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E. G. Adelberger and P. Hoodbhoy
Physics Department, University of Washington, Seattle, Washington 98195

B. A. Brown
Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824

(Received 16 December 1983)

We consider the elastic scattering of nucleons from spin 2 targets via parity-mixed resonances

and derive expressions for the longitudinal parity nonconserving analyzing power. %'e neglect any
direct parity nonconserving processes —the parity nonconservation being assumed to be due solely to
the resonances. We then consider a particularly interesting example —the scattering of protons by
' C over 0+ and 0 I=1 resonances. We show that in this case longitudinal analyzing power mea-
surements yield, with little theoretical uncertainty, the parity nonconserving matrix element between
the 0+ and 0 levels. The large width of the 0 (2sl~q) resonance compared to that of the 0+(1pl~2)
resonance produces a significant enhancement of the predicted effect. Because of the large size of
elastic scattering cross sections a longitudinal analyzing power experiment can achieve small statisti-
cal errors. The ' N resonances are especially interesting because the mixing is essentially pure
AI =0.

I. INTRODUCTION

The parity-nonconserving (PNC) NN interaction is ex-
pected to have a complicated spin and isospin structure.
For example, to characterize the low-energy limit of the
interaction one needs to know the amplitude of five s+-+p

transitions: one S~++'P
~ ( b,I=-0) amplitude, one

S,~ P, (XI=1) amplitude, and three 'So~ Po (bI=0,
1, and 2) amplitudes. In principle, one could determine
the strengths of all five of these s~p transitions with five
or more independent PNC experiments in the NN system.
However, the predicted PNC effects in the NN system are
so small (-10 —10 ) that experiments of the required
sensitivity are extremely difficult and in spite of concerted
efforts' definite effects have only been observed for one
observable, the longitudinal analyzing power, Al, in p+p
scattering. '

The five s~p transitions can also be probed by study-
ing parity mixing of nuclear levels. In certain favorable
circumstances the nuclear structure can lead to large
enhancements (by factors of 10 or 100 or even more) of
the PNC observable. Because of this quite a few nuclear
parity mixing experiments have succeeded in detecting
positive effects (see Ref. 5 for a review). Usually such
enhancements are offset by correspondingly large theoreti-
cal uncertainties in the extraction of the PNC NN param-
eters from the experimental data. The same cir-
cumstances which generate the enhanced effect (typically
a highly retarded parity-allowed transition) make it diffi-
cult to compute the required nuclear matrix element with
sufficient reliability. However, in a few exceptional cases
in light nuclei there occur closely spaced doublets of
same-spin opposite-parity levels. In these cases the parity
impurities are well approximated by simple two-state mix-
ing. This greatly simplifies the analysis and isolates
specific isospin components of the PNC interaction (see,

for example, Ref. 6). All existing experiments probing the
parity admixtures in these "two-level" nuclei have detect-
ed pseudoscalar observables in the y decay of one member
of the parity-mixed doublet (forward-backward anisotro-
pies of y rays emitted by polarized nuclei or circular po-
larizations of y rays emitted by unpolarized states). This
is a powerful technique because the electromagnetic (EM)
interaction is well understood and so does not contribute
to the theoretical uncertainty. Unfortunately, the proper
combination of favorable nuclear structure and favorable
experimental circumstances occurs so rarely that, to date,
only three two-level systems (see Ref. 6) have been studied
by these methods.

In this paper we discuss a new method for studying
two-level systems which is applicable in cases where the
levels are unbound to nucleon decays and thus could not
be studied using the conventional y-ray observables. We
consider the case where the parity-mixed levels of a doub-
let are populated as well-defined elastic scattering reso-
nances. We first develop a formalism for describing elas-
tic scattering via parity-mixed resonances. We then show
with a specific example, the 9 MeV 0+ and 0 I=1 reso-
nances in ' C+p, how in favorable circumstances the
parity-mixing matrix element can be extracted from the
longitudinal analyzing power (or equivalently the circular
polarization of protons emitted by an unpolarized state)
almost as reliably as from the y-ray circular polarization.
The potential value of the longitudinal analyzing power
technique is also illustrated by our example in ' C+p. To
a good approximation (see Sec. III) the parity mixing of
the ' N 0+ and 0 resonances probes only the EI=O
component of the PNC NN force. The only other pure
M=O parity admixture, the a decay of ' 0(2 ), cannot
be readily interpreted because of large uncertainties due to
complicated nuclear structure. The ' N system, on the
other hand, is much simpler and the structure theory is
expected to be quite reliable.
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II. THEORY OF RESONANCE PARITY MIXING operator (e E—)
' in this basis,

In this section we shall outline the theoretical treatment
of proton scattering via two closely spaced nuclear reso-
nances of equal angular momentum but opposite parities
in the presence of a parity-violating Hamiltonian. Expli-
cit expressions for the cross section will be obtained for
the case of polarized protons on a spin one-half unpolar-
ized target and undetected final polarizations. The for-
mulae can be straightforwardly generalized to include tar-
gets of arbitrary spin.

Resonance scattering, for our purposes, is most con-
veniently described in the language of Bloch's general for-
mulation of reaction theory. The R matrix theories of
Wigner and Eisenbud, and of Kapur and Peierls, ' are re-
coverable as special cases of the theory. Bloch's formula-
tion has the advantage in that one can directly obtain the
S matrix without calculating the R matrix as an inter-
mediate step.

Bloch's method essentially consists of formally solving
the boundary value problem by construction of an ap-
propriate Green's function. This Green's function comes
from the inversion of an operator which is the sum of the
Hamiltonian H and a "boundary condition operator" L.
This latter object is a differential operator which builds in
the correct boundary conditions for scattering. The S ma-
trix is then constructed from the formal solution to the
Green's function. The reader is referred to the original
work of Bloch for the notation and concepts used in the
following.

S=e'& 1 —i g (s
i
(e IC—)

'
i
t)~I, X~I, e'~,

st

where

E=H+L
=Ho+ HpNc+L (4)

' 1/2

In Eq. (5), ax is the channel radius, (u~ is the reduced pro-
ton mass, and Pq is the penetrability defined by

kag

(G2++2)

I is the boundary condition operator which annihilates
outgoing waves, and e'& is a diagonal matrix in the space
of open channels whose elements are e Q, denotes the

i g'~

channel quantum numbers). The quantity ~I', &&~I, is
the direct product of two width matrices, the elements of
each matrix being of the form (I,' ')' . These latter
quantities are proportional to the incomplete overlap be-
tween the basis states

i
s ) and channels

i
A, )

1/2

(I (~')'~'=(PP )'~'
2px

—= (2Pg)' '
P,'"'(ug) .

fi a~
(5)
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A. S matrix

We shall take the total (projectile + target) Hamiltoni-
an governing the system to be the sum of the strong nu-
clear Hamiltonian Ho and the parity violating part of the
weak Hamiltonian HpNc

H =Ho+HpNc .

In the theory of resonance reactions, one distinguishes
between the "interior" and "exterior" regions separated by
a "channel surface, " these regions being regions of a con-
figuration space of 3A dimensions. For the complete set
of basis vectors in the interior region, we shall make the
choice of the normalized eigenstates of Ho,

Ho is)=e, is) .

The S matrix can be expressed in terms of the inverse
I

I'I and G~ are the regular and irregular Coulomb func-
tions, respectively.

We are now in a position to specialize the above formu-
lae for the case of two opposite parity, equal angular
momentum, closely separated resonances. To do so, we
shall need to make a number of simplifying assumptions.
First, we expand the operator (e—K) ' to first order in

HPNc. This should certainly be an excellent approxima-
tion. Second, we assume that the projectile and target are
parity eigenstates. Third, we ignore any parity violation
arising from the direct scattering and keep only effects re-
lated to the closeness of the two resonances. Fourth, we
make the single-level approximation for the parity-
conserving sector of the S matrix in Eq. (3). This means
that two levels of the same J are never so close in energy
that their mutual interference must be treated exactly.

With the above approximations, the parity-violating
part of the S matrix becomes

;(g, +g, ) (1 I...I t...)' ((I,s, )J
i
HpNC i

(12s2)J)
S), I, ———ie11'22

e—e' '+ —I
1 1

6 —E + I I2 2'2

while the parity conserving part has the standard form

'~k +4, ') (I J I J )(/2
11S1 12S2

e —e' +—'r'
2
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The notation in Eqs. (7) and (8) is standard: l and s are
the channel orbital and spin quantum numbers which
combine to give the resonance J. The channel parity is
given by ( —1) times the parity of the target nucleus. The
resonance energies e' and partial widths l &, are experi-
rnentally determined parameters and the total width I is
the sum of all partial widths of the same J,m. The phase
shift g( is given by

2'f, Gl {a) iF—i(a)
e t 0 (9)

G, (a)+is, (a)

where

transversely polarized beam. On the other hand, EL mul-
tiplies a pseudoscalar and is thus a direct measure of the
parity-violating scattering. The longitudinal (PNC)
analyzing power is Al K——L /KU.

Given the S matrix elements Eqs. (7) and (8), one can
derive formulae for the cross section by examining the
asymptotic wave function in the usual way as, for exam-
ple, in Lane and Thomas" where unpolarized cross sec-
tions are obtained. For the case of longitudinal initial
proton polarization p;, one needs to work out a sum of
the form

a) —a'o ——g tan-'ri/s
I

& mfa f I
T

I mii & I

'
~ (15)

and

s=l
For the case of transverse initial proton polarization
[parallel (+) or antiparallel ( —) to n] a similar quantity
must be calculated,

'9—
AU

Finally, the states are normalized such that under the time
reversal operation they transform according to

where

mf myPy

1&mfpf 17 Im;+&
I

T(j,m&=( —1)i
( j,—m& . (12)

B. Differential cross sections

From simple geometric considerations it is clear that
the most general form of the proton-nucleus scattering
cross section with proton polarization o, and unpolarized
target and undetected final polarizations, will be of the
orm

With this convention, the parity-violating matrix element
in Eq. (7) is purely real.

~+&=&1/2(
~

—,
' &+

~

——,
'

&) . (17)

To work out the sums in Eqs. (15) and (16), one may
use the T matrices worked out in Lane and Thomas, "
after making a simple unitary transformation from the
channel spin representation to the Ip, m I representation.
Straightforward, but lengthy, calculations then yield the
desired expressions for KU, Kr, and KT. Since the ampli-
tude contains the sum of Coulomb and resonance contri-
butions, its square contains pure Coulomb (CC),
Coulomb-resonance (CR), and resonance-resonance (RR)
terms. The results are summarized below:

=ICU(8, E)+KI.(8,E)a'p;„+KT(8,E)o"n,

where n is the vector normal to the scattering plane,

n =pin& pou~ ~ (14)

Kcc+KcR+KRR

EI ——EL +ElCR RR

ET=ET +ETCR RR

(18)

(19)

XU is evidently the unpolarized cross section. KU and
KT are coefficients of spatial scalars and AT=Kz/KU is
the normal (parity-conserving) analyzing power for a

Each of the above terms is defined in terms of certain
common factors I" and 6, and the Coulomb quantity
C(8). For the unpolarized terms

K (8E)
k~

KUcR(8, E)=Re i/I"(8, Ej,l, l)[l] 'P, (eos8) ~,
lj

I. OJ
KUR (8,E)=(1/V 2) g b,(E,L,O,J) () () () PL (cos8) i

L,J
for the longitudinal terms

(21)

(23)

KI (8,E)=Re'i g I (8,E,j,lq, l~)
I, I2J'

1 1 02

1

2 2 I)+l2
1 0 [1—( —1) ' ']PI (cos8) ',

1
(24)

I 1 J
K&RR(8,E)=(1/W6)gb(E, L, 1,J) 0 O 0 Pr(cos8),

I.,J
(25)
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and for the transverse terms,

KT (8,E)=Re' g I (8,E,j,li, lz)

I, 1 J
Kr (8,E)=(1/v 6) Re g 6(E,L, 1,J)

1 1 0 [L(L+1)] '~ P~"(cos8)
I.SJ

(27)

We now define the remaining quantities needed to complete Eqs. (21)—(27):

C(8)=(ri/2) csc (8/2)exp[ 2i—kiln(si n8/2)],

j —,
'

12

I'(8,Ej,l, l )= C(8) y (-1) ' ' ' '[s ]' [s ]' '[1,]' '[1 ]' [J][j] —,
'

—,
' s T. . . ,

4k 2

l, s, J

(28)

(29)

X ( 1) [1] [1 ] [1 ] [1 1 Is ] [s 1 [J][J]IL][S][J]

ss&s2JJ'

r l)li 12 J 11 L
X p p () p p 0 W( JIJ'1';sL ) W( —,—,sis2', S—, ) s i

J

I
J J*

2 ~ Tls, l &s &
Tl's, l2s2

J' I.
(30)

The T matrices in Eqs. (29) and (30) are the usual" ones,

J 2I (crI —oo) JTl l =e ~l&l2~s&s2 Sl&s&, l&s2 (31) Kl
=

(8,E)= (1+cos8)C(8)Re(iTo i )
4k

where S is defined for parity violating transitions by Eq.
(7) and for parity conserving transitions by Eq. (8). Final-
ly, the [ ] notation is defined by

[1]=21+1 . (32)

C. A special case

Given the rather complicated nature of the expressions
derived in the preceding section, it is useful to consider a
special case which includes much of the essential physics
of the full problem. Consider, therefore, a simple two-
level intermediate nucleus with J=p and with opposite
parities for the two levels. The channel spin is S=p, 1

and coinbines with the orbital angular momentum 1=0,1

to give J=0. The simplification of the cross section ex-
pression is dramatic, and we have

KU= (8,E)= 2 I
C(8)

I

This completes our specification of the theoretical cross
sections.

2Re[To, i(To,o+Ti i)],1
(34)

scJ='I.
Al

EU E=E)

12 '
&1IHPNc I2&

I, i
6') —6'2+ I 22

(35)

(notation: To i =Ti. . o I,, i etc. ) .J=0

A number of features are readily apparent now. First,
the resonance-resonance term is isotropic and dominates
the Coulomb-resonance term for large angles. Second, the
parity violation necessarily involves a change of 1 by one
unit. This is also evident from Eq. (26) for the Coulomb-
resonance term and from Eq. (25) for the resonance-
resonance term.

Let us now simplify even further by supposing the in-
cident projectile to be a neutron. Denote the resonance
energies and widths by e],I &

and e2, I 2, respectively, and
assume that, for example, the first resonance is narrow
while the second is relatively broad. Let the incident neu-
tron energy be equal to the energy of the first resonance,
i.e., E=@~. Then,

Re[iC(8)(Too +Ti i )]

+,(
I To,o I'+

I Ti, i I')
16k

(33)

As expected the parity-violating effect is amplified if
the admixed levels are near each other. Now make the ad-
ditional assumption that Ie& —c2I &&12/2. In this case
the expression for KI becomes very similar to that for the
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PNC circular polarization of a two-level nucleus such as
' F (see Ref. 6). The factor QI'z/I

&
in Eq. (35) plays the

role of the electromagnetic amplification factor
(Ml )/(E1) which occurs in the expression for the PNC
circular polarization.

III. APPLICATIGN TG THE 9 MeV 0+
ANDO- T=& STATES IN '4N

In this section we discuss a particularly interesting ap-
plication of AL measurements over parity-mixed elastic
scattering resonances. In the self-conjugate nucleus ' N
there is a closely spaced doublet of J=O, T=1 levels —a
0+ state at E„=8.618 MeV and a 0 level at E„=8.79
MeV (see Ref. 12). These two resonances have only one
open particle decay channel —' C + p. The 0+ level cor-
responds to a 1@~~2 resonance with E'p' ——1150 keV
(I ' .=7+1 keV). The 0 level corresponds to a 2s, ~z

resonance with Ep' ——1340 keV and l"' -460 keV.
The parity mixing between these two levels is of partic-

ular interest because:
(1) The mixing is sensitive primarily to the M=O com-

ponent of HPNc. Although the isospin structure of the
problem also allows M=2 mixing, the M=2 matrix ele-
ment will be small compared to the LU =0 Inatrix element
because there cannot be any coherent buildup of M=2
contributions (i.e., there is no M=2 component of an ef-
fective one-body PNC potential). There is at present only
one experiment which is sensitive only to the LE =0 com-
ponent of the PNC NN force—the a decay of the 8.8
MeV 2 state in ' O. However, the interpretation of this
highly precise experimental result is clouded by nuclear
structure uncertainties. It is not a case of simple two-level
mixing. To interpret the result one needs shell model cal-
culations which include up to 4%co configurations. As a
result there is a large and somewhat poorly defined
theoretical uncertainty.

(2) The observable provides a very sensitive way to mea-
sure HpNc. The anomaly in AL is magnified by nuclear
structure effects and the achievable statistical precision is
high because elastic scattering cross sections are very
large. The magnification arises because of the very large
width of the 0 resonance compared to that of the 0+ res-
onance. As can be seen from Eq. (35), if the beam energy
is selected to lie on top of the narrow (0+) resonance the
longitudinal analyzing power is enhanced by a factor
which is roughly [I (0 )/I (0+)]'~ =8.1.

(3) The longitudinal analyzing power on the 8.618 MeV
0+ resonance should be well described by two-level mix-
ing. The nearby broad 0 resonance has nearly the full
2s»z single-particle strength (see Sec. IV). Therefore,
there cannot be any other 0 resonances with larger 2s&~2

decay width whose admixtures could contribute appreci-
ably to AI .

(4) There is only one open strong interaction channel
(elastic scattering). Furthermore, the parity-mixed reso-
nances are J=0 and hence have unique values of / and S.
These circumstances lead to considerable simplifications
in the reaction theory and therefore in the analysis of the
experimental results.

(5) The theoretical models of the 0+ and 0 levels in

' N are reasonably good. In the following section we
show that even a very simple shell model gives a decent
account of many of the properties of the 0+ and 0 levels.
Furthermore, the 2 =14 system has suffliclently few par-
ticles that more sophisticated calculations which include
all excitations up to 2%co are feasible. Therefore we expect
that the analyses of the experimental results in ' N in
terms of the dd =0 PNC NN interaction will be relatively
free from nuclear structure uncertainties.

IV. SHELL MODEL PREDICTIONS
FGR PARITY MIXING IN ' N

0;I

8790 + 0; I
86I8 Os I

2;0
Q;I

2;0

620'+ 5848
I+ 0 5690

5I06
I;0
2;0
0;0

569l
5629
4834

I;0
I;0

0;I
2747 0; I

expi theo

FIG. 1. Comparison of the observed spectrum of levels in ' N
vnth the results of the simplified shell-model calculation
described in the text.

In order to determine the practicality of an experiment
to measure AL, over the second 0+; T=1 (Oz ) state of
' N we have made a shell model estimate of
(0& ~HpNc ~Oz ). The estimate is based on the "best
value" PNC NN potential' of Desplanques, Donoghue,
and Holstein which has been quite successful6 in account-
ing for PNC effects in p+p, ' F, ' F, and 'Ne. The cal-
culation was performed using the Oxford shell model
codes as described by Brown, Richter, and Godwin. ' The
wave functions were diagonalized in a model space in
which the ls&&z and lp3&z orbits were filled and the active
(valence) particles were restricted to 1p~&z, 2s~&z, and

1dz&2 orbits. The single-particle energies and residual ma-
trix elements were taken from Ref. 15. The predicted en-

ergy levels of ' N are compared with experiment in Fig. 1.
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The simple model gives a rather good account of the data.
Its main shortcomings are the failure to reproduce the
3948, 7028, and 7967 keV levels which presumably have
large amplitudes for configurations containing holes in
the 1@3j2 subshell.

Since HPNc is a short-range two-body operator we need
to use correlated wave functions in order to calculate
PNC matrix elements. Correlations were included by
multiplying the harmonic-oscillator wave functions (with
fico=14 MeV) by a factor given by Miller and Spencer. '

This procedure gives results which are consistent with
more elaborate treatments of the correlations. The
predicted PNC matrix element is

(38)

where C~ is a fractional parentage coefficient whose
square is equal to the familiar quantity (CG) S, where CG
is an isospin Clebsch-Gordan coefficient and 5 is a
single-nucleon spectroscopic factor which, in our case,
connects the A =13 ground state and the 3 =14 state la-
beled a. The label a stands for the quantum numbers J,
K, and T as well as an index specifying the particular state
(if there is more than one) with these quantum numbers.
In terms of a doubly reduced spin-isospin matrix element

&0
i HpNC i

0 & i
=(1.49+0 0. 10) cV (36)

where the three numbers are the contributions of the
M=Q, 1, and 2 comPonents of HpNc.

The phase of this matrix element is arbitrary since it
depends on algorithms used in diagonalizing the wave
functions. However, the experimental observable depends

the P«duc«1+1 &
—

IHpNc I+&, the sign «
which is not arbitrary. Our shell model wave functions
are normalized without the i factor used in the scattering
formalism of Sec. II and with the single-particle radial
functions chosen to be positive at small r. The shell
model PNC matrix element is related to that employed in
Sec. II by

&(il»)J IHPNC I (4~2)J&-.li. g

The quantity P (a) is the projectile wave function at the
channel surface. If we assume P~(r) to be roughly con-
stant for r~a then the condition f drr P =1 gives
P =3/a . When this value of P is inserted into Eq. (38) it
provides a crude estimate of (I )'~ . However, we need
only rely on theory to give the sign of QI +I since the
magnitudes of QI + and QI are known from experi-
ment. The shell model predicts

1.00
Co

0.299C +=+

= i ' '
&(ilsl )J

~ HpNc
~
(4s2)J&sh.n m~ei .

The width factors are given by

It also requires that $0 (a) =p(2slq2, a) and

P +(a)=P(lp, &2,a) have opposite signs at the channel ra-
dios a. With these conditions we obtain the relation

(I'I 0. 0) (I'I I. I) &(I=Q;s=Q}J=Q [HpNC
~

(/=1;@=1)J=Q&=
~
[I „(Q )I' „(0+)]I~2

~
( —1.39 CV) . (41)

TABLE I. Comparison of theory and experiment for some
J=0 and 1 levels in ' N.

Etheo~
X

(MeV)

EexPt

(MeV)

How much credence should we place on the simplified
sllcll 111odcl Plcdlctlons fol' matrix clcnlcllts of HpNc7
One can get some idea from the accuracy of the predic-
tions for parity-conserving quantities. The 0+; T= 1, 0
T=1, 1+; T=O, and 1; T=O levels obtained in this re-

I

stricted model space are shown in Table I. Considering
the severity of the truncation the predicted excitation en-
ergies are in reasonable agreement with experiment.

How well does the simplified shell model account for
the proton widths of the 0+ and 0 levels'? Since Eq. (38)
with P =3/a gives only a crude estimate of the width
we used a more sophisticated procedure to estimate I (0+)
and I (0 ) from the shell model C's. We first estimated
the single-particle (s.p. ) widths from a procedure' based
on the relation

0+ T=1

0 T=1
1+ T=O

1 T=O

2.747
8.711

13.058
9.929
0

4.834
13.162
5.629

2.313
8.618

8.79
0
3.948
6.204

p ~2
BE 5=m/2

where 5(E) is the scattering phase shift as a function of
projectile energy. The derivative was evaluated using op-
tical model wave functions. The Woods-Saxon nuclear
potential well had a standard geometry and the depth was
adjusted to produce a resonance at the observed energy.
Then we estimated I from the relation

'The observed 1+ I=0 level at 3.948 MeV is not contained in
this model space because its wave function has large amplitudes
for configurations with holes in the p3/2 subshell.

I =I, p C

where C was defined in Eq. (39). This procedure gave
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TABLE II. Comparison of theory and experiment for y-ray decays of the 9 MeV J=0 doublet in ' N.

Transition: E;(MeV) —+Ef(MeV)
Expt Theory Bexpt

Reduced transition strength
8,

8.618~0.000
—+3.948
~5.690
~6.204

8.771~0.000

~5.629
~4.834

8(M1)'=0. 11+0.04 p~
8(M1)'=1.3+0.4 p
8(E1)'=0.022+0.007 e fm
8{M1)'=l4+5 p,~

8(M1)=0.32 pN

8(E1)=0.16 e fm
8(M1)= 12.7 q'

8.79 ~0.000 9.929—+0.000 8{F.1) =0.065+0.017 e fm 8(Z1)=0.086 e'fm'

'P. M. Endt, At. Data Nucl. Data Tables 23, 3 (1979).
Reference 12.

'See the text.

good results for the "single-particle" 2s&&z resonance in
' C+p scattering at Ez ——461 keV. The predicted width
of 39 keV (assuming C= 1) agrees well with the observed
value of 34 keV. The predictions for the 0+ and 0 levels
of ' N using the shell model C's are 6.9 and 1045 keV,
respectively. The width 1(0+) is in excellent agreement
with the measured value of 7+1 keV, but I (0 ) is consid-
erably larger than the observed value of -460 keV. This
may be a result of the pure 1p)gp2s)gp configuration as-
signed by the simplified shell model or it may reflect the
fact that the approximation in Eq. (42) is not valid when
the width becomes very large.

Gamma-ray transition rates provide a more demanding
test of the wave functions. The measured y-ray transition
rates between these levels are compared with our predic-
tions in Table II. The agreement is again quite satisfacto-
ry considering the restricted model space. However, it has
been shown experimentally that in the 2 =18 and 19 sys-
tems simple shell model calculations, such as we report
here, overestimate the matrix elements of HPNC and of
the closely related b J=0 first-forbidden (33-decay operator
by factors of -3. To get agreement between the first-
forbidden decay rates and theory one needs to employ a
much larger model space. Because our calculation was

'c (p p) c

restricted to a small model space the predicted matrix ele-
ment of Hpzc will only be a crude estimate. However, it
is adequate for our purpose, namely to show the utility of
longitudinal analyzing power measurements over elastic
scattering resonances.

We have computed the ' C+p cross sections and
analyzing powers predicted by Eqs. (13)—(31) using the
resonance energies, widths, and J values given in the lat-
est compilation' plus the shell model PNC quantities
given in Eq. (41). The results are shown in Figs. 2 and 3.
In Fig. 2 we compare our calculation to the unpolarized
data of I.atorre and Armstrong. ' The agreement between
our calculation (which included only the resonances at
Ez' ——551, 1150, 1340, 1462, and 1540 keV) and the data
is quite good. In Fig. 3, we show, on an expanded hor-
izontal scale, some quantities relevant to an experiment
designed to measure (0+ ~HpNC ~0 ) by detecting Al.
over the narrow 0+ resonance. We postulate an apparatus
consisting of two annular proton counters —a back
counter subtending values of 8 between 125' and 175', and
a front counter subtending polar angles between 25 and
35'. These two counters view a ' C target with a thick-
ness sufficient to give a 10 keV energy loss to the proton
beam. We display the predicted counting rates in these
counters plus the energy-and-angle-averaged longitudinal
and transverse analyzing powers. The experimental signal
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FICi. 2. Comparison of the unpolarized scattering cross sec-
tions of Ref. 18 with calculations using the formalism discussed
in the text and resonance parameters taken from Ref. 12. The
narrow structure at E~-1150keV is the 0+ resonance. The 0
resonance is too broad to show up as a distinct structure.
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FIG. 3. Predicted counting rates and analyzing powers for an
experiment (see the text) to study parity mixing of the 0+ and
0 T=1 levels of ' N. The cross hatched area on the Aq plot
indicates a +10. band centered on the predicted Al, where o. is
the statistical standard deviation expected after an integrated
beam charge of 1 pA d.
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is the ratio of At in the back counter to AL in the front
counter. It can be seen that the statistical power of the
helicity measurement is quite good. After 1 IMA d of in-
tegrated beam charge the statistical standard deviation is
10% of the predicted PNC anomaly. This example
demonstrates the utility of the proposed approach. An
experiment along these lines is currently being prepared at
the University of Washington Nuclear Physics Laborato-

V. CONCLUSION

We have shown that the longitudinal analyzing power
associated with parity-mixed scattering resonances can
provide a sensitive and interpretable measurement of the
PNC matrix element connecting a parity-mixed two-level
system. Implementation of these ideas will expand the
number of two-level systems which are accessible experi-
mentally. In particular, the parity mixing in ' N, because
of its virtually pure b,I=0 character, will provide a con-
straint on the PNC NN interaction which complements
those available from the other two-level nuclei ' F, ' F,

and 'Ne.
Longitudinal analyzing powers have already been stud-

ied in neutron scattering' and in (p,a) reactions. How-
ever, these examples can not be analyzed in terms of two-
level mixing and therefore are subject to large uncertain-
ties from nuclear structure. A longitudinal analyzing
power measurement in the He( Li, y) reaction has been
proposed by Bizzetti and Perego. ' This would be a case
suitable for a two-level analysis but unfortunately it is not
very favorable on experimental grounds.

Note added. W. C. Haxton has calculated the PNC
matrix element in ' N using a complete 2fico model with

p«jection and obt»ns
I
«

I HpNc I

o+
&

I

=1 o4
eV. Our cruder result agrees fairly well with this predic-
tion.
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