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The deuteron photodisintegration with forwardgoing proton is calculated using a new formalism
for organizing matrix elements. Relativistic effects are thoroughly discussed. Different ways of cal-
culating retarded electric multipoles are investigated. Meson exchange currents are included in vari-
ous approximations. The spin-orbit dipole operator is found to dominate the relativistic corrections.

I. INTRODUCTION

The remarkable measurement by Hughes et al. of
deuteron photodisintegration! with the proton forwardgo-
ing (0°) was not explicable by conventional theoretical cal-
culations.>~> Although this experiment was extremely
difficult, it has been confirmed by two independent®’
measurements. Conventional wisdom held that deuteron
photodisintegration was well understood and relatively
uninteresting; consequently, little theoretical work was
performed in the time span between Refs. 1 and 2. The
fact that theoretical calculations of electric-dipole-
dominated photodisintegration were 20% higher than ex-
periment was stunning.

In order to understand the significance of this result,
the essence of the physics must be understood. Consider
Fig. 1. The photon (wavy lines) impinges on the deuteron.
The electric field of the photon is orthogonal to the wave
vector g, and the electric force is therefore in the same
direction. Classically, the electric force cannot drive the
proton forward; the most probable event, classical or
quantum, is for the proton to move at 90° to the photon.
The lower figure depicts the unit angular momentum (hel-
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FIG. 1. Classical description of deuteron forward photodisin-
tegration.

icity) of the photon and the zero orbital angular momen-
tum of the outgoing nucleons along the photon direction.
Thus, unless the nucleon spins participate, the process
along the beam direction is forbidden by angular momen-
tum conservation.

The spins do participate, of course, but not in a first ap-
proximation for the electric dipole part of the process.
The Siegert electric dipole operator is given by

LA .
Bo=>3 7’?;:%% , (1)
where T; is the relative coordinate of nucleon i with
respect to the nuclear center-of-mass R (F;=7,+R), 7
is the (Pauli) isospin operator of nucleon i, T is the deute-
ron relative coordinate, (¥ —T5), and Ar=7—73. This
spin-independent operator leads only to triplet final states,
and involves the nuclear spins only through the deuteron
D state, which couples orbital and spin angular momenta,
and through noncentral forces in the unbound system,
which lead to different radial wave functions for the vari-
ous partial waves of the excited states. Thus, the forward
photodisintegration probes

(1) spin-dependent transition operators;

(2) the deuteron D state;

(3) noncentral forces in the excited state;

(4) possible exotic (non-nucleonic) phenomena.

The classical argument given above leads to a large
suppression of 0° photodisintegration relative to 90° pho-
todisintegration for photon energies between 20 and 100
MeV.

The theoretical attempts to understand the discrepancy
between theory and experiment have centered on various
relativistic phenomena.” Primary among these is the elec-
tromagnetic spin-orbit interaction:>°

HSO: _E'Aﬁso ’ (2)
where
p=s 1 — —
ADm=—m§(2m—e,~)a,-Xﬂ,- , (3)
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and E~iwA is the photon electric field; w is the photon
energy; e;, ;, and m are the charge, magnetic moment,
and mass of nucleon i; &; is its spin; and 7; is the
momentum of nucleon i relative to the center-of-mass,
whose (frame-dependent) total momentum is P
[f)’i=7_7",~+(_f’/A)]. Operator (3) is spin dependent and
can contribute substantially at 0°, where the usual nonrela-
tivistic _150 contribution is suppressed. The surprisingly
large size of the spin-orbit operator was first noted in the
original calculations of Cambi, Mosconi, and Ricci,!! and
will be verified later.

The electromagnetic spin-orbit interaction is responsible
for the spin-orbit splitting in the hydrogen atom and its
use is not new in nuclear physics.*° In the former case
the electric field produced by the nucleus transforms into
a magnetic field component which interacts with the
electron’s magnetic moment, i. The Thomas precession
accounts for the e term in Eq. (3). Spin-orbit interactions
are the quintessential relativistic corrections. The same
spin-orbit interaction generates a small charge density for
neutrons in a nucleus, and is a major component of ob-
served isotopic charge density'? differences. In addition,
the proper use of the spin-orbit interaction, and spin-
dependent kinematic relativistic corrections, are needed to
prove the spin-dependent form of the low-energy theorem
for Compton scattering and the Drell-Hearn-Gerasimov
sum rule.’

A simple calculation provides a quick estimate of the
size of this effect for forward photodisintegration. Keep-
ing only spin-dependent impulse approximation terms in
the E 1 interaction, the transverse (to q) current' is given
by

-
= . = = q°N;
J (q)=i[Hy,Dy+ADg ]+ e 4)
with
N, = — = 31,5, T} . (5)
s 2m 1 1 1

i
Replacing the commutator of the nuclear Hamiltonian,
H,, by 0, equating g and w, and writing

Pi=im[H,,T;]=iomT; ,

we obtain

— — 2
T (@) =ioDo+ =3 (2u;—e (7 XT})
4dm 4

w? o
—Zn—gm(a;xh). (6)
An important aspect of the problem is that the 3P;-3F;
two-body final states correspond to isospin 1, and the
transition has AT =1; the corresponding magnetic mo-
ment is p,=p,—p,=4.7uN, which is very large.
Neglecting e; in the second term in Eq. (6) compared to
Uy, We see that the spin-orbit interaction contribution is
twice that of the spin magnetization current, with the op-
posite sign. From the early work of Partovi’ we know
that the latter is roughly + 10% of the total cross section

for @ ~100 MeV, implying that the former is roughly
—20%. This is a good estimate, as seen in Fig. 2, which
depicts the impulse approximation for the Paris poten-
tial,” with and without the spin-orbit interaction. The
latter is in reasonably good agreement with the data. This
estimate could have been made 20 years ago.

The previous rough argument neglects the noncommu-
tativity of the nucleon-nucleon potential with spin and
isospin factors, and glosses over possible complications
with recoil and center-of-mass motion. In the atomic
physics case, where such problems do not arise to lowest
order, neglecting the small anomalous magnetic moment
of the electron produces u;=e;, and the two terms can-
cel.’’ Spin-flip electric dipole processes proceed through
spin impurities in the wave functions induced by the (elec-
tronic) spin-orbit potential. The *P;—!S, transition in
Helium-type ions is a good example.!®

Another type of process which has been much calculat-
ed, if not studied, is the contributign of the one-pion ex-
change (OPE) dipole operator, AD,.!*1=2 The analo-
gous process in an atom would be a one-photon-exchange
dipole operator. The latter depends on the gauge chosen
for photon exchange, and vanishes in Coulomb gauge.!®
Several points should be made about the OPE charge
operator:

(1) it is of order (1/¢?), i.e., a relativistic correction;!®

(2) it is spin dependent;'®

(3) it is different for ordinary pseudoscalar (PS) and
pseudovector (PV) pion-nucleon couplings;?!

(4) it is nonlocal, i.e., momentum dependent;16

(5) it depends on the method chosen to perform the cal-
culation.?

Most calculations use PS-coupling Born terms; this is in-
consistent with current algebra and with experimental
threshold pion photoproduction?’ and exaggerates the ef-
fect. Most calculations also drop the momentum-
dependent terms;>!11718.20 this underestimates the effect.
More serious is comment (5). Different methods of calcu-
lation lead to different transition operators, which are
nevertheless members of a family of unitarily equivalent
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FIG. 2. Deuteron forward photodisintegration for the Paris
potential with and without the spin-orbit dipole operator.
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operators.'®?? In order to obtain an unambiguous matrix
element, corresponding wave functions from correspond-
ing nucleon-nucleon potentials must be chosen from the
family. This cannot be done with common “realistic” po-
tentials, because such potentials do not correspond to any
of the representations mentioned above. The difficulty
lies in the complicated spin dependencies, which leads to
many different types of term, not all of which can be el-
iminated by “dialing” the unitary transformation. The
OPE isoscalar dipole operator is unique, because the iso-
scalar (Siegert) dipole operator vanishes, unlike the isovec-
tor one. The most common method of calculating the
OPE charge operator maximizes the effect. Although we
have not performed an unambiguous calculation either,
our results for various unitary representations suggest that
the OPE contribution is probably no more than 40—50 %
of the spin-orbit effect and the most likely representations
will lower the cross section. A detailed discussion is given
in Sec. V.

Several other contributions of relativistic order arise
from recoil, or nuclear motion. These are discussed in
Sec. IV. Lorentz invariance specifies relations between
various multipoles in different reference frames. Typical-
ly these corrections are of order wz/m, or /m, times the
M1 or E2 contributions, where m, is the deuteron mass,
and are obviously unimportant.

The remaining contribution to the electromagnetic in-
teraction of order (1/c?) is the Darwin-Foldy term.%
We show that this term is proportional to (§2—w?) in
any Lorentz gauge and hence vanishes for real photons.
This, however, points out another problem: Should a nu-
cleon form factor be included in the current operators, as
it is in treatments of electron scattering? The Darwin-
Foldy term generates a component of the nucleon charge
form factor which vanishes for real photons. This does
not imply that the identical situation holds for all parts of
the nucleon form factor. Arguments based on Lorentz in-
variance have been made?} which show that other “intrin-
sic” components of the nucleon densities have an approxi-
mate argument § >=¢q 2—w2+a)},-, where wy; is the intrin-
sic energy (mass) difference of final and initial nuclear,
states. Neglecting recoil produces §2=7q 2, which is the
naive result. The less naive replacement in form factors
of G2—g2=0 does not necessarily hold, because the nu-
cleons in the nucleus are off shell and depend on more
than one variable (e.g., % #i» in addition to g 2). Indeed, the
purely nuclear part of photodisintegration obviously can-
not depend solely on g2 The (ambiguous) inclusion of a
nucleon form factor is shown to be completely unimpor-
tant at low energies and relatively unimportant at higher
energies. The effect is a relativistic correction.

A potentially more serious problem concerns the vari-
ous ways of computing retardation in the (dominant) elec-
tric multipoles. The use of Siegert’s form of the electric
dipole operator is the backbone of the photonuclear field.
Any electric multipole field must have this property in the
long wavelength limit. If the model nuclear current is not
conserved, different forms generate different retarded
electric multipoles. The necessity of incorporating expli-
cit exchange currents in order to achieve a conserved
current ensures different numerical results. Recently!”

has been shown that a unique extension of Siegert’s result
exists for arbitrary wavelengths, and the use of this new
form versus older forms is studied in Sec. III. Ultimately,
the effect is not large, but the new E 1 form has consider-
ably smaller spin-independent retardation corrections than
the standard form.

The Reid soft core (RSC) potential model, as originally
published,?* does not define an interaction for total two-
body angular momenta, J, greater than 2. These poten-
tials were developed by Reid and have been pubhshed by
Day.?> We have included these interactions in our RSC
calculations. The effect is small, but visible. In order to
convince the reader that the results for various realistic
potential models are commensurate, we have plotted in
Sec. V cross sections for eight such models,'*?*27—32 and
have also scaled these results to a common value of Ap
(=Agm), the deuteron asymptotic D-wave normalization,
as suggested by Schulze, Saylor, and Galoskie.?® The
latter results all lie in a narrow band, except for the
Hamada-Johnston?’ and RSC potentials. The former lies
low, presumably because it has defective deuteron bind-
ing,?® while the latter has poor low-energy p-wave phase
shifts.

Our basic approach to calculating the amplitudes is new
and systematizes the nucleon spin-photon polarization-
angular dependence into twelve invariants: three singlet
and nine triplet, similar to the relativistic approach of
Ref. 33 and analogous to that of Ref. 34. This expansion
is elegant and is particularly simple for 0° photodisin-
tegration. We evaluate multipoles through L =2, which
is sufficient for discussing the physics.> This is discussed
in Sec. I

Finally, we note that there has been recent controversy
concerning the deuteron data. An excellent discussion of
the older data has been given by Fuller,*> while new polar-
ized photon data have been generated in Ref. 36. We
greatly encourage renewed study of the deuteron, which
continues to produce surprises.

II. ANGULAR DISTRIBUTION

Deuteron photodisintegration is complicated by the
large number of possible spin combinations of incoming
deuteron and photon and outgoing nucleons. Nonrela-
tivistically there are two independent vectors together
with spin directions which determine the geometry. A
matrix element of the form (fP;;k |iP;;q) specifies a
deuteron with internal quantum numbers / and momen-
tum ?,- interacting with an incoming photon with
momentum q to form two (identical) nucleons with fotal
momentum P Py, i internal quantum numbers f, and relative
momentum k [k—(pl—pz)/Z Pf P1+7P,]. Clearly

P,+4=F;, ™

which specifies that we can define two independent com-
binations of total momentum vectors;

S=PB,+P, (8a)
and

G=P;—P,. (8b)
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Nonrelativistically, q is frame independent while S is
manifestly frame dependent, although the form of the nu-
cleon current’s dependence on the latter is trivial (~S)
and vanishes in transverse gauges and frames for which
§~6. These specific frames have been designated g-
congruent frames,® and include the center-of-mass and
laboratory frames for our process. Relativistic corrections
will (must) depend on S. We choose to work in the
center-of-mass frame (S=g). Thus k and q specify those
geometrical aspects not connected with spin.

Matrix elements of the current operator are convention-
ally and conveniently broken into magnetic and electric
contributions. Both can be schematized in the form!°

€3(§)=A,-.#; (magnetic L pole) , (9a)

€ 3(q)=B. &, (electric L pole) , (9b)
with

Ay =VAr[M& Yy _«(D]ra » (10a)

BLM:m[61® Yo @ ]1a s (10b)

where A =g X €, € is the photon polarization vector and
& and # are the nuclear electric and magnetic mul-
tipole operators.

The remaining angular dependence is contained in the
final state two-nucleon wave function. We ignore tensor
coupling of waves for demonstration purposes and write
that quantity in the form

Si A~
Yt =am 3 i () ImySmg | IM X5 R (K5)
i,

(11

where we have coupled the spin and orbital angular mo-
menta. It is convenient to introduce a unit polarization
vector € for a deuteron with a wave function, dm, corre-
sponding to magnetic quantum number m, and sum over
m to form

g d=3eld, . (12)
A
Choosing A=m and using e}(m)=3;, ,, reduces 2-d to
d,,. We use the same device (vector €') for triplet final
spin states.
Taking matrix elements of the operator in Eq. (9a),
multiplying by e, e, and summing over m and my, we
obtain for the Lth electric multipole

(Kmy | @ T () |dm ) — S(—i)Uk|| &, ||d)WarTE
LJ

(13a)

and

(k0| &TL(q)|dm)— (=i llk||&||d)vExSIE,
1

(13b)

where the singlet and triplet functions are

(By®e); Y;(k)

1
SE=Var DERIE (13¢)
and
B 1Y (K)®e™
T}LZ\/Z')_T( @) [Y(k)®e™], (13d)
(2J+1)1/2

A corresponding result holds for the magnetic multipoles
(9a), with B; — Ay . The utility of this scheme is that all
the angular and spin information is contained in S and T}
all the purely nuclear information is contained in the re-
duced matrix elements. The radial final-state wave func-
tions are complex, containing phase (shift) factors of e ~8,
while &; and .# contain an explicit factor of if. Al-
lowing a tensor force in the final state produces the same
forms we have discussed above, with the radial wave func-
tions in the reduced matrix elements appropriately modi-
fied.

The only problem associated with this scheme is that
each new multipole or partial wave introduces a new
spin-angular function. These functions are reducible; it is
possible to express each one in terms of an irreducible set
of twelve invariants.3> For each initial state with a given
parity, the photon has two possible polarizations and the
deuteron three possible spin projections, each of which
can produce either a triplet or singlet final state. Thus
twelve invariants (2)X3X2) are possible. Such a set are
the three singlet and nine triplet invariants listed in Table
I. We have chosen to work in transverse gauge, so that no
factors of €+ (=0) result. Moreover, a variety of isotro-
pic Cartesian tensor identities exist which allow other
forms to be reduced to the 12 in Table 1. For example,
E’-?Xé‘é’-l?is identical to I, +1, —I?'ijll and E’-I/c\xijé’-@
is equivalent to k -gI, —1I,, while double cross products,
etc., can also be reduced. We note that under a time re-
versal transformation all spin-polarization factors and
momenta are odd, so that both Iy and Jy are invariant if
we treat €, €, and €’ as real. Under a parity transforma-
tion, € and the momenta are odd while € and €’ are even.

“Thus each invariant requires an odd number of momenta

for invariance. The mapping of S or T to Iy or Jy can

produce expansion coefficients which depend on k ‘F=x.
The type of scheme introduced above is particularly

common in particle physics, but less so in nuclear physics.

TABLE 1. Spin invariants for singlet (Iy) and triplet (Jy)
transitions.

I: iexek J: ek

I: iexe§ Jy: €€E*-§

I: ie-ke-kxq Jy: €€*ek
Jy: €©€*E4
Js: ekee*
Jg: eke-ke™*k
Jy e-ke-ger-k
Jg: ©ke-ke™-g
Jo: €-ke-ger*-g
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It has a number of attractive attributes that accrue from a
separation of spins from internal variables:

(1) it is an elegant and efficient organization of the
problem;

(2) it allows easy incorporation of symmetries;

(3) it permits easier discussions of unitarity;

(4) it allows easier counting of the number of indepen-
dent experiments needed to determine all or a selected
subset of the invariants.

We will see below that certain kinematic situations greatly
reduce the number of nonvanishing invariants.

Photodisintegration cross sections are calculated in the
usual way by averaging over photon and deuteron polari-
zations and summing over final state spins. Expanding
the matrix elements> in the form

9 3
2 JN“N“" 2 INbN ’ (14)

N=1 N=1

(k|&T|d)=Var

the cross section in the c.m. frame becomes
da' aEkk
dQ 60, (14+w,/Ep)

’

9 3
> IunAun + 3, IunByy
NM N

(15)

where k is the proton c.m. momentum in the final state,
E,=(m?+k?)1? ED=(a)f,+m12))1/2, while a, m, and
mp are the fine structure constant and the nucleon and
deuteron masses. In addition

Ay =Relayay) , (16a)
By =Relbybyy) , (16b)
and
Iiv=3 Und3)=Tnas - (16¢)
spns

The Ipy are defined analogously and both are listed in
Table IL.  All relations follow from photon and spin sums:

EG'Ej*zfsij—q\i@j ;
and
Selel* =8,

respectively. In Table II we identify s*>=1—x2 for unpo-
larized photons. For linearly polarized photons we use
s2=(1—x?)(1+ 3, cos2¢), adopting Partovi’s notation?
and geometry. We note that the cross section for a given
multipole L is a polynomial in x of maximum order 2 L.

The form of the tabulated functions is particularly sim-
ple for 0=0 or 7, where I3 and Js—Jq vanish. Moreover,
at these angles Iy=xI,, Jy=xJ,, and J3=xJ,;. Thus
there are only three independent invariants, which makes
theoretical analysis particularly simple.

Finally, as we noted in Ref. 37, it is consistent with the
relativistic corrections formalism we will introduce in Sec.
IV to use relativistic kinematics in determining the rela-
tionships between various energies and momenta in the
problem.

The relationships we need in the c.m. frame are

ar
O 20, /M) 72 (172)
ke 2‘0§+2er1+’"5—4’”2 , (17b)
and
oy=2E,—M) , (17¢)

where mp=2m —e€,, w; is the photon laboratory frame
energy, and the deuteron binding energy, €4, is determined
from the nuclear Hamiltonian in the usual fashion.

III. RETARDATION

In the previous section we set up the calculation of the
radial matrix elements in terms of the operators &,, and
M 1m- The latter is given by

TABLE II. Angular distribution coefficients from spin-summed invariants, JyJ5 and IyI¥. We

have defined x =£-§, and s?=1—x2 holds for unpolarized photons.

Jq Js J3 Js Js Jg J7 Js Jy
Ji 2 2x s? 0 52 s? 0 xs? 0
I 2 0 0 0 xs? 0 52 0
Js3 2 2x 52 52 xs? 0 0
Js 2 0 xs? 52 0 0
Js 3s? s? xs? xs? s?
Js s? xs? xs? x2s2
J7 s? x2s? xs?
Js s? xs?
Jo 52
1, 1, I
I, 2—52 2x — xs?
I, 2 —s?
I; s%(1—x2)
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Jrlgx)

-L Vi
=21 (2L +1)V'4r fd3x
gx

A im (L+1)

X [ YL _1(£)®[—L1(X)]Lm >

(18a)

where the magnetic density operator is obtained from the
nuclear current, J:

ER)=1%xT (). (18b)
Several forms exist for the electric multipoles. The crud-
est do not reduce to Siegert’s theorem in the long wave-
length limit and are completely unsatisfactory; large ex-
change current contributions combine with the “classical”
parts of the current to produce Siegert’s result. Therefore
most calculations use a form which, for L =1, is given by

Z 1 =i [Ho,fd3x Yp(i’)gl(qx)]

2 —> —_—
+4- [ 2T @Rk (gx) (192)

with
gi=o [jl(z)+z%jl(z)
=1—2z2/5+--- (19b)
and
h(2)=3j,(2)/z=1—2%/10+ - - - , (19¢)

which clearly has the correct long wavelength behavior.
The obvious question is whether the g2 term in Eq. (19a)
(i.e., the second term) has a form which properly incorpo-
rates the necessary exchange currents to ensure a con-
served current. The answer to this question is no;'° more-
over, the %-J form generates r(3/0r) radial derivatives,
which are unpleasant in numerical calculations. The form
of the electric multipole operator which does possess the
optimal properties'” is

172
L=1lv4m | 2L +1) R
Eim= q(2L Y L [HO’f dx x Y 1ngr (gx)p(X)
172
2q° L 3, L - (20)
_m ZIT fd X X [YL®[—L1(X)]LhL(q.7C) ’
—
which produces < 3 — 3 . — —
p ce S——-—EZ#iain,—»lémrx(yuA70+2,usA0),
7 =i [Ho,fd3x igl(qx>p<sf>} ‘
2 (23a)
E_f 3 T (R
+ d’x hi(@gx)[XXE(X)], (21a) = 1 7 At -
3 N,=— AT} T,
with 0= om 2l TH XL} > (T XL (23b)
3Si(z)  3/1(2) z? )
(z)=—F"—"— ~l—= e (21b) .
&1 2z 2z 30 NSG——Oztlz[rzhb(;'Slz—le)] ) (23¢)
9jo(2) i 2
ho=—2oZ 38D 32 o9 L g2
z z 50 Nao=atolTihi +7Sn(rhi —h})
expressed in terms of Bessel and sine integral functions. H
The forms of g; and A; for L1 can be found in Ref. ~mr = " ,
10. For small g2 both (19) and (21) can be written in the +POralrhi +6h1)], (23d)
form §f2
— 0 —
. N 2, Na=——[t1(rhg —ho (=T, +7S}3)
B\ ~i [Ho,f d*x pRNX+0) |+ LN . 2 & ptiRoTTeRTmonTIER
The quantity O which determines retardation of the +3hoAm(o"XF)], (23e)

Siegert term is six times smaller in the preferred form (21)
than in the standard form (19). Thus ordinary retardation
effects will be much smaller. Similarly, we expect the N
corresponding to the convection current to be smaller,
also. Only the contribution of purely solenoidal currents
such as the spin magnetization current (ﬁs) and isobar
current (1—<TA) is identical in the two representations. Only
if the nuclear current model is conserved will Egs. (19)
and (21) give identical results. We find for the deuteron
in the preferred form (21):

f2=0.079, @=014+0,, AG=F,—0,,

T1,=3(5 5y P+ 25, F—251-5:F/3)/2,
E=4u,u’/(25Amsm) ,

and
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d’gF (G e’ T

(2m)(q 2+p)+N

The pion exchange current contribution, _1(1,, has been
broken down into the seagull or pair term, ~I\)ISG; the true
exchange part, _I(Iex; and the isobar contribution, ﬁA. In
these expressions Am, is the mass difference of the A and
the nucleon, while p is the pion mass. The pion-nucleon
form factor F,n(q?) is taken to be a monopole form3®
with mass A=Bu: (A’—p?)/(4%+A?. From our ex-
perience with the pion-exchange currents we expect ﬁ,, to
be roughly 10—20% of the spin contribution, N, and
therefore quite unimportant for the deuteron problem. In
Sec. VI this expectation is confirmed.

hy(n=dr [ (24)

IV. RELATIVISTIC CORRECTIONS

There are three primary categories of relativistic correc-
tions in nuclei:

(1) single-particle kinematic corrections, usually ob-
tained from a Foldy-Wouthuysen® reduction;

(2) kinematic recoil corrections, which depend on m;,
the total nuclear mass;

(3) potential-dependent or interaction corrections from
meson currents, quark substructure, nucleon excited
states, etc.

These categories are not arbitrary. They must mesh to-
gether so that the constraints of “boosting” a system from
one reference frame to another are maintained?>»4°—4? and
so that overall current conservation is maintained. Al-
though these constraints are powerful, they obviously do
not determine the electromagnetic interaction completely.
We will deal with categories (1) and (2) in this section, but
relegate category (3) to Sec. V.

A Foldy-Wouthuysen transformation, or its equivalent,
applied to the Dirac equation for a single nucleon (or elec-
tron) produces relativistic corrections to the electromag-
netic Hamiltonian of the form®3°

n (2u—e)

- F{BXE}+0(1/m¥)+ - -+
m

(25)

where u, e, m, P, and o are the particle’s magnetic mo-
ment, charge, mass, momentum, and (Pauli) spin, while E
is the external electric field. The first term is the
Darwin-Foldy term,*® while the second is the spin-orbit
interaction. The third class of (1/m?3) terms are not ex-
plicitly needed for our purposes here.

The Darwin-Foldy term is best known for its contribu-
tion to the nucleon charge form factor.>® In any Lorentz
gauge we have

(2F,+F, )q2

Ho+AHpp~ed 2

Fy—

8m

=~e¢Gg(1—q*/8m?), (26a)

where

Gg=F,—«kq*F,/4m?, (26b)

and ¢?=q2—g}. In Eq. (26) we have substituted e —eF,
and k—«F, with u=e(1+k). The combination of Dirac
(Fy) and Pauli (F,) form factors in Eq. (26b) is the
(Sachs) electric form factor. Note that for photons, q¢*=0,
and the Darwin-Foldy term vanishes identically. Physi-
cally, this arises because the V in V‘E lies along the
Poynting vector while the electric field is transverse to
that vector. This result contradicts Ref. 11, which is in
error.

The spin-orbit term generates both a current and a
closely related charge density.!? The latter is

2 i—€; _ - — N
pul®)=—3 | L4 N5 B, , V.E—F)]
i 8m
(27a)
with a corresponding dipole operator
ADy,= [ d’x Xp,o()
2u;—e; -
——3 | 25 16 x(F+mP/m,),  @7b)
i 4m

where P; is the momentum of the ith nucleon, and we
have written P;=7;+m;P/m, in terms of the total
momentum, P, and mass, m,. The P term causes prob-
lems; it gives a “dipole” operator whose internal variables
have the wrong parity.

In order to cure this problem, we must investigate the
dependence of the current and charge operators on the
overall motion of the nucleus; that is, on factors of P.
This dependence is clearly determined by special relativi-
ty, since it will determine the frame dependence of matrix
elements. Moreover, in addition to finding such factors in
operators we must also look at the wave functions.
Galilean invariance states succinctly that the wave func-
tion of a moving system is simply the product of the
internal, center-of-mass (c.m.) wave function, ¢, , and a
plane wave, exp(iP-R), determining the motion of the
center-of-mass in terms of P and R, the usual center-of-
mass coordinate: >, ,m;T;/m,. This structure cannot be
correct when (v /c)? corrections are allowed, because such
phenomena as Lorentz contraction and the Thomas pre-
cession alter the c.m. wave function. The complete wave
function which is a solution of the Foldy-Wouthuysen
Hamiltonian, Hgy [including (v/c)? corrections], has the
form

-

Yy =[1—iXP)lpeme' T X, (28)

where X(0)=0 and X"=X. Note that this has the form of
a unitary transformation applied to a nonrelativistic wave
function. The matrix elements of the Foldy-Wouthuysen
four-current Jéyw, ( fﬁf | J4w (S, ) | iP;), determine the
transition. Because it is easier to deal with matrix ele-
ments involving only c.m. wave functions and because the
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P factors we wish to discuss are located both in J# and in
1, we undo the unitary transformation of order (v /c)*:

(fBy | Jhw | B =(f |T*E,T) i), (292)

where
THS, @) = 8w (S, @) +i [X(P )Tty —JEwX(B))] .
(29b)

In addition, the transformed nuclear Hamiltonian has the
form

H=Hgw+i[X,Hpw]1=(H2, +P?)?

P2 B4  hoP?

_ P , 29
2m, 8m;} 2m} (29¢)

=m,+hy+

where H_, includes the rest masses of the nucleons, and
is given by HFW(§=O)Em, +ho.

An exceptionally tedious calculation®’ using explicit X’s
produces the following results:

~ S To@)
Lpy(q , 30
+Lpo(q)+ 2m, (30a)
where
~ _ q4
L — 20¢)S°V _— q) .
Po am, (Og +2w0y) q+4mtz T po(q)
(30b)

We have written w;; =€y —¢; for the eigenvalue differ-
ences of hg; the recoil energy is wg =§'6/2m,, J is the
internal (c.m.) angular momentum operator, and Ap(q) is
the §-independent part of the (v/c)? correction to p. In
addition, we find

SE'?O
Sm,2

TE, =T D1—Bi+P})/4m2]+pV +

+AT(@+LT @), (30¢c)

+i {gxa :3’0}
8m/

m

where -jo is the internal (c.m.) part of the nonrelativistic
current operator, A?(q’) is the §-independent part of the
(v/c)? correction to J g, p is all but the bracketed (last)
term in Eq. (30a), and Vis given by

6f—|—€i
2m,

. 3 P24P2
VeS| 1oL (30d)
2m, 4m;

Equations (30) are replete with physical content, and
subsume all the mechanisms to be discussed subsequently.

The terms involving J generate the Wigner rotation, a

classical phenomenon, while the L term manifests the
Lorentz contraction and renders the arguments of form
factors Lorentz invariant. In g-congruent frames, where
S and q are collinear, we can write for both fpo(q’) and
LT(q):

LF(@)=F(qq), (30e)
where

7=~ g} + ok —T*/4m? (309
and

qo=0f+oR . (30g)

The combination q2—g3 defines g2, the squared four-
momentum transfer, and the g 4 term “Lorentz contracts”
the form factor. Note also that the photon case corre-
sponds to F’=w} (=q? if we neglect recoil) since
q4/m} ~w},-/m,2. The latter correction should be quite
negligible for our electric dipole transitions since it is a
relativistic correction to a retardation correction, and
g ~1/m, implying an overall 1/ m* correction to a)}i.
Note that to order (v/c)? the argument g2 is a Lorentz
invariant combination of two other Lorentz invariants, g*
and wog.

Additional terms which manifest the effects of a
Lorentz transformation are the bracketed term in (30a)
and the first three terms in (30c), all determined by the
average nuclear velocity, V. The second term in Eq. (30c)
is the generalization of the usual convection current; pV.
Each of the indicated terms has a classical analog. We
also note that our preferred (c.m.) reference frame is ¢
congruent, with §f=0, ?i =—4(, and S= —4, so that in
transverse gauge only the first and last two of the six
terms in (30c) are nonvanishing. Moreover,

(B24+P2)/4mP=q/4m2 = /16m>

and is completely negligible for 100 MeV photons. For
electric dipole transitions, only AT(EI) is important and
we deal with it now.

Current conservation states

G-J(S,d9)=H(PH)p(S,d)—p(S,9H(PD) . 31
Taking one derivative with respect to g for fixed S and
setting g to zero produces!®

7(8,0)=i[H (S/2),Do+AD]+i[ho,AD(S)]

- n $
S o } i

1— _
8m,2 m; 2m,

Zs
2m;

+ Ap(_S:O) »

(32)

where we have written

p(S,§)=po(d@)+Ap(4)+Ap(S,T) ,
Dy+AD= —iV,[p(0)+Ap(0)] ,

and



30 DEUTERON FORWARD PHOTODISINTEGRATION 449

AD(S)=—iV ,Ap(S,0) .

Equation (32) can be rewritten in the form

L = 2 n
J(8,00=i [hg, Do+ AD]+ o2 |1 S0
2m, 8m/ m;
+ S Ap(§,o>—i—§2—2[h0,130]+i[h0,Aﬁ(‘s’)].
2m, 8m;

(33)

One of the basic tenets of special relativity is that the
total charge of a system must be frame independent. This
follows in our formalism from Ap(0)=0 and py(0)=Z
and the cancellation of the bracketed term in (30a) with
the wy; term in fpo. Thus p(S,0)=0. Implementation of
this condition in other formalisms requires a proper nor-
malization. We can also calculate AD(S) from Eq. (30),
which leads to

o SDyS 7z - i SX
ADS)= SxJ— ho,S 2o
8m,2 4m,2 4 [70,S-Q]+ 4mt2
(34)

where we have expanded
po(@)=ig-D—4-Q G4 /2+ - -

in terms of the usual dipole and quadrupole operators.
This can be compared to an expansion of Eq. (30c) using
the appropriate low energy theorem for

To(G)=ilho, Dol —iq X & /2m; —[ho,d-Q1/2+ -+ ,

and is found to be consistent. If we ignore terms in J
directed along S we find

J(S,0)=i[ho,D)(1—S%/8m})

— <>

i o, S| [ho, hoy 32 (35)
m; 4m,

We note that the parity of the last two operators is posi-
tive, and that they arise from the effective argument
transformation g 2—g 2 Compared to the corresponding
terms in Jo(q) they differ by a factor of o5/ 2m, ~2+%
enhancement in the c.m. frame for », =100 MeV. Since
retarded (non-E 1) terms are approximately 40% of the
result for 100 MeV, these corrections are approximately
1% and are therefore quite unimportant.
The remaining task is to evaluate AD. Writing

X(P)=X-P+order (B?), (36)
we find from Eq. (29b)

p(ﬁ)spFw<a>+i%-[fpo<a)+po<a>5f]/z+order (g2,

(37)
and thus

D=Dw+2ZX . (38)

To proceed further requires a knowledge of X. This is ob-
tained for the deuteron from Ref. 16 or the original Ref.
42:

X=(&— &)X B-B/4mm,— (TP, 5P} /4m2+ X, ,
(39a)
X =(G,— &) X B /4mm,+ X, , (39b)

where X « is the contribution from the potential-dependent
(meson-exchange) parts of X:X,. The complicated center-
of-energy terms*? vanish for two equal mass particles.
Putting everything together for the deuteron produces'

= (A7 | U—p)
D= > r/2+WS—A0’Xp
A u,—1 | o
—[77 ‘;mz FXP+AD,, (40)

where A]_j,, is the combined dipole moment from mesons.
The spin-dependent X term we found above makes a

negligible contribution to D, since it induces
38,-°D,—'P, transitions. The latter three contributions
to D arise from AJ in (30c).

Finally, we remark on the possibility of including the
finite size of the nucleon in these calculations. Naive ar-
guments hold that since the nucleon form factors depend
on g2 which vanishes for photons, there is no effect.
This argument, if not the conclusion, is spurious, since the
nucleons in a nucleus are off shell and the off-shell form
factor depends on more than the one parameter, g2. Al-
ternatively, there will be binding (off-shell) corrections of
order (v/c)* to the nucleon form factor in a nucleus.
Indeed, the entire photonuclear process below meson pro-
duction threshold vanishes without binding. If one were
to hold that the latter process depended only on g2=0, lu-
dicrous inconsistencies would result. Our effective
momentum transfer variable depends on two such vari-
ables. Several years ago one of us argued?’ that the intrin-
sic part of the charge distribution required careful con-
sideration when incorporating it into the nuclear current
in order to preserve Lorentz invariance to order (v/c)%
The argument was made that such parts of the nucleon
charge distribution should be functions of g2. That argu-
ment was incomplete, since the requisite parts of the nu-
cleon form factors were not, and indeed cannot, be
uniquely identified. As an example, we note that the
Darwin-Foldy term does not fall in this category; it van-
ishes for photons. Components of the form factor which
arise from direct, virtual hadronic components of the pho-
ton (e.g., the vector dominance model) behave similarly.
Clearly, other components will behave differently.
Nevertheless, in Sec. VI we will investigate numerically
the effect of the inclusion of a nucleon form factor.
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V. PIONIC CONTRIBUTIONS
TO THE DIPOLE OPERATOR

The one-pion-exchange contribution to the nuclear
charge density, p,, is extensively discussed else-
where!®?? and we will suppress unnecessary details here.
The salient points are listed below. A variety of physical
processes contribute to p,(q), which is of order (v/c)?.
This operator is nonlocal, spin dependent, and model
dependent. More seriously, it depends on the method
chosen to perform the calculation. Different techniques
lead to different members of two unitarily equivalent fam-
ilies of operators. In order to calculate unambiguous ma-
trix elements, corresponding Hamiltonians and wave func-
tions must be used with the transition operators. This
trivial consistency condition is not simple to implement,
since no representation corresponds to common (so-called)
realistic potential models, and adding terms of relativistic
order to the potential requires adjusting the remainder of
the potential to keep the deuteron properties and the two-
body phase shifts the same. One easy lesson can be
learned from this problem: If the short-range unitary
transformation U is determined by a parameter u, then all
members of the family

PV =(1—iUy

have the same binding energy, asymptotic normalization
parameters, phase shifts, etc., independent of u, because U
vanishes for sufficiently large ». The extent to which the

various AB,,’S obtained from p, change the cross section
|

for a given wave function is a measure of the extent to
which the interior parts of the wave function influence the
result, since the two must exactly cancel in a consistent
calculation. The nonlocality of p,, is reflected in nonlocal-
ity of the potential. Studies have repeatedly shown*’ in
the past that the use of local potentials constrains observ-
ables so that one “tracks” another. Folklore arising from
studies utilizing nonlocal separable and one-boson-
exchange potentials suggests that nonlocality leads to
decoupling of observables. In particular, the deuteron
quadrupole moment (exterior sensitive) and the percentage
D state (interior sensitive) are less coupled for nonlocal
potentials. In numerical calculations associated with the
proof* that the latter quantity is not an observable (i.e.,
not measurable), the changes in ¢ associated with U pro-
duced much greater changes in Py than in Q.

There are five distinct contributions to A]_j,,, all ob-
tained in a fairly simple fashion from Ref. 16. From that
reference we require Eq. (73a), the seagull term p3°(q);
Eq. (75a), the true exchange term p2(q); Egs. (79)—(81),
P and pl; Eq. (82), the recoil term p?’; and Eq. (88), the
motion term X,,(i"). The only minor change which is
needed for completeness is to rewrite p 5 and p? to reflect
the unitary transformation in Eq. (80) that specifies the
retardation representation.”? We chose to transform to
the “soft” representation in Ref. 16 after performing the
original calculations in the “standard” representation. We
write f)",’,:(l——v)pﬁ—}—p;’,, where v=0 corresponds to Eq.
(79) of Ref. 16 and the standard case. While v=1 corre-
sponds to Eq. (81) of that reference and the soft represen-
tation in Ref. 22. With this slight change the results of
Ref. 16 can be used immediately,

AD,=D3+DY +DI+DC+ DY, (41a)
5. _Jh
i#j
5
+1=ve -3 (1} —mI0& "V 56V [ Xipho(x;)] (41b)
i#j
5 - .
Dy =m(,u+l)2(7_",-'?,-+T,3-)6’,-&’,~'V,~jho(x,«j)—(ﬁXv‘-})3{&’,~-ﬁ’i,(i’}+i"-)5’j~V,-,-ho(x,~j)} , (41c)
i#]
Y £ T S S = L oa I
D?:Ez(TiXTj)3[{(7Ti—Wj),Ui’VijO'j‘V,'jhl(x )}—U,v'Vin'Vj{(w‘;-i-ﬂj)a,V,-jhl(x,-j)(x,--l-xj)}], (41d)

i#j

2

= S o= Y o=
DSG=—£Z(Tix‘rj)3(,uf+1){ai'77i’xiUj'VijhO(xij)}

m
am 2

2Z

~. fiu—1)
X
D A

w 2 (71710 Vyholxy) -

oy

Il

8m

Specializing to the deuteron we find

- =

G155V yholxy )7y 75 (2 — 1—p) +75() (2 — 1—p)]

(41e)

41f)
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== f(2) — = — — ’ f(z) ’ V< o~
AD,,= —_——(71'72)(2”5_ 1)(0’1)( Uz)Xmo(r)— AT(4,u,,—3—~,u.+2v)h0(r) 12°r
4rr; 16m
+';—’:A1'(1—v)ﬂ6'1'6’2h6+6’1'?6'2°ﬂrh6'—h6)]
2
+§%(?1X?2)3((;L+1~2V)S‘ff{p“,rﬂ?h6 } —2v{B; 101" 02ho + T 1 FT Flrhg —ho )17} @)

+4{B,5 "0 h 1 (1) /r]+ T Fo AR —h1 /7)),

where S =098+ o805

This expression is quite complicated; four of the six
terms depend on p and v. Noteworthy are the two terms
which do not. The last term arises from the true-
exchange process. The remaining processes are mixed by
the unitary transformations. The first term in (42) is the
sum of three u-dependent terms and is independent of u.
This result is due to the vanishing of the nonrelativistic
isoscalar dipole operator; the exchange contribution will
always be unambiguous in such cases.” Note that the
motion term X - was needed to produce this result. Al-
though the isoscalar dipole operator is unique, the same is
not true of the isoscalar charge density; the exchange part
vanishes with v=1 and p=4u,—1. Also worth remark-
ing is the momentum dependence of three of the six
terms.

The Yukawa functions we have detailed contain pion-
nucleon form factors. There is no problem if one uses Eq.
(89) and follows the discussion on pp. 419 and 420 of Ref.
16. Failure to do so*® results in operators which fail to
satisfy the constraints of Lorentz invariance. We note
that these constraints have been verified in Refs. 16, 22,
and 47. The objections of Ref. 11 to the inclusion of the
form factors are not relevant.

Finally, we note the dependence on the nucleon magnet-
ic moments of the first two terms in Eq. (42). This depen-
dence is characteristic of pseudoscalar (PS) pion-nucleon
coupling. Had we chosen pseudovector (PV) coupling we
would have arrived at the same result'® with p;—1 and
py,—1. In fact, the use of pure uncorrected PS pion
photoproduction Born terms is not warranted. Several
years ago two of us pointed out (a well-known result) that
neutral threshold pion photoproduction is very different
for PS and PV Born term models and only the latter
agrees with experiment.?! The numerical results are (PS:
1.3 ub/sr), (PV: 0.13 ub/sr), and (experiment: 0.10
+0.02 ub/sr). Although many calculations of the ele-
mentary amplitudes start with PS-Born terms, current
algebra corrections are made which effectively convert to
PV coupling.*®* We note that dropping the u, (=4.7 uy)
fagtor dramatically reduces the local approximation to
AD,.

VI. RESULTS AND CORRECTIONS

In order to check our amplitude decomposition formu-
lae, we have made three separate tests. We performed a
separate plane wave calculation of the amplitudes and ver-
ified our partial wave results. We compared our unretard-
ed partial wave formulae at 0° with the analytic results of
Ref. 34 for E1, M1, and E2 amplitudes. We also com-

|
pared our numerical results with those of Partovi.> Our
deviations from Partovi were very small (a few
parts/thousand) and our formulae agreed with those of
Ref. 34 except that our triplet M1 results contained
slightly different factors involving the nucleon isoscalar
magnetic moment [e.g., (s — =) rather than (u; —3)].
There are several results by others to which we wish to
call attention, even though they are obvious. Several years
ago a popular exercise® was calculating the 90° photo-
disintegration cross section and comparing Siegert’s form
of the current with the classical current, ep/m. Needless
to say, large differences were found, which follows im-
mediately from the fact that a preponderance of meson
exchanges in a nucleus involve charge and generate ex-
change currents which are a priori expected® to be the
same order of magnitude as the classical current. As
pointed out by Arenhével,* the differences are largest for
‘the E1 multipole and diminish when explicit exchange
currents are added. The latter are noteworthy points.
Unless otherwise stated all figures discussed below refer
to the RSC potential model. Figures 3 and 4 show the 90°
and 0° cross section for unretarded dipole photodisintegra-
tion. The suppression of the electric dipole part of the
process occurs for the reason stated in the Introduction.
Figure 5 shows the contribution of the four multipoles
which we have chosen to calculate. At low energies the
singlet M1 transition dominates the cross section. At
higher energies the E 1 multipole is most important, al-
though the spin-triplet isotriplet M2 transition is quite
large. The latter effect results from the large isovector
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FIG. 3. Deuteron photodisintegration at 90° in the unretard-
ed dipole approximation.
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FIG. 4. Deuteron photodisintegration at 0° in the unretarded
dipole approximation.

magnetic moment, p,; compare with the results of divid-
ing the M2 strength by a factor of 5. We expect small,
but visible, effects from the E 3 and (isoscalar, spin trip-
let) M3 multipoles. We have not included these mul-
tipoles.

Figure 6 shows the effect of deleting parts of the calcu-
lation. The dashed curve is the result of turning off the
deuteron D state. Obviously most of the cross section
arises from this source. The effect of various components
of the RSC force in the final state is shown in the remain-
ing curves. The dotted curve results from deleting all
such forces. Were the data less good this would appear to
be a satisfactory fit. The RSC potential model as defined
in Reid’s paper?** does not include forces for the J > 2 par-
tial waves; we need the J =3 waves, however, for the
L =2 multipoles. Recently, Day* has obtained and
slightly modified Reid’s unpublished higher partial-wave
potentials. We have shown the results of deleting and in-
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FIG. 5. Deuteron forward photodisintegration decomposed
into multipoles.
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FIG. 6. Deuteron forward photodisintegration in various ap-
proximations for the RSC potential.

cluding such forces. The effect is small but not negligible.
Figure 7 illustrates the small effect of retardation in the
E1 amplitude. The very small effect labeled “old” and
the increase labeled ‘“new” are misleading. Figure 8
shows a breakdown of the E'1 contribution into O and N
terms, which result from orbital (O), spin (S), and OPE
(ex) currents, as a percentage of the dominant unretarded
Siegert term. The spin magnetization contribution to N
(Nj) is quite large. The old forms of Ny and O largely
cancel this, however. The much smaller new forms were
predicted in Sec. III and allow N, to dominate. We have
computed only the new forms of the pion-exchange am-
plitude, N. It is very small (approximately 2% at 100
MeV), which is gratifying in view of our argument that
the new form of the electric multipole amplitudes “used”
most of the exchange currents to ensure current conserva-
tion. This is also consistent with Arenhdvel’s remarks.*
In order to make a convincing case that the spin-orbit
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FIG. 7. Deuteron forward photodisintegration in the electric
dipole approximation showing two forms of retardation.
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FIG. 8. Percentage retardation correction for various parts of
the electric dipole forward photodisintegration in two approxi-
mations.

dipole operator is responsible for the discrepancy between
the simple theory and experiment, it is necessary to per-
form identical calculations for a wide variety of potential
models. Such a set of calculations is displayed in Fig. 9.
Eight models were used.!*2>27=32 The spread of results is
not particularly large, but deserves comment. We noted
earlier that the asymptotic D-state normalization,
Ap=mAg, should determine the cross section, an observa-
tion due to Schulze, Saylor, and Goloski.?® If the cross
sections are scaled to the experimental®' value of A,
(0.027) % (0.885), Fig. 10 results. The spread of the
curves is greatly compressed, except for the Reid soft core
(RSC) and Hamada-Johnston (HJ) cases. The HJ poten-
tial has the wrong deuteron binding energy; the
Humberston-Wallace (HW) modification (of several pa-
rameters in the HJ potential) corrected this defect, with
little change in other observables. Presumably this differ-
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FIG. 9. Deutron forward photodisintegration for eight dif-
ferent potential models without spin-orbit dipole operator.
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FIG. 10. Deuteron forward photodisintegration as in Fig. 9,

scaled to the experimental value of Ap.

ence accounts for the deviation seen in the figure. The
RSC potential curve is notably higher at higher energies.
We have traced a large part of that deviation to the poorer
p-wave forces in this potential compared to the others. If
one calculates the unbound states with the super-soft-core
(O) [SSC(C)] potential,’® the RSC result is lowered. Fig-
ure 11 shows the result of including the spin-orbit dipole
operator and Fig. 12 is the scaled version. The bands are
similar to those of Figs. 9 and 10.

Figure 13 shows the results for the RSC potential with
and without the spin-orbit contribution. A nucleon dipole
form factor has been added to the latter as an overall fac-
tor; the effect is not large, but it is not negligible. The
remaining corrections in Eq. (30c), including L Tfo, which
generates the effective photon momentum g, have been
added to the former and are negligibly small. N

Figure 14 illustrates the effect of adding in AD,
without retardation in various representations character-
ized by u and v. The comparison curve includes the non-
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FIG. 11. Deuteron forward photodisintegration for eight dif-
ferent potential models including the spin-orbit dipole operator.
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FIG. 12. Deuteron forward photodisintegration as in Fig. 11,
scaled to the experimental values of Ap.

relativistic exchange currents, which are very small at
higher energies and tend to raise the singlet M 1 portion
of the cross section by 10—15% at low energies. They
have been calculated using Eq. (23). The uppermost curve
is the PS result in the most common representation; the
usual Feynman diagram approach corresponds to p= —1.
The next curve down is the local approximation to the
previous PS curve, the most common calculation present-
ed heretofore. The next curve down is the corresponding
PV-coupling result; it is considerably smaller than the PS
result, as remarked in Sec. VI, and is preferred on physi-
cal grounds. Three other PV representations are also list-
ed. One of them (u=1,v=1) differs negligibly from the
comparison curve, while the remaining two cases are al-
most identical. If we denote by X the contribution from

Al_j,,, all our PV results are reasonably consistent with

X=[(v—D+(1—p)/2]A®) , @3)
26 dly.p)n - Relativistic Effects
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FIG. 13. Deuteron forward photodisintegration for the RSC
potential including various relativistic effects.
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FIG. 14. Deuteron forward photodisintgration including pion
exchange currents. The various families of pion-exchange di-
pole operators labeled by u and v are depicted.

where A is the scale of contribution of the pionic process-
es. We note that all of the illustrated calculations were
performed without a pion-nucleon form factor. Using a
representative value of S=6 (pion masses) we find only
slightly smaller results, indicating a dominance by the
long-range part of the current. Our discussion in Sec. V
centered on using these results as a measure of sensitivity
to the interior part of the wave function. The lack of
spread in the scaled cross section found earlier may result
from their locality; nonlocal potentials may show more
variation.

Finally, we have also calculated the ¢ coefficient, which
is the difference of forward and backward cross sections.’
That coefficient is positive, small, and largely unaffected
by either A]_jso or Al_j,,. The experimental results of Ref.
6, if they are confirmed, remain a mystery.

In summary, we have calculated the deuteron forward
photodisintegration, including a wide variety of physical
mechanisms, and have investigated in detail many aspects
of the problem. Relativistic effects, retardation effects,
and meson-exchange contributions were discussed. We
can summarize the set of calculations as follows: (1) The
nonrelativistic impulse approximation is roughly 20%
above the data; (2) including the spin-orbit dipole operator
lowers the theoretical calculations by approximately 20%;
(3) most of the remaining effects are small but not entirely
negligible; (4) the largest remaining uncertainty is the di-
pole operator due to meson exchange, for which no inter-
nally consistent calculation exists; (5) the representation
variation of this effect using fixed wave functions may
provide a measure of sensitivity to the inner part of the
wave functions caused by nonlocalities in the potential.

Finally, we note that two calculations exist*>>® whose
results are at variance with ours and with those of Ref.
11. These calculations are outside the traditional frame-
work and the disagreements are not understood. A
pecsif.gogical version of our work was published previous-
ly.
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