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The semiclassical and quantal inversion problems at fixed energy are solved for a number of nu-

clear scattering systems at various energies. The scattering function is represented as a particular
rational or nonrational function of angular momentum. At low energies the semiclassical inversion

generally breaks down; it works, however, surprisingly well in many cases.

I. INTRODUCTION

The first attempts to solve the inverse scattering prob-
lem at fixed energy were made by Hoyt, ' Firsov, and
%heeler in the semiclassical Wentzel-Kramers-Brillouin
(WKB) approximation. Since then semiclassical inversion
methods for real potentials have been further
developed and widely applied in molecular physics (cf. the
review in Ref. 9). Applications to nuclear physics, involv-

ing complex potentials, were made by Kujawski. '

A fully quantal inversion scheme was devised by
Newton" and extended by Newton and Sabatier. ' ' lt
has been applied to inversion problems in nuclear physics
by Coudray, ' and more recently, by Munchow and
Scheid, ' Baldock et al. ,

' and Barrett et al. '

In the last few years a method has been proposed to
solve the quantal inverse scattering problem at fixed ener-

gy for a class of scattering functions which are rational
functions of the angular momentum (of the "Bargmann
type") or nonrational modifications thereof. ' ' A
given scattering function can then be inverted after
representing it by a function of either class, fitted at the
physical (integer) values of the angular momentum. The
method has been successfully applied to inversion prob-
lems in nuclear and atomic physics, involving complex
potentials and charged particles. ' ' (Inversion ap-
proaches based on particular forms of the scattering func-
tion have been reviewed by Zakhar'ev et al. )

The approach' makes use of certain simple analytic
forms of the scattering function. On the real axis, these
can be written as rational functions of the angular
momentum. Owing to this, the WKB inversion can be
carried out analytically; this is particularly useful for the
case of complex potentials, when the usually real %'KB
inversion formalism has to be continued into the complex
plane. In the present paper we take advantage of this cir-
cumstance to reconstruct various real and complex nu-
clear potentials at different energies by quantal and %'KB
inversion of the same scattering function fitted to the
physical angular momenta. In this way the quality of the

two types of inversion can be compared. It will be seen
that the quantal and &KB methods are generally equally
effective at high energies (reproducing the input potential
almost perfectly), while at low energies, the WKB method
will sometimes break down.

Rational representations of the scattering function were
introduced earlier on heuristic grounds by Remler.
These were used by Rich et al. to obtain molecular
scattering potentials by &KB inversion. However, since
these authors included a nonrational repulsive-core contri-
bution in the scattering function, the inversion had to be
done numerically. No analytic continuation was required,
as the potentials were real.

Kujawski' was the first to apply the V(KB inversion
method to complex, nuclear potentials. He did not use the
rational representation of the scattering function which
renders the analytic continuation of the formalism trivial;
instead the inversion was carried out by numerical in-
tegration, and the analytic continuation was done via Pade
approximants. A point-Coulomb potential was intro-
duced as reference potential for charged particles; in this
way Kujawski found, at all energies, classically forbidden
regions near the origin in which no %'KB inversion could
be carried out.

In Sec. II we present the formalism of our semiclassical
inversion method and compare it with that employed by
Kujawski. ' We also briefly recapitulate our quantal in-
version schemes. Our results are presented in Sec. III.
First the semiclassical and quantal inversions are corn-
pared in detail for a-a scattering. This will be done over
a wide range of energies, via the reconstruction of an
energy-dependent o.-o. potential derived by Kukulin
et a/. from microscopic considerations. Subsequently,
we reconstruct realistic p- Ni optical potentials using the
&KB and quantal methods, and compare the results for
various energies. Then we consider a few schematic cases
of n-ct scattering which have been previously investigated

by Coudray, ' using the Newton-Sabatier method. Final-
ly, we reconsider the case investigated by Kujawski, '

o,'-' C scattering at 104 MeV. In the last section we dis-
cuss the results and present our conclusions.
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II. THE SEMICLASSICAL AND QUANTAL
INVERSION METHODS

A. Semiclassical inversion

in terms of the phase shifts

5(A, ) = (1/2i)lnS (1,), (2)

where S(A, ) is the scattering function and A, =l + —,'. The
inversion problem with one turning point then becomes
entirely classical. Introducing the "quasi-potential"

2E i
" 8(A)dA,

J ~ (g2 a2)1/2

Our semiclassical inversion scheme has already been
described in Ref. 18 for the case of real potentials and ap-
plied to a few schematic examples. Here we present the
general case of complex potentials, including a reference
potential with a Coulomb tail.

We start with real potentials. The real classical deflec-
tion function 8(A, ) is written as

8(g) 2
d5(A )

Eq. (4) must be continued in the complex o plane so as to
make p real, since the latter must be identified with the
radial coordinate, p=kr. Froxn the conditions

0=Imp = Im I o exp[Q (o.)/2E] J,
p=Rep=ReIo exp[Q(o )/2E]I,

(4')

a complex function cr(p} of the real variable p is obtained,
which after substitution in Eq. (5) yields the complex po-
tential V(p). The relation between p and o must again be
one to one. Otherwise the complex "path" cr=cr(p) is in
the "critical domain, "' where the WKB inversion breaks
down.

We now apply this formalism to our particular rational
form of scattering function, A, real,

A, —P„S...(X)=S"'(X)g (11)
n=1 & —&n

The background function S' '(A, ) is introduced to take
account of the long-range Coulomb tail (in the scattering
function as well as in the potential) for charged-particle
scattering. It has the form

we define S' '(A)= e,xp[ig 1 n(A, +1,, )], (12)

p=p(o) =o.exp[g(cr)/2E] .

The potential is then given by

V(p) =E (1—a'/p')

=E f 1 —exp[ —Q (o.)/E] I, (5)

where p= kr.
The semiclassical inversion method produces a unique

potential if the relation (4},or equivalently, the relation

cr=cr(p) =p[1—V(p)/E]'/'

defines a one-to-one correspondence between p and o.
This requires that cr(p) and p(cr) are monotonic functions
of their arguments, i.e.,

do/dp&0 for all p,
or equivalently,

dp/do & 0 for all cr .

The relations Eqs. (6) and (7) together imply the "nonor-
biting" condition

where g is the Sommerfeld parameter and A,, is a real pa-
rameter, A,,=xg, x =4 to 10. Applying the%KB inver-
sion scheme to this unitary scattering function, we have

8'o1(X)=2qz/(X2+ X,'),
Q'01(a) =2~E/(a'+ X,')'",
V"'(r) 2qE/kr,

(14)

(15a)

~E(1—e ') =2riE/A,
2g/A,

r—+0
(15b)

8(A, )=2gA, (A,2+A,,2) '

+2iA, Q[(A, —a„) ' —{k —P„) ']

The background scattering function S' '(A, ) thus corre-
sponds to a "quasi-Coulomb" potential which asymptoti-
cally behaves like a Coulomb potential, but does not con-
tain a 1/r singularity at the origin.

The scattering function (11) leads to

E & V(p)+ ,pdV/dp, E & V—(p),

while Eqs. (4) and (8) yield

dg/dcr & —2E/o .

Q(a) =2E~(a2+Z,')-'/2

+2iE y [( 2 2
)
—1/2

(
2 P2 )

—1/2] (17)

Since Q(cr) is given in terms of 8(A, ), this is essentially a
condition on the S function to yield a unique semiclassical
potential. As such it is more useful for our purposes.

The WKB inversion for complex phase shifts (poten-
tials) was discussed by Kujawski. ' In this case the de-
flection function 8(A, ) is complex for real A, , and so is the
quasi-potential Q(cr) for real o. The function Q(a) in

If P„=a'„, Q(o) is real for real a, and the real potential
V(o ) is directly read off from Eqs. (4) and (5), choosing a
value for cr and calculating V(p) at the corresponding
value of p. In general, Q(cr) is complex for real o, and
Eqs. (4') have first to be solved for o =cr{p),p real, before
going to Eq. (5).

The approach of Kujawski' differs from this in two
respects: (i) In Ref. 10 the background function S' '(A, ) is
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taken as the classical point-Coulomb scattering function,
corresponding to the Rutherford deflection function

0' '(A, ) =2arctan(g/iL)

and the Rutherford potential

V'~'(r}=2riE/kr .

The L~"' (r) are the logarithmic derivatives of the Jost
solutions f~"' (r) to the potential V„(r) in the rational
scheme (Ima„& 0, ImP„&0) and of the regular functions
pI„"'(r) in the nonrational scheme (Imu„&0, Imp„&0).
(Note that these functions differ from the ones defined in
Ref. 18 by a factor +i ) . The corresponding rational
scattering function is given by Eq. (11), whereas the non-
rational scattering function has the form

Kujawski then finds that his inversion method is restrict-
ed to the domain r & 2g/k. (ii) Instead of expression (17),
Kujawski obtains Q(a ) in numerical form, which is then
continued analytically with the help of Pade approxi-
m ants.

Whenever the semiclassical inversion works well, the
path 0 =cr(p) does not approach any of the poles or zeros

Ia„,p„l, and the square roots in Eq. (17) can be deter-

mined unambiguously. Problems only crop up when the
semiclassical inversion actually starts to break down and
multivalued solutions of Eqs. (4') become possible (in the
"critical domain" ).

with

(0) (0)
op —o~

2 2p„—a
oa{0) {0)

—CXm

(0) (0) (0) (0) (0)
op —0 o~ —o o~

p„—a A, —a cry
2 2 2 2 (0)

(21)

B. Quantal inversion

We briefly recapitulate the quantal inversion and refer
to Refs. 18—20 for a full explanation of the methods em-

ployed. The potential V(r) is determined iteratively,

cr' '=exp[ in(A— —,
'

) jS,—' '(A, ) .

If
~
Ima„~,

~
Imp„~ are sufficiently large ( &2),

S„, „(A,)=S„,(A, ) for real A, .

V(r) = V~(r),

where

and

V„(r)=V„,(r)+ V'"'(r), n =1, . . . , X

V'"'(r) =—(p„—a„)2 2 2 d 1

r dr r Lin —1) („) L(n —&)+(&)
n an

(20)

The two schemes can be combined by writing S(A, ) as a
product of a rational and a nonrational scattering function
(mixed scattering function).

As explained previously the semiclassical inversion em-
ploys the rational scattering function to which our quan-
tal S function in general only reduces on the real A, axis.
When comparing our quantal and semiclassical inver-
sions, we therefore do not, strictly speaking, employ
analytically the same scattering function. However, as we
will show in the next section, the fact that the two S func-
tions coincide numerically near the real A, axis is sufficient
to guarantee practically identical quantal and semiclassi-

0- IO

-0.25

-6-

E„b = 23. l MeV -0.7 5

-l0-

(a)

4—

(b)
E, b

= 554 MeV
- I.O

FIG. 1. Deflection functions 0(A, ) for a-a scattering (Ref. 24) at E~,b ——23. 1 (a), 53.4 (b), and 120 (c) MeV.
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FIG. 2. The function s =s(r) for n-a scattering (Ref. 24) at E~,b ——23. 1 (a), 53.4 (b), and 120 (c) Me&.

cal inverted potentials, in those cases where the semiclas-
sical inversion works well. This confirms that the differ-
ences in S(A, ) far away from the real axis have little sig-
nificance for the potential obtained in the semiclassical in-
version scheme. In particular, it is here irrelevant whether
the scattering function contains unphysical poles in the
complex X plane, in contrast to the situation in the quan-
tal scheme. "

III. RESULTS

In this section we present a representative selection of
our comparisons of the semiclassical and quantal inver-
sions. To be able to check our results, we reconstruct
given input potentials from their scattering functions.

For the quantal inversion we employ in general a
"mixed" scattering function, while for the semiclassical
inversion the rational approximation is used. The param-
eters Ia„,P„ I are obtained by fitting the rational S func-
tion of Eq. (11) to the input scattering function at the
physical angular rnomenta l =0, 1,2, . . . . The fit using
the corresponding mixed S function is nearly identical, in

all these cases, to the one obtained with the rational 5
function.

A. Inversion of a-a scattering

Here we consider the a-a potential of Kukulin et al. ,
which has a Woods-Saxon shape, with parameters
Vo(E) = —125+0.33E, (MeV); 8'o ——0, —5, and —10
MeV at E~,b ——23.1, 53.4, and 120 MeV, respectively, 'and
R, =R =1.78 fm and a„=a =0.66 fm. These deep lo-
cal a-a potentials are essentially phase equivalent local
potentials for the nonlocal exchange potentials resulting
from a microscopic resonating group model calculation.

The scattering function calculated from this potential is
fitted by the rational expression (11), which yields the pa-
rameter values given in Table I. In Figs. 1(a)—(c) we
display the classical deflection function 0(A, ) calculated
from these parameters at the three energies considered.
At 23.1 MeV the potential is real and so is the deflection
function. It has a sharp structure at A, -4.5, correspond-
ing to a twofold revolution about the scattering center
(8= —4m. , near-orbiting). The complex deflection func-

r {fm)
2 3

r {fm)

-40 -40

CO

-80x IP

&-80

0, R

E) b
= 53.4 MeV -l20-

C 0.
E( b

= l20 MeV

FIG. 3. Input potential ( —- —~ —.) and its reconstructions by quantal ( ———) and &KB (
(Ref. 24) at E~,b ——23. 1 (a), 53.4 (b), and 120 (c) MeV.

) 1rlvels1OIl for A-u scattenng
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TABLE I. Parameters Ia„,P„ I for a-a inversion.

E),b (MeV)

r (fm)

23.1

(A,,=S.O)

2.5959—2.8456i
5.6253 —4.6466i
0.0793+6.6226i
1.0645+ 1.6272i
3.0455+0.7207i
4.4098+ 1.4774i

53.4
(k, =3.0)

4.5018—3.9224i
8.7888 —6. 1692i
2.4522+ 3.4613i
3.5002+ 20214i
5.2170+0.7619i
9.1391+6.2427~

4.7056+ 3.9971i
9.1269+6. 1930i
1.8382—3.2987i
3.4303—1.6944i
5.1506—0.6137i
8.8059—6.2356i

120.0
(k, =5.0)

9.0292 —9.7351i
0.5369—3.1721i
5.2060—6.3115i
4.1442+ 3.3524i
6.4317+2.0951i
9.0313+1.0389i

—9.2837+ 1.0245i
5.0577+ 6.5669i
8.8203+9.8012i
8.1312—2.7502i
3.8679—2.8224i
6.1937—1.76S4i FIG. 4. Input potential {—- —~ —~ ) and its reconstruction by

&KB inversion ( ) for a-o.'scattering (Ref. 16) at Ebb ——40
MeV.

tions at the energies 53.4 and 120 MCV exhibit a smoother
behavior. From these deflection functions one would al-
ready in general predict a failure of the semiclassical in-
version at 23.1 MeV and success at 120 MeV, with inter-
mediate behavior at 53.4 MeV.

In Figs. 2(a)—(c) we plot s =o/k against the radial dis-
tance r =p/k. This function s =s (r) is obtained by solv-
ing Eqs. (4) or (4') for o. For the 23.1 MeV case s is a
nonmonotonic function of r in the region 1 & r & 1.4 fm,
signaling a breakdown of the semiclassical inversion in
that region. For the 53.4 MeV case we plot Res and Ims
against r and find a monotonic behavior. The semiclassi-
cal inversion therefore works. We note that Ims is quite
small so that the path s (r) stays far away from the singu-
larities a„and P„, cf. Eq. (17). At 120 MeV, Res and Ims
are smooth functions of r Although .Ims is relatively
large, the parameters a„and P„have such large
imaginary parts that again they stay out of the way of the
complex path s =s(r).

In Figs. 3(a)—(c) we plot the real a-a potentials of
Kukulin et al. and compare them to their quantal and
semiclassical reconstructions. Turning first to the 23.1

MeV case, we note that the quantal reconstruction is ex-

cellent except for a minor discrepancy at r &0.5 fm. The
semiclassical reconstruction, however, leads to a triple-
valued potential between 1.4 and 1.0 fm. For r ~ 1.4 fm
the semiclassical potential is not a very good reconstruc-
tion of the given input potential either. This indicates
that when the semiclassical inversion really breaks down
at a certain distance it tends to become unreliable even at
much larger distances. In the inside region, r &1.0 fm,
the semiclassically inverted potential oscillates wildly
around the given input potential. At 53.4 MeV we find
that the quantal inversion coincides with the input poten-
tial, while the semiclassical inversion produces a reason-
ably good result. The largest discrepancies occur at r ~2
fm. Finally, at 120 MeV both the quantal and the semi-
classical inversion results coincide with the input poten-
tial. The semiclassical inversion is just as good as the
quantal inversion at this energy.

Except for relatively low energies the semiclassical in-
version can therefore be regarded as satisfactory for a-a
scattering. This is also confirmed by inversion of the
phase shifts generated by the real direct a-a potential of
Baldock et al. ' at E~,b ——40 MeV (see Fig. 4), which we
represented as

Elab
(MeV)

V
(MeV)

8'
(MeV)

TABLE II. Potential parameters for p- Ni.

Qy

(fm)

36
55

100.4

35.390
54.068
29.017

5.086
9.195
7.699

3.366
0
0

1.17
1.17
1.196

1.32
1.32
1.457

0.75
0.75
0.789

0.51
0.51
0.512
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r (fm)
6

eV E~ob = IOO, 4 MeV

FIG. 5. Input potential ( —~ —- —) and its reconstructions by quantal ( ———) and %KB ( ) inversion for p- 'Ni scattering
at Eq,b ——36 (a) and 55 (b) MeV (Ref. 27) and at Eq,b

——100.4 MeV (c) (Ref. 28; here all three curves coincide).

V(r) = —119.85 exp[ —(r/2. 34) ]
+46.22exp[ —(r/1. 8) ]

in Ref. 20. The potential of Baldock et al. has a different
shape, longer range, and smaller depth than the o,"-a po-
tential of Kukulin et aI. at 53.4 MeV [Fig. 3(b)], but the
semiclassically inverted potential has similar characteris-
tics. It also displays a hump at intermediate distances,
and it deviates from the input potential not only in the in-
terior but also further outside.

C. Inversion of n-a and a-' C scattering

The last examples refer to systems treated previously by
other authors. In Fig. 6 the quantal and &KB inversions
are compared with the input potential for the system n-a
at 10 and 30 MeV, for which quantal inversions have been
performed by Coudray' using the Newton-Sabatier
method. Both types of inversion get worse as the energy
is lowered. At 10 MCV, the &KB inversion reproduces

B. Inversion of p- Ni scattering

The potentials to be reconstructed by semiclassical in-
version were in this case taken from Percy and Percy
and Kobos and Mackintosh. The optical potentials are
of complex Woods-Saxon shape with an additional sur-
face derivative imaginary part. The depths, widths, and
radii are given in Table II.

The results of the quantal and semiclassical inversions
are compared to the input potentials in Figs. 5(a)—(c).
For 36 MeV, the fit of the mixed S function to the physi-
cal values of the 5 function of the optical potential was
not perfect. This shows up in the deviations of the quan-
tally inverted potential from the input potential. The
semiclassical inversion breaks down for r &3.4 fm. This
evidently is the critical domain.

At 55 McV the quantal inversion is nearly perfect ex-
cept for a small region near the origin. Although the
semiclassical 1nvclslon docs not bIcak down 1n this case,
the deviations from the input potential are not negligible.
The inverted potential is oscillatory but the oscillations
are relatively small.

Finally, at 100.4 MCV, both the quantal and %'KB in-
versions lead to perfect reproductions of the input poten-
tial.

p

r (frn)
4 6

FIG. 6. Input potential ( —~ ——~ ) and its reconstruction by
quantal ( ———) and WVKB ( ) inversion for n-a scatter-
ing (Ref. 14) at E, =10and 30 MeV.
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-20—

-fOQ—

~ ~

-120—

FIG. 7. Input potential ( —~ ——~ ) and its reconstruction by
%KB inversion ( ) for a-' C scattering at E~,b ——104.0
MeV (Ref. 10).

the input potential only qualitatively, but does not break
down.

Finally, we reconsider the system 0.+' C at 104 MeV,
for which Kujawski carried out a WKB inversion. ' A
quantal inversion led to a near-perfect reproduction of
the input potential. Figure 7 shows that a WKB inversion
of the type considered in the present work also gives good

results, except perhaps near the origin. Owing to the use
of the background scattering function (12), no forbidden
region r &q/k appears where the inversion would break
down, as in Ref. 10.

IV. CONCLUSION

In the present paper we have reconstructed a number of
nuclear potentials by semiclassical (WKB) and quantal in-
version at fixed energy of the associated scattering func-
tion. The input scattering function was represented as a
rational function of angular momentum A, on the real A,

axis. The potentials corresponding to this scattering func-
tion in the WKB and quantal inversion schemes were
determined numerically. In this way the adequacy of the
WKB inversion could be determined unambiguously.

Using the present method, the WKB inversion results
of the earlier work of K.ujawski' on u-' C scattering
could be improved. Generally it turns out that the WKB
inversion works surprisingly well even for relatively light
scattering systems at fairly low energy. At very low ener-
gies, the WKB inversion breaks down, i.e., the inverted
potential becomes multiple valued in the critical (approxi-
mately equal to classically forbidden) region of space. If
such a breakdown occurs, the potential is incorrect even in
the remaining, classically allowed region. At energies
slightly above the breakdown energy, the WKB inverted
potential will be single valued at all distances, but it may
differ markedly from the true, quantally-inverted poten-
tial.
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