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The discrepancy between the results obtained by Gal and Mandelzweig and those published by us is

shown to be due to an ambiguity in the definition of the radial wave function occurring whenever the
velocity-dependent potential satisfies the criticality condition of Ericson and Myhrer. The non-Hermitian
solutions predicted by these authors are closely related to that ambiguity.

In the preceding Comment, ' Gal and Mandelzweig (GM)
show, by means of convincing qualitative arguments, that
the Schrodinger equation for a real velocity-dependent po-
tential of finite-range spherically symmetric parabolic shape
n(r) presents, provided the criticality condition of Ericson
and Myhrerz (EM) is satisfied, an infinite number of nega-
tive energy solutions to be interpreted as bound states of in-
definitely high binding energy. In a previous paper we re-
ported, after numerical analysis of the wave function written
in terms of hypergeometric functions, that only a finite
number of negative energy solutions appear. We are going
to show in this reply that the discrepancy is due to the fact
that the wave function for such a potential is not uniquely
defined.

The radial wave equation presents at ro, where a(r)
equals one, a singular point that prevents the connection
along the real axis of the expressions of the wave function
for r ( ro and r ) ro. Therefore, analytic continuation into
the complex r plane is needed and, in order to deal with a
single-valued function, the plane has to be cut either along
[ —ro, ro], as done by GM, or along ( —~, —ro] and
[ro, + ~), as taken by us. A possible wave function,
Q+(r), can be defined on the real axis by considering this
as part of the upper half plane. Another possible definition

(r) is obtained by regarding the real axis as belonging to
the lower half plane. Any linear combination P+P+(r)
+P P (r) could, in principle, be taken as a wave function
on the real axis. If one selects, for instance, P+ = 1,
P =0, then one obtains3 an infinity of decaying bound
states of indefinitely high binding energy, in accordance
with the predictions of EM. If, instead, P+ = 0 and P = 1

are chosen, the resulting eigenvalues of the Hamiltonian are
the complex conjugate of the previous ones, that is, an in-
finity of gro~ing bound states are obtained. Other prescrip-
tions for P+ and P would presumably lead to Hamiltonian
spectra intermediate between those ones.

As we are going to show, the requirement of the wave
function being real, in the case of bound states, is not suffi-
cient to eliminate the ambiguity. Let us assume that a real
solution P(r) has been found on the uncut part of the real
axis. Then, P+ and Q could be the analytic continuations
of Q(r) into the upper and lower complex r half planes,
respectively. Obviously, P+(r) and P (r) coincide on the

I

uncut part of the real axis, but not necessarily on the cut.
They adopt there complex conjugate values. A real wave
function on the cut is obtained if it is defined as the mean
of the solutions just above and below the cut:

Q(r) = [Q+(r) +Q (r)]/2=Re[/ (+r)]

Nevertheless, usual boundary conditions on the wave func-
tion, like being regular at the origin, determine a solution
only up to an arbitrary (complex) factor. Therefore, equally
valid solutions in the upper and lower half planes could be

4+ =P4+. 4- =P4

and on the real axis

(2)

$(r) = [@ +(r) +@ (r)]/2=Re[@ +(r)]

The two solutions P(r) and @(r) are essentially the same
on the uncut part of the real axis, since Q+(r) and P (r)
are real and coincident and, therefore, @(r)= (Rep)Q(r).
But they turn out to be different on the cut, provided
Imp A 0.

In order to illustrate the above considerations, let us par-
ticularize them to the problem discussed in Refs. I and 3.
The reduced radial wave function u(r) must vanish at the
origin and obey a differential equation of the Legendre type,
namely, Eq. (4) of GM. Equivalently, the radial wave func-
tion p(r) = u(r)/r, written in terms of the dimensionless
variable z = rz/r$, must be regular at the origin and satisfy a
hypergeometric equation

z(1 —z) dzQ/dzz+ [c—(a+ b+ 1)z] dQ/dz —abQ =0, (4)

where

a =1+v/2, b= , —v/2, c—=—, , z=x'1 3

with v and x as given by GM. Both conditions are fulfilled4
by the hypergeometric Gauss series F(a, b;c;z) convergent
in the circle ~z~ & 1. This solution essentially coincides, in
the interval 0 ~ x & 1(0~ r & ro), with that found by GM,
as explicitly shown in Eq. (15) of Ref. 1. The hyper-
geometric series can be analytically continued into the com-
plex r plane, cut along the real axis from 1 to + ~, by us-
ing4

F(a, b;c;z) = r(c)r(b —a) ( —z) 'F(a, 1 —c+a;1—b+a;z )+ r(c)I'(a —b) ( —z) F(b, 1 —c+ b;1 —a+ b;z )—1

r(b)r(c —a) r(a)r(c —b)

(z [ & 1, (arg( —z) ( & 7r . (6)
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On the cut, the above mentioned functions P+(r) and P (r) are, therefore, given by

exp[ + I'(2+ v) 7r/2]x "F(l+v/2, 2 + v/2; 2 + v;x )
r(3/2)r( —1/2 —v) —2 —YI'12—v2

+ I (3/2)r (1/2+ v) —1+v
[I (1+ v/2)]'

exp[+ I'(I —v)m/2]x "F(~—v/2, —v/2; 2
—v;x ), x & 1

Consequently, the wave function on the cut, as defined in Eq. (1), results in

r (3/2) r ( —1/2 —v) cos[(2+ v)m/2]x "F(1+v/2, 2 + v/2;~+ v;x )
—2 —V 1 . 3

r 1 2 —v 2

+ r (3/2)1 (1/2+ v) cos[(1—v)7r/2]x +"F(
2

—v/2, —v/2; 2
—v;x ), x & 1[I'(1+ v/2)]'

This expression can be compared with the solution given by GM in terms of Legendre functions by means of

g (x) =2 " '7r' ' x " 'F(1+v/2, —'+v/2; —'+v x ')

P„(x)= 2 " 'm '' x " 'F(1+v/2, —,
' +v/2;~+v x ')r —v

+2"~- ~—i q I (1/2+ v)
I'(1+v)

x"F(——v/2, —v/2; ——v;x ), x & 1

By making use of the reflection and duplication formulae for the gamma function, one obtains finally

I 3 2 I 1+v) —t2 —p

[r(1+v/2) ]'
'~22 "x '[vr sin(vm/2)P„(x)+2cos(v7r/2)Q„(x)], x & 1 (10)

which is essentially the same solution proposed by GM in their Eq. (7). It becomes therefore evident that the GM solution
is obtained if one selects P+ =P = —, for the coefficients in the linear combination of f+ and P mentioned above.

In our solution of the problem3 we chose, instead, P+ =P =exp[i(v —1)m/2]/2. At that moment, we were unaware of
the remaining ambiguity even in the case of real wave function. The selection of such coefficients was fortuitous, motivated
only by the fact that simplified expressions, easier to be numerically evaluated, were obtained for $+ =P +Q+. In this way,
the wave function on the cut becomes

I'(3/2) I'( —1/2 —v) cos[(v+ 2 )7r]x "F(1+v/2, ~ + v/2; 2 + v;x )1 —2 —v

r 1 2 —v 2

+ )x—&+ F(' v/2 v/2 ' vx —2) x&1[I'(I+ /2) l'

that, written in terms of Legendre functions, turns out to be

I' 32 I 12+v
2 "m '2x '[mP„(x)+sin(vm)0„(x)], x & 1[r (1+v/2) ]' (12)

A qualitative analysis of the logarithmic derivative of this
wave function, along the same line of that made by GM, al-
lows one to conclude that the equation obtained by match-
ing, at the edge of the potential, the inner and outer wave
functions presents only a finite number of negative energy
solutions.

The ambiguity in the definition of the wave function in-
herent to the problem under consideration is entirely due to
the presence of a branch point on the range [0, + ~) of the
radial variable. As we have seen above, that ambiguity ex-

I

plains the existence of EM non-Hermitian solutions. The
requirement, for bound states, of the wave function being
real eliminates these solutions, but does not remove com-
pletely the ambiguity. It is necessary, in addition, to give a
specific prescription about the combination of the upper and
lower continued wave functions to be taken. The GM
prescription leads to quite plausible results and could, there-
fore, be adopted, but not before finding arguments for elim-
inating all other prescriptions.
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