) gi. 'Si 'XI(k, r)

X( Y'(Q-„)~ Y'(Q, )) . (29b)

The above technique does not seem to reveal any diver-
gence problems;" however, it is not appealing from a nu-
merical point of view. While this question is not yet
resolved, we will continue to use in the interim the FKK
implicit assumption noted by Tamura et al. namely, we
will take Si ——1 for all partial waves l, even though this
approximation tends to underestimate the reaction cross
section. Hopefully, in practice, this effect might be dilut-
ed in the present treatment by the other approximations
with opposing effects. In any event, the result of a recent
investigation' points out that the above approximation is
basically legitimate.

IV. STATISTICAL TREATMENT OF THE MULTI-STEP DIRECT ( a, ab) REACTION

To illustrate the calculation of Eq. (22) we will first consider the following factor of the summand

U1i61U21U21G1U

f dk)(1) dk2(1)

(2m) (2m) f dk'1(1) dk2(1)
3 3 g Q U*» . ( k 1(1)» k 2(1)»kp» k»»')U* ( k 1(2)»k 2(2)» k 1(1)» k 2(1))

V~ V
1~ 1

X Ua2a)(k 1(2)» k2(2)» k1(1),k2(1))Va&i( k 1(1)» k2(, )', kP, k„)

X [Ep ig k'1(1)A—
' /(2—m1) —k 2(1)))l /(2m2) —e, ]a1

X [ pE+ i+ —k((1)A' /(2m)) —k2(1)A' /(2m2) —e ] (30)
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related to the first stage, namely the QF doorway scattering. The above matrix elements, which will be written explicitly
later, are regular T-type matrices of the two-body interaction U obtained using the projectors (28) with S = 1. Further,
following the FKK prescription, we again invoke the random phase hypothesis (ii) to take v=v and a) ——a), and then
average the integrand (30) over the energies e of the residual nucleus states a) asa1

I,= f de,ps(e, )M())(e, )G(G( .

By applying Cauchy's theorem of residues we immediately obtain

I~, = —ps(U()) )M(()(U(() )2ni/[(k)(() —k )()))A' /(2m) )+(k2()) —k z(())A /(2m2)+2ig], (32)

where ps(e ) is the density of residual nuclear states at the excitation energy e after the QF first stage, M()) is the

product of matrices U*, .U*, , U U; assumed to vary slowly in the neighborhood of the propagator singularities, and
al i a2a1 2 1 1'

U(() —=&o —k((()h' /(2m) ) —kz())A' /(2m2) (33)

1s the fraction of the available energy dissipated over the degrees of freedom of the residual nucleus. According to Eqs.
(1), in the case of the doorway QF stage this is just the residual excitation energy e rescaled by the ground state bindinga1

energy e, of the knocked out particle and the recoil energy Ez of the residual nucleus S.
&n order to proceed further, following the FKK method we assume a slow variation of psM(() w'th k(()) and k2(1) so

that a pole approximation can be made for I to obtaina1

I =2~ ps(U()))M(()(U()) )5[(k(())—k')(() )A /(2m) )+(k2()) —kq()) )A' /(2m2)] . (34)

For the moment, it is convenient to switch representation to the total momentum

Q())=—k)())+k2()), Q()) —=k )())+k 2())

and the relative momentum

q())=(m2k)()) —m(k2()))/m, q I() =(m2k )(()—m(k 2()))/m

(35a)

(35b)

of the QF particles, where m =m (+m2, although only the primed quantities will actually be needed for the integration
in Eq. (30).

Using this notation and the reduced mass p of the QF particles

p =m ) m2/Pl

the quantity (31) can be written as

I~ =2m ps(U()))M())(U()))5[(q()) —qI)))A' /(2p)+(Q()) —QI)))fi /(2m)] .

Recalling definition (9) we separate the momentum conservation conditions from the matrix elements as

(36)

(37)

U~ g( k )() )q k2() )' kp k ) —=U (Q(() q() )' k() k )(2m') 5(Q() )
—k() —k ) (38a)

v;(k ',(, ), k2((), kp, k, ) =U~;(Q (, ), q (, ), kp, k, )(2~) 5(Q (, )
—kp —k, ) . (38b)

Having made these rearrangements, the integral over Q (() can easily be performed to obtain the result

U 1l'G 1 U 21U21 61U1t'

dk dk ~ d)(1) 2(1) ( 'q ()) 2 (U ) ( )g

2 2 2 3 pS (1) Ual& (1)& q (1)i kp, k& U, k 1(2)& k 2(2)~ (1)~ q (1)
v a1

( )XUa a ( k((2)~ k2(2)iQ())~ q(())Ua i(Q())r q())i koi kv)

X(2r(') 5(Q())—kp —k )5[(q()) —qI)) )A' /(2p)] (39)

which will further become
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U li 61U21U2161U 1i

dk1(1) dk2{1) Pg(1)f 3 3 d+(]) 2 PS( U(1) ) g g Va]i (Q(l)»'Vl 1)+(])»ko» v)ua'a ( k 1(2)» 2(2)»Q(])»g(])+(]))
(21r) (2~) 4M

( )
&&ua2a](k](2)»k2(2)Q»(]) q(1))ua]i(Q(1) 'q(l)'kO kv)

&&(2~) 5(Q(, )
—kp —k„), (40)

where g includes only those configurations in H] whose energies equal U(1). Continuing to follow the FKK pro-

cedure, we now invoke the random phase hypothesis (ii) to define a new averaged expression as

(~) + —+

Va]i (Q(])»'l(])+(])»ko» kv)ua' ( k 1(2)» k 2(2)»Q(])»P(])+(]))Va2a]( k](2)» k2(2)»Q(])» q(l))ua]i(Q(1)» q(1) ko k
a&

( )=5(Q(])—0(]))
I

v-",. ( k 1(l), k2(1)» k(), kv) v, ( k '1(2), k 2(2),'k 1(1),k2(1))u —(k 1(2), k2(2), kl(1])» k2(1)), (41)

where the bar over a1 indicates an averaging over the states corresponding to the quantum numbers u1.
As a result of these manipulations, Eq. (40) finally becomes

dk1(1) dk2(1)
U» 61U21U2161U» =

3 2~'p(q(]))ps(U(]) )(2'�) (2lr)

&& g I

u' ',.(k](]),k2(1), k(), k„) (2m. ) 5(Q(1)—k()—k„)

where

p( q ( 1 ) ) =pg ( ] )—/[ ( 277 ) A' ]

+

xva» a (k 1(2), k2(2),'k](]),k2(1))va a (kl(2), k2(2), kl(]), k2(1)),

(43)

is the density of continuum states of the QF particles with the relative momentum q(1), and the averaged matrix element

"- '(kl(1) k2(1) kp k )={~](])~2(])I" I ~v()ty)kv&o &av
(~) . ( —) ( —) (+) (44)

is reminiscent of the SS transition amplitude (8) with the momentum conserving 5-function removed.
We will illustrate the calculation of the rest of the rescattering chain steps by adding to Eq. (42) the next factors from

Eq. (22) related to the second stage, namely,

U 1i6 1 U 2162 U 32U 3262U21 61V 1

f dkl(1) dk2(1) f f dkl(2) dk2(2) f f dk 1(2) dk 2(2)

(2~) (2n ) (21r) (2lr) (2~) (2n)

2
—+g 277 p( q(]))ps( U(] ) ) v — ( k]( 1) k2(])' kp k ) (2lr) 5(Q(])—kp —k ) v ( k ](2) k 2(2)' k ]( ]) k2(]) )

I
az a2

1 I 1 I ++va'a' (» l(3)»» 2(3)» k 1(2)» k 2(2))va3a2( 1(3)» k2(3)» k 1(2)» k2(2))ua a ( k 1(2)» k2(2)» 1(1)» 2(I))

&& [E() i ri k 1—(2) ]r]—(/2m )]—k2(2)fi /(2m2) —e, ]a2

)& [Eo+iri—k](2)f2 /(2m ] ) —k2(2)A /(2m2) —t ]
As before, we make use of assumption (ii) to take a2 ——uz, average the integrand over the residual state energies e, anda27

then make the pole approximation to obtain the result

I =2' ps( U(2) )M(2)( U(2) )5[(k 1(2) —k 1(2) )A /(2m 1 )+(k2(2) —k2(2) )A /(2m2)]

in which the notations made should be obvious by analogy with Eqs. (31)—(34). The quantity

U(2)
—E()—kl(2)]]] /(2m 1 ) —k2(2)]]1 /(2m2)

(46)

(47)

is the energy dissipated over the residual nucleus after the second scattering stage. Since the energy must be conserved at
each step, we notice that U(2) is, in fact,
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U(2) U(1)+(kl(1) kl(2))~ i(2m 1 )+(k2(1) k2(2))~ I( II12) i (48)

when Eq. (33) is taken into account.
We observe now that, due to the special form of the two-body interaction employed in the Hamiltonian (5) which no

longer couples the QF particles to each other after the first stage, and by the normalization properties (26), the matrix
elements from Eq. (45) can be decomposed as

3
+ +

( k 1(2)t 2(2)i kl{1)~k2(1)) (2~) I ua a ( k 1(2)~ k1(1))5(k 2(2) k2(1))+ua a ( k 2(2)t k2(1))5( k 1(2) kl(l))]

3
+

ua a (kl(2)ik2(2)ikl(l)~ 2(1)) ( ~) t. ua a ( 1(2)ikl(1))5(k2(2)~ k2(1))+ua a (k2(2)~k2(1))5(kl(2) kl(1))] ~

(49a)

(49b)

and similarly for u, and ua a . Inserting these forms together with the relation (46) in Eq. (45) and taking the integral
cx3 cx2 ~3~Z'

'I over the primed momenta relevant to the second stage, we obtain
cx2

dk i(2) dk2(2)
3 2 3

2 I 4 I I
~P(k 1(2))PS( Ul(2) ) +1(2)ua'a ( 1(3)) 2(3)~kl(2)+1{2)tk2(2))

X u — (k 1(2)Q 1(2)i k 1(1))u — ( k 1(2), k 1(1))(2rr) 5( k2(2) —k2(1) )

X ua3a&( k 1(3)i k2(3)& 1(2)~ k2(2))

+P(k2(2))PS( U2(2) ) d+2(2)ua'a ( l(3)r 2(3)ikl(2)tk2(2)+2(2))

X u —(k2(2) A2(2), k2(1) )u — ( k2(2)i k2(1) )(2') 5( k 1(2)—k 1(1))

X ua3a2( k 1(3)~ k2(3)~ kl(2)~rk2(2)) (50)

Cross terms corresponding to residual excitations without momentum change of either QF particle which are incompati-
ble with our model have been eliminated, and

U {2)
——U(1)+(k (1) —k (2))lri /(2m ), for g =1,2, (51)

are the residual excitation energies due to the interaction of each of the QF particles separately. Similarly Eq. (41), upon
summing Eq. (50) over the configurations from %2 whose energies equal U(2), we apply the random phase hypothesis (ii)
to replace the matrix elements by their average over the quantum states a2, operationally labeled by a2. After perform-
ing the angular integrations which are possible due to the assumed occurrence of the 5(Q'l(2) —Al(2)) and 5(Qz(2) —02(2))
factors resulting from the above averaging, Eq. (45) becomes

ofc
d k j(]) d k2($) d k](2) dk2(2)

U li G 1U 21G2 U 32U32 62U2] G i U

(2~)' (21r) (21r) (2~)

X Xp(q(1)) s(U(1)) I ua";(kl(1) k2(1)', ko, k.)
I
'(2~)'5(Q(1) —ko —k.)

X [2' p(k ( )1)p2(Us( )1)
2I

u- —(kl(2), kl(1)) I
(2n) 5(k2(2) —k2(, ))

2+ ~ p(k2(2))ps( U2(2) )
I

u ——(k2(2), k2(1)) I
(2') 5(k 1(2)—kl(1))]

( k 1(3)r k 2(3)i k 1(2)i k2(2))

X a a ( 1(3), 2(3)', k 1(2), k2(2)) . (52)
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V. MULTI-STEP CROSS SECTION FOR THE DIRECT ( a, ab) REACTION
CONTINUUM SPECTRUM

We are now finally in a position to write the average cross section for the ( a,ab) scattering continuum. After integrat-
ing the reaction amplitude over the momentum of the undetected recoiling nucleus S using the momentum conserving
5-function from Eq. (45), the usual procedure for obtaining reaction cross sections leads to the convolution integral

(
+

J f dkl(l) dk2(l)
~ ~

dkl(2) dk2(2) I J dk
I( n)

dk 2(n)

d k(f) n e =n i — (2m) (2m ) (21r) (21r) (2')3 (2m)3

d (7 .(k](]),k2(]), ko, k~) d W (k](2), k2(2)', k](]),k2(]))

d k(2)

2
+ ~ +

d Wn n ( k 1(n), k (2n)i k I( n—1)~ k2(n —I))

d k(g)

where dk(~) —=d k&(~)d k2(~) and k~= k~(~)+ k2(&) —k0. In this equation

2d W~ a ( k i, k2', kl(n), k2(n))

d k(f)
(53)

d cT .(k](1)y k2(])y ko, k„)2 QF

d k(1)

2&77l 0 ( ) a&
p(q(I))ps(U(])) l

ua(k ( I)Ik2(i)'ko kv)
l

t)(E](I)+E2(I)—Eo —E +Es)
0

(54)

identifies the average cross section for the incident particle to undergo a doorway knockout collision with the emission of
two QF particles with energies E](]) and E2(]) and momenta k](]) and k2(]). The methods for dealing with this quantity
are those of the knockout SS process, briefly outlined in Sec. II. Also,

2 + +

1(k 1(m)~ 2(m)t kl(m —1)~ k2(m —I))

=(2n )

( k 1(m)l k](m —I))

d k].(m)

@k2(m) k2(m —I))+t)(k](m) k](m —I))
2(m) k2(m —I))

d k2(m)
(55)

represents the averaged reduced probability per unit time that either one of the QF particles undergoes a scattering on the
spectator nucleus S from the (m —1)st to the mth stage of the multi-scattering chain. The individual scattering proba-
bilities corresponding to each QF particle are given by the familiar FKK formalism expression

d W- — (kj(m), kj(m I))

d k j(m)

2= +p(kj(m))ps(Uj(m)) lun n (kj(m)~ j(m —I)) I (56)

with the residual excitation energies due to each particle

Uz(m)
——Uz(m ])+(kj( ]) —kJ(m) )]ri (2m&), for j=1,2,

and the average transition matrix elements of folding type

u- — (kj( ), kj( ]))=(Xz~ ')4zNs-
l

u l4&4s Xj~~
' ])), for j=1,2.

(57)

U ))v —I

(n + I )!n!(N—1)!
(59)

The averaging procedure labeled with a bar in the above
equations depends, of course, on the specific model chosen
to describe the residual excitations. Perhaps the most at-
tractive framework in this respect is the simple exciton
model of Griffin in which each subspace W„ is identified
with shell model configurations containing (n+1)p nh-
single particle states, i.e., 2V =2n +1 excitons. The level
density of an ¹ xciton state at a certain excitation energy
U(„) is given by the Ericson expression'

where g is the total density of single particle states in the
equal-spacing model. As was commented earlier, since
the level density increases rapidly with the number of ex-
citons, neglecting the scattering terms with retrograde
steps n~n —1 appears to be an acceptable approxima-
tion, at least at the beginning of the excitation chain. To-
ward the end of longer excitation chains the level density
increases more slowly and the above-mentioned never-
come-back approximation becomes questionable, but still
desirable for computational reasons. In this framework,
Feshbach et al. ' and Bonetti et al. ' performed the bar
averages using the energy-indepenent spin density
Rs(J(n)) of the exciton levels with total angular momen-



488 G. CIANGARU 30

turn J~„~ given by'

2J(„)+1 (J(„)+—,
' )'

Rs(J(n) )
&/p 3/2 3 exp —

2
1V o Xo

(60)

VI. CONCLUSIONS

In this work the QF continuum was studied with the
intention of formulating a theoretical framework such as
those already existing for the two-body reactions. In or-
der to focus on the basic physics of the problem a mecha-
nism was proposed which assumes that the source of the
(a,ab) continuum is the QF particles emerging from pri-
mary knockout collisions and degraded in energy by sub-
sequent scattering. The multiple-scattering equations are
in general impractical, if not impossible, to be solved ex-
actly for most nuclear systems. On the other hand, one
must realize that the measurable properties of the contin-
uum spectrum are, in fact, average quantities. For this
reason it was found to be quite natural to employ a statis-
tical method to treat the problem of the (a,ab) continuum
spectrum. The task was greatly simplified by the ex-
istence of such a type of treatment as formulated by Fesh-
bach et al. ' for the (a, b) continuum.

Somewhat surprisingly, no major difficulties were en-
countered in extending the FKK statistical ideas to the
three-body case, although, to simplify the problem, one
had to further assume that the particles following the
doorway QF stage do not interact simultaneously with the
residual nucleus and also do not interact with each other.
Moreover, encountering the standard difficulty' of the
multi-step Born expansion caused by the biorthogonality
of the distorted wave base of the Green's function, in or-
der to keep the formalism practicable one had to take the
elastic scattering matrix S equal to unity. The effect of
this approximation remains to be studied, but it should be
mentioned that the two-body applications' of the FKK
formalism did not seem to show a major drawback be-
cause of it. A recent assessment' of the FKK approxi-
mations showed that, at least in the light ion reactions,
the net error remains fairly small.

As one could have perhaps anticipated, the cross sec-

where tT is a spin cutoff parameter with the approximate
normalization

g (2J(n)+1)Rs(J(n))=1 ~

tion for the (a,ab) continuum differs only in specific de-
tail but not in substance from its (a, b) equivalent. From
this point of view one can state that, even though approxi-
mate, there now exists a unitary statistical description of
both the two- and three-body continuum spectra of nu-
clear reactions. After the successful extension of the
FKK formalism to the three-body reactions, one might
find tempting an outright generalization of this result to
the n-body reactions. It turns out, unfortunately, that this
would generally be unwarranted. Our attempts to obtain
an expression similar to Eq. (53) for the four-body QF re-
actions (a,abc), such as (e,epp) or (p,3p), failed, unless the
relative momentum of the knocked out (bc) nucleon pair
was assumed to be conserved throughout the reaction. In
practice, this should only happen in those particular cases
when the knocked out pair remains correlated and contin-
ues to behave as a pseudoparticle in the final channel.

From a practical point of view, the expression which
was derived for the three-body cross section does not pose
too much more computational complication than its FKK
two-body equivalent, except for an inherently increased
amount of computer resources required to calculate the
doorway QF cross section and also the rescattering proba-
bilities for each QF particle. In those cases, such as the
(e,ep) reaction, where the rescattering of one of the parti-
cles can be neglected, the amount of computation is re-
duced drastically and becomes comparable with the two-
body case. A three-body situation of this type in the
(p,2p) reaction was examined in detail in two recent pa-
pers. In conclusion, the author believes that the present
work indicates promising prospects for studying the con-
tinuum spectrum in the ( a, ab) knockout, and perhaps also
the A (a,bc)/I breakup, reactions.
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