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Bound states in pion-nucleus velocity-dependent potentials: Finite or infinite number
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The specific example suggested by Carinena and Sesma is shown to yield an infinite number of bound

states in agreement with the general results claimed earlier by Ericson and Myhrer and by Mandelzweig,

Gal, and Friedman, and in accordance with a rigorous proof given here.

Ericson and Myhrer' (EM) observed that a velocity-
dependent pion-nucleus optical potential induced by a zero
range p-wave m N interaction,

2p, V(r) = 9n(r)
gives rise to an infinite number of bound states provided
n (r ) & 1 over some nuclear region, say 0 ~ r & ro. The
underlying binding mechanism rests on the realization that
the attractive potential term (1), reminiscent of kinetic en-
ergy, wins over the conventional kinetic energy term of the
Schrodinger equation in the interior region [O, ro]. Hence,
the problem may be viewed as motion of a particle with a
static reduced mass p, in a force field the effects of which
culminate in a negative dynamical reduced mass p, //'

[1—a(r)]. Binding is a direct measure of how negative the
expectation value of the resultant kinetic energy can be-
come. Trial wave functions of an increasingly oscillatory na-
ture in [O, ro] lead to an ever larger magnitude of this nega-
tive kinetic energy, and an infinite number of bound states
emerges. While several elementary physical effects readily
remove this infinite multiplicity (e.g. , the finite range of the
rrN interaction) and render whatever remaining bound
states unobservably wide [due to the imaginary part of
a (r ) ], this model problem merits a study of its own in view
of the new quantum mechanical features it presents. Man-
delzweig, Gal, and Friedman2 (MGF) explored in some de-
tail properties of the solutions to (1), particularly for Hermi-
tian solutions ascribed to real u(r), i.e. , real binding ener-
gies. In particular, their WKB construction (Appendix C of
Ref. 2), as well as several soluble models worked out by
them, confirmed the expectation that the number of bound
states is infinite

Carinena and Sesma3 (CS) have recently questioned the
validity of this expectation, claiming within the example of
the Schrodinger equation

(0 [1—n(r)] 0 —K ]V( r ) =0, x'= —2p, E, (2)

for the cut-off parabolic shape

~(r) =A (1—r2/R2)6(R —r), A & 1

in the i=0 partial wave to have derived a finite number of
bound states. Here we explicitly refute their claim by
reanalyzing this example. In terms of the l=0 radial wave
function u, W= u(r)/r and u(0) =0, Eq. (2) assumes in
the interval r ~ 8 the form of the Legendre equation

(1 —x') " + v(v+1) u =0

Q„(x) ——~in(~x —I ~/2) —y —i[/(v+ I) (6)

where y is the Euler constant and P is the logarithmic
derivative of the gamma function. A linear combination
that satisfies u (0) = 0 is given by~

u(x) —(n/2) tg(7rv/2)P„(x) + Q„(x)

The bound-state condition is derived by matching the loga-
rithmic derivative 9F„of the inner solution (7) to that of
the outer solution

u (x) —exp( —Krox)

at x = R/ra= [A/(A —1)]' 2:

(7r/2) tg(n v/2)P„' (x) + Q„' (x)
(vr/2) tg (rrv/2)P„(x ) + Q„(x ) „[„/(„,) [[/2

= —(A —1)' '[v (v+ 1)—2][/2 (9)

We now show that, for any value A & 1, the condition (9)
is satisfied once in any of the intervals 2n —1 & v & 2n+ 1,
n = 1, 2, . . . . The following properties of the Legendre
functions for x & 1 are helpful:

P„(x) & O, P„'(x) & O, Q, (x) & O, Q„'(x) & O . (IO)

To prove these properties we generalize the proof of
Theorem 1 of MGF. Multiply Eq. (4) for P„(x) by P„(x)
and integrate from x = 1 to an arbitrary xp & 1:

QZp
(xj —I)P„(xo)P„'(xo)= J (x' —1) [P„'(x)]'dx

Zp
+ v (v + 1)„P„'(x ) dx . (11)

The right-hand side is positive definite; hence, P„and P„
never vanish and share the same sign for x ) 1. It is cus-
tomary to accept a positive sign for P„(x), so that
P„'(x) & 0. The logarithmic singularity of Q„(x) at x= 1

where x = r/ro, ro = R (1 —A ') '/' and

v (v+ 1)= 2+ (KR )2/A

The most general solution of Eq. (4) for real v & 1 is a
linear combination of the Legendre functions P„(x) and

Q„(x). These functions can be made intrinsically real by
applying the principal value definition as done, for example,
in Chapter 3.4 of Ref. 4 for x & 1. The resulting functions
P„(x) are regular for x & 0 while the functions Q„(x) are
logarithmically singular at x = 1:
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and its positive definite nature for x & 1 is best demonstrat-
ed by the integral representation

plicitly, for A =1+e the matching point becomes E

and one is justified in using the asymptotic expansions4 in x:

V

(12) I'(v+ —,
' )

vrtt' I'(v+ I)
which follows immediately from the Wronskian relationship
(1—x2) (P„Q„' —P„'Q„)= 1. The latter also shows that
Q„' & 0 at the very vicinity of x=1. To show that Q„' & 0
everywhere for x & 1 we assume to the contrary that
Q„' & 0 somewhere in this region. Therefore, a point xo & 1

must exist such that Q„' (xo) = 0; multiply Eq. (4) for
Q„(x) by Q„(x) and integrate from xo to infinity:

(x2 —1)[Q„' (x) ]2dx+ v (v+ 1)„I Q„' (x)dx =0,J Xp

(13)

which is impossible to satisfy in view of the positive definite
nature of the integrands.

With the properties (10) thus proven it becomes clear that
the denominator of 9P„, Eq. (9), vanishes at a value vt'l
somewhere in the interval (2n —1, 2n), remaining positive
from there up to v =2n+ 1, while the numerator vanishes
at a value v„' 1 somewhere in the interval (2n, 2n+ I),
keeping negative from there down to v = 2n —1. Therefore,
9F. sweeps over all negative values when v varies between
v„' and v„and provides a crossing there to the bounded
negative definite right-hand side of (9). This situation is
qualitatively depicted in Fig. 1 for any u interval
[2n —1, 2n+1],n=1, 2, . . . Thus, there exists an infinity
of mutually nondegenerate bound-state solutions. More ex-

srtt' I'(v+ 1)
2"+' I'(v+ 3/2)

(14)

The resulting points v„' and v„are infinitesimally close to
v=2n. For example, for 3 =1.1: v]' =1.9999 while v,= 2.0002, a delicately minute interval to search for numeri-
cally! Since 9F 2„———(2n + 1)e't whereas the right-hand
side of Eq. (9) assumes the value —[ (2n + 1)2

—(2n + 3) ]' 'e't2 for v = 2n, the desired crossing of the A'„
curve in the figure occurs to the right of v = 2n'„ for the case
discussed above, A =1.1, this occurs at v =2.0001 for the
first solution. Thus, the bound-state energies increase rela-
tive to their values v = 2n appropriate to the parabolic model
of MGF when a cutoff in a(r) is made for r )R. This
feature appears natural because the kinetic energy assumes
there its normal form rather than growing up indefinitely in
consequence of the ever decreasing dynamical reduced mass
in the parabolic model.

These conclusions, namely, that an infinity of nondegen-
erate bound states exists for 2 & 1 in the cut-off parabolic
model (3) and their relationship to those of the parabolic
model are diametrically opposed to the statements made by
CS who claim that a minimal value of A,„=62.4 is necessary
for inception of such states and that, for any value 3 & A„,
there exist only a finite number of bound states. It is not
clear what led them astray. In fact, the present starting ex-
pression for u(x) Eq. (7) may easily be rewritten in the
form

( )
Tr't'[ctg(rrv/2) +tg(m. v/2)]

I'( —v/2) I'(v/2+ —,
' )

x xF ( T —v/2, I + v/2; 2;x2) (15)

2n-I

FIG. 1. Schematic representation of the function 9P„(continuous
line), Eq. (9), in the interval (2n —1, 2n+1) for n=1, 2, . . . to-
gether with its asymptote (the vertical dash-dotted line). The
dashed line gives the right-hand side of Eq. (9). The continuous
and dashed lines cross each other at a v value between v„and
v„, to the right of v = 2n for the CS model.

involving the same hypergeometric function advanced by CS
for x2 & 1. However, no details of what is actually done for
x & 1 are given by them, so it is impossible to reproduce
their calculation. Furthermore, for some values of 2, CS
find degenerate bound-state eigenvalues which, obviously,
are forbidden for a second order differential equation (this
can be shown by working out the Wronskian of the corre-
sponding wave functions and concluding that a mere pro-
portionality must hold between these).

It is worth stressing that the behavior of n(r) in the re-
gion n ( 1 is of little interest as far as the phenomenon of
binding in velocity-dependent potentials is qualitatively con-
cerned. What does matter is the existence of a region of
space in which n(r) ) 1 holds. As soon as this condition is
satisfied, an infinity of bound states emerges, as shown in
the next paragraph. In the framework of the originally pro-
posed2 parabolic model this is best illustrated by variations
other than the introduction of cutoff, Eq. (3). Thus, sup-
pose one confines the motion in the parabolic model to
r & p, with p & ro (in particular, p = 8 ). The appropriate
bound-state condition

tg (7rv/2)P„(p/ro) + Q„(p/ro) = 0

yields, in view of the positive definite nature of P„,Q„, one
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solution in any of the v intervals [2n —I, 2n ] for
n = 1, 2, . . . . Hence, infinite binding occurs in spite of the
definite increase in the kinetic energy due to confinement.
This increase is reflected by the repulsive shift of the eigen-
values from the values 2n of the unconfined parabolic

model. Furthermore, one could choose a confining radius
p ( ro in which case no logarithmic singularity is met at all.
Employing cosH = r/re with 0 & Hp= cos '(p/re), the follow-
ing asymptotic expansions4 in v are useful in the segment
He~H~ m/2:

I (v+1) 2
I (v+ 3/2) m sinH

I'(v+ I ) 7r

I (v+ 3/2) 2 sinH,

1/2

cos[(v+ —,
'

)H —n/4]+ 0(v-')

cos[(v+ ~)H+ vr/4]+ 0(v ')
(17)

The boundary condition (16) is readily satisifed by the infin-
ite sequence of v values

v = [(m/2)/(7r/2 —H )]2k ——', k=1, 2, 3, . . . . (18)

For He« m/2 (p ra) one recovers v —2k —2, again a

repulsive energy shift.
In conclusion, the existence of an infinity of bound-state

solutions in the general case is made rigorous by following
three steps. First, one proves that the energy spectrum of
Eq. (2) is unbounded from below by considering the energy
functIonal

I(e) —= [1—n(r) ][9+( i.")]'d'r +'d'r
2p, ~

(19)

An infinite sequence of trial wave functions
n=1, 2, . . . for any I, is served by the bound-state solu-
tions' in a square well n(r ) = neH (R —r ) with I & no
& n(0), confined to a radius R, R & Ro where n(Ro) = no.

Thus,

(I no) i it
I(+„,) & (~% „,)'d'r

2p, &o

P„i (n+ i/2)
( o

—» 'P!i
2p, A n~ oo

rR
O'„Id r

(20)

and the energy functional (19) can be made arbitrarily nega-
tive by taking n sufficiently large or reducing 8 for a given
n. If the spectrum were bounded from below by Eo it would
be impossible to drive the energy functional (19) below Eo,
contrary to the construction. Hence, for any I, the energy
spectrum is unbounded from below and its negative energy

(n+ I/2+ I/4)mKnl= r
dr/[n(r) —I]'i'

(22)

This expression may also be obtained by generalizing the
discussion of Sec. 6.2.3 in Ref. 5, in particular Eq. (19a)
therein.
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part is nonempty. In the second step one shows that any
one of the negative-energy eigenfunctions I'I corresponds to
a finite energy. To this end multiply Eq. (2) for 'Iii by wave
function CI belonging to an arbitrarily chosen point of the
positive-energy continuous spectrum, subtract similar terms
obtained by interchanging WI and 4I and integrate within a
sphere of radius R to obtain

[I—n(R)]() [e,( r ) O'Pi( r ) —+i( t ) ~C', ( r )] dCIr I-&
pR

(Ke inc, ) 'PiiIiid r=0 . (21)
I I

Here all quantities involving the wave functions +I and 4I
are finite, and so must be the difference (K2@ —K+2 ).

I I

Therefore, ~@, is finite. Since a finite sequence of
negative-energy eigenstates for a given I is necessarily
bounded from below, the existence of an infinite sequence
of discrete eigenstates of (2), with increasingly negative en-
ergies, is thus established for any I. The addition of a velo-
city independent potential to (2) does not alter these results.

In the third, last step one derives the asymptotic distribu-
tion of the eigenvalues by repeating the %KB construction
of MGF with the result [their Eq. (2.30)]:
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