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M2 collective excitations in light deformed nuclei and their relationship
to the one pion exchange potential
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The combined effect of the one pion exchange potential, the spin isospin dependent short range in-

teraction, and the deformation on the M2 states in light deformed nuclei is studied in the framework
of a semiclassical model which describes these magnetic states as longitudinal (along the symmetry
axis) and transverse spin isospin oscillations. It is argued that these states might present quite dis-

tinctive properties depending on the shape of the nuclei and on the strength of the short range repul-
sive interaction, due to the anisotropic character of the one pion exchange potential, which gives
most attraction to the longitudinal mode in oblate nuclei only.

I. INTRODUCTION

Magnetic excitations in nuclei have been the object of
several investigations in recent years, mainly in connec-
tion with the study of precursor phenomena. ' The soften-
ing of some of these excitation modes, usually called
spin-isospin (or) or pionlike modes, and the enhancement
of the corresponding magnetic transition probabilities
would in fact indicate proximity of the nucleus to a static
o.~ phase or pion condensation.

In all those analyses the possible role of nuclear defor-
mation has been ignored. It was pointed out, however, in

Ref. 4, to be referred to as I, that light oblate nuclei could
be quite natural candidates for exhibiting a precursor
behavior.

This can be seen from the analogy with the err static
phase in nuclear matter. This phase is characterized by a
laminated structure due to one-dimensional crystallization
along the direction of spin quantization (z axis), which is
normal to the planes alternatingly occupied by o.3~3 ——1

and o.3&3 ———1 nucleons. This model was invented in or-
der to get a nonvanishing direct Hartree contribution
from the or-dependent component of the nucleon-nucleon
potential
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where the sums are over o3(1)r3(1) and o3(2)r3(2), respectively, and p, (r) is the o.w density while the err matrix cle-

m.ent of V is given by
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(S33(r))= g p,, (r)CT3r3 .
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For ( V, ) not to vanish we need (S33)&0, i.e., err
correlations. But if we want, in addition, to get an attrac-

where rT is the component of the nucleon-nucleon dis-
tance in the x-y plane and V, and VT are the central and
tensor components of V,. Equation (1.1) can be rewrit-
ten

tive contribution from the tensor potential we must re-
quire that

(2z' —r r) (0, (1.S)

a condition which is realized by the laminated structure as
illustrated in Fig. 1(a).

This condition can also be fulfiBed in an oblate nucleus
by displacing o.3~3 ——1 with respect to o.3&3———1 nucleons
along the symmetry (longitudinal) axis, as shown in Fig.
1(b). The short range ar-dependent interaction, however,
prevents this configuration from being realized statistical-
ly.

We, therefore, suggested in I that the one pion exchange
potential (OPEP) could prevail over the short range forces
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(b)

FIG. 1. The laminated structure in nuclear matter (a) and the
two-fluids configuration of oblate nuclei (b) which get attraction
from the OPEP in the Hartree approximation.

just enough to promote the configuration shown in Fig.
1(b) dynamically as zero point or-longitudinal oscillation.
We showed that this mode, with E =0 quantum num-
bers, is indeed softened by the OPEP with consequent
enhancement of the corresponding M2 excitation proba-
bility. Such an enhancement has not been observed in
electron scattering experiments on Si, where the M2
states exhibit rather modest collectivity.

This negative result indicates that the OPEP is not at-
tractive enough to prevail over the short range interaction,
which is likely to be equally if not more important in
determining the magnetic properties of light deformed nu-
clei. That this force on the other hand plays a dominant
role in homogeneous nuclear matter and in spherical nu-
clei is by now generally accepted on the grounds of de-
tailed microscopic nuclear matter calculations as well as
of phenomenological analyses in spherical nuclei.

In order to properly account for the effect of such a
strongly repulsive short range interaction in deformed nu-
clei, the model developed in I must be accordingly modi-
fied. In the first place, transverse together with longitudi-
nal oscillations must be included in the description. The
o~ short range potential is in fact assumed to be well ap-
proximated by a contact potential, the so-called Landau-
Migdal potential, which of course contributes equally to
longitudinal and transverse oscillations.

If both oscillations are to be described, it becomes
essential to take the deformation into proper account. For
large deformations, in fact, the "unperturbed" g z-

independent frequencies of the longitudinal and transverse
oscillations become quite different from each other.

In the model so reformulated as to include the two
aforementioned effects, the OPEP is likely to play quite
an important (though different with respect to I) role. Be-
cause of its anisotropic character, as emphasized by Eq.
(1.3) in Hartree approximation and on the grounds of the
results reported in I, we should, for instance, expect in
light oblate nuclei a sizable if not total mutual cancella-
tion of the OPEP and the Landau-Migdal contributions to
the longitudinal mode only. The K =0 state corre-
sponding to this mode should have, if at all, little collec-
tivity so that only a single collective M2 state correspond-
ing to the transverse oscillation should be present in those
nuclei.

The purpose of the present paper is just to study, within
the semiclassical model used in I accordingly reformulat-
ed, the properties of the M2 states in light deformed nu-
clei resulting from the combined effect of the OPEP, the
short range interaction, and the deformation on the ar
longitudinal and transverse oscillations.

We confine our attention only to M2 states, which hav-
ing no spin flip components are the states most distinc-
tively affected by the OPEP. We consider only light de-
formed nuclei, which, being strongly deformed, are less
affected by the spin-orbit coupling, which can be ignored
in first approximation, and are therefore the best candi-
dates to magnify the anisotropic character of the OPEP.

Oblate as well as prolate nuclei will be considered. We
expect, in fact, that, due to the sensitivity of the OPEP to
the density shape [Eq. (1.3)], the properties of M2 states
might in turn result, dependent on the shape of the nuclei.
The inclusion of prolate nuclei in the description will
bring out some problems concerning the choice of the spin
quantization axis. This will be discussed in Sec. II, where
the procedure is outlined.

Useless to say, such a semiclassical model cannot ac-
count for the detailed properties of these states. It should,
however, enable us to single out the most relevant ones
and relate them in a transparent way to the nuclear shape
as well as to the interplay of the different components of
the interaction. This aspect will be discussed in Sec. III,
where the most meaningful results are presented. A pre-
liminary investigation of the type presented in this paper
can be found in Ref. 8.

II. THE MODEL

The basic assumption of the model is that the total nu-
clear wave function (wf) can be written in the form

0'~z~rx =4'~z~rsc( d)tP d, (2.1)

where @ is the oscillation wf dependent on the intrinsic
motion described by g-. This is a Slater determinant ofd'
displaced single-particle (sp) wf's

1

0 n nmnv 0 n (z —
p dz~&) ppgm ( r z. —~ d vcr')X~~, (2.2)

where g„(z)y„(rr) are harmonic oscillator (HO) wf's

expressed in cylindrical coordinates, whose displacement
d depends on the o.~ state 7
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If the spin quantization is chosen to coincide with the
symmetry axis (longitudinal spin quantization), expanding
up to the second power in d (harmonic approximation),
the following collective Hamiltonian will result:

2

H = + , (C—z+Cz)dz+ , (—Cr+C&)dT,2M
(2.3)

where dz and dT are to be considered now as quantum
variables, as prescribed by the unified theory of collective
motion, M is the reduced mass of the two oscillating
fluids, Cz and Cr are the cur-independent restoring force
constants, and Cz and CT are the o.~-dependent ones.
These latter quantities are determined by the equation wherei =z, T, and

X[Q +Q, +Q, ]G'(q„q, ),
(2.10)

pattern of the results due to V„plus V~, then the
Landau-Migdal force would certainly appear to be an
inadequate approximation to the short range interaction
in deformed nuclei.

If V, is included in Eq. (2.4), the following expressions
of Cz and CT are obtained:
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The potential used has the form

V = V + Vp+ Vg,

(2.4)

(2.5)
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where Vp is the p-exchange potential

fp
m p

and G„(q, ), G„(qT ) are the Fourier transforms of

G„(q,)=(q„,e ' q„),
and Vz is the Landau-Migdal contact potential

2
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m and mz are, respectively, the pion and p masses, f
and fq are n-nucleon and p-nucleon coupling constants,
I and I are the m-nucleon and p-nucleon form factors
given by

k 2
PL~(p) m ~(p)

~m(p)
A~(p) +q

(2.9)

and go is the Landau-Migdal free parameter. As we men-
tioned in the Introduction, the use of the contact interac-
tion (2.8) to account for the short range contribution has
been justified at least in nuclear matter by a fully micro-
scopic calculation. Although these nuclear matter results
do not necessarily hold unchanged in finite deformed nu-
clei, especially if anisotropic properties are intended to be
detected, ' we maintain the same parametrization for sim-
plicity.

On the other hand an immediate test of the plausibility
of such a parametrization is provided by the effect of Vp.
Were the contribution of this latter potential short ranged
itself but anisotropic, such as to change drastically the

I

The first excited states are characterized by the quantum
numbers IC =0 for vr ——0 and vz ——1 (longitudinal os-
cillation), and by E =1 for vT ——1 and vz ——0 (trans-
verse oscillation).

Their excitation energies are, respectively,
1/2

Cz(T)
cog(T) =cog(T) l + (2.13)

Cz(T)

Cz ——Moo „ Cg ——Mc7) T .—2 (2.14)

These states are excited by the M2 operator
1/2
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with a transition probability given by

(2.15)

where co, and BT are the unperturbed o.~-independent
longitudinal and transverse frequencies related to Cz and

8(M2,I =K=0 I,K)=
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I
m~

where i =x,y,z, and

X =0—+K =2 transitions are absent.
The previous results hold for longitudinal spin quantization as stated before. This is a natural choice, which also has

the merit of maximizing the attractive contribution of the OPEP in oblate nuclei. In prolate nuclei, however, the contri-
bution of the OPEP gets larger for transverse spin quantization, as suggested by Eq. (1.3) and the findings in I. Such a
cllolcc docs Ilot fit cRslly III flic present semiclassical IIlodcl, slllcc It breaks axial symmetry. I ct, III fact, tllc spill qlla11tl-
zation axis be the x axis. The contribution of V~, will make C„&Cz&C,. For V~, = V + Vs we have,

2 2f +m
Z 2de. deTerf;(n, eT) ~;, , —go I".(e )G (n, eT), (2.17)—00 0 +Pl ~

3x= &~
1 1

Ay f y Ag
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The states with good X quantum numbers are in general linear combinations of the eigenstates of the harmonic Hamil-
tonian. This can be seen by inspecting the expression of the transition probability. The M2 operator is in fact given by

1/2

~(»&)=— & g (
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v
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'

(2.19)
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from which the f'ollowing expression for the transition probability is obtained:

M 3 3 1 1
'

I elan8 (M2, 0~&)= —& &x0+ 4 I+— + 4z (gn —gp)
2 AC

It js to bc observed also tllat tllc K =2 states Rlc ex-
cited in this case. Just these latter states do not corre-
spond to a single oscillation along one of the axes, which
makes the model not completely consistent in this case.
For this reason we will consider both transverse and longi-
tudinal spin quantization for prolate nuclei.

values of the parameters entcrIng Into tllc calcula
tions are the currently used ones: m. =0.70 fm ',
III —3 90 fm I & = 1000 MCV, Ap=2000
f~/4~=0. 08, and f,'/4~=&.

The single particle level sequences used are, in cylindri-
cal coordinates,

where co is the sp HO frequency at zero deformation.
We used for this quantity the usual estimate

(3.2)

wlIIch shollld bc appropriate for the nuclej of fhe (s,d) rc
gIon, less so for C. Given the semiclassical nature of the
calculatton we stick to Eq. (3.2) also for ('.

Tile deformation parameter g /gr js fjxed so as to
reproduce the obscrvcd dcformatjon of the nucleus under
consideration through the relation

(n„n, m)= (0,0,0);(0,1,+1);(1,0,0);(0,2, +2);

(0,2,0);(1,1,+ 1); etc. ,

(n„n, m) = (0,0,0);(1,0,0);(0,1,+ 1);(2,0,0);
(1,1,+1);(0,2, +2); etc. ,

as required for prolate nuclei.
The or-independent restoring force constants Cz and

Cr are determined by Eq. (2.14), where the reduced mass
is taken to be M =(2/4)m; and co, and Br are chosen to
be the sp HO frequencies, foBowjng the unified theory of
nuclear vibrations. These frequencies satisfy the usual

voluIDe conseIvlng condltlon

QPzB T =B (3.1)

t2
aw ~ ~ ~ ~ +em

)0~
0.3 0.4

FIG. 2. FI'cqUcIlclcs of thc loI1g1tUd1n3. 1 Bnd trRQsvcrsc oT os
cllla, tlons vcl'sUs g o ID Sl. Thc fUll llncs Mc obta, lncd Using

V,= V + V@, the dotted lines when V@ is also included.
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FIG. 3. Frequencies of the longitudinal and transverse 0.~ os-
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where the mean values are evaluated using a Slater deter-
minant of sp wf's. The values of co, /coT so determined
might. not result in the most realistic ones. We will see,
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FIG. 5. Experimental and theoretical values of excitation en-

ergies and M2 strengths for different values of go in Si. The
theoretical lines are assigned the E quantum numbers of the
states which get excited.
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FIG. 4. Excitation energies and M2 transition probabilities
estimated for go ——0.5 (go ——0.6 for ' C). The 8(M2)'s corre-
sponding to a transverse spin quantization axis are also shown
for prolate nuclei (dotted lines).

however, that our conclusions do not depend critically on
the actual value of the deformation parameter.

We observe first of all that the effect of Vz is practical-
ly negligible for all values of go (and all reasonable defor-
mations) (Fig. 2). This result is therefore in support of the
plausibility of the Landau-Migdal parametrization also in
deformed nuclei, at least for low energy phenomena.

What instead should be noted is the extreme sensitivity
of the levels to the value of go, especially for the states
corresponding to longitudinal oscillations. In this latter
case it is worth it to observe that for gp 0.5 the mutual
cancellation of the contributions due to V (+ Vz) and Vs
is complete.

The collectivity of such a state would therefore disap-
pear completely for such a value of gp. The transverse
mode instead remains collective for practically all values
of gp. These results remain valid for a large range of the
values assumed by the deformation parameter co, /coT, as
shown in Fig. 3. (From here on we will show only the re-
sults due to V +Vs, given the negligible effect of Vz. )

This does not inlply that the deformation is not impor-
tant. As one can check from the figure, in fact, transverse
and longitudinal levels get dramatically split as co, /BT in-
creases. Again, the important effect of the OPEP is to be
noted. This, resulting strong (and increasingly with the
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deformation) attraction in the z direction only, opposes
the splitting.

All comments made so far are based on the Si results,
but remain true for all oblate nuclei considered. Prolate
nuclc1, instead, cxhlb1t two collcct1ve M2 states whatcvcr
is the spin quantization axis. In case of longitudinal po-
larization, in fact, the OPEP does not give enough attrac-
tion to cancel one of the modes for any value of go. If the
quantization axis is the x axis, the contributions of V
and Vs to C„mutually cancel for go =-0.5, so that only
the oscillation modes along the y and z axis remain collec-
tlVC.

In Fig. 4 the levels of the collective states with their
corresponding M2 strengths are shown for both type of
nuclei. (The results relative to the noncollective states are
not reported since the semiclassical description is not ade-
quate for these states. ) It is to be observed that the
strengths are never too large, as a result of the competing
effect of V, Vs, and deformation.

The most interesting prediction of the model is, in our
opinion, that for reasonably but not exceedingly high
values of go (g0-0.5—0.6) oblate nuclei should exhibit
only onc collective M2 lcvcl. Such a prcdiction docs not
seem in blatant contradiction with the known levels and
strengths. As shown in Fig. 5, the known experimental
M2 levels of Si are in fact clearly centered around an en-
ergy value E,= 14.5 MCV with an integrated strength

600

200

0

I,
15 17

g -0.33

(k=o

27
l

23 25

g 8 (M2)=400@ fm FIG 6 The same as in Fig 5 for '2C

in reasonable agreement with our results.
In ' C (Fig. 6) the M2 strength is practically all concen-

trated in one single level at 19.3 MeV, but is far too large
with respect to the strength estimated here. It seems,
however, that the experimental values in C are not the
result of a direct measure but follow from a theoretical
analysis" of the data' carried out using the random-
phase approximation (RPA) with spherical sp wf's.

Gur schematic model cannot account for the detailed
properties of the nuclei considered here. Only a RPA cal-
culation in a deformed basis, which includes the effect of
the 6 isobar, the spin orbit terms, etc., would allow a

complete description. Such a microscopic calculation for
instance would account for the fragmentation of the M2
states observed in Si and would give a more realistic esti-
mate of the Landau-Migdal parameter go for deformed
nuclei. The schematic analysis carried out in the present
paper has, however, strongly suggested that light de-
formed nuclei might present quite interesting magnetic
properties which are worth investigating more carefully
by means of a fully microscopic calculation.

We are grateful to A. Richter for pointing out Refs. 11
and 12 to us.

IS. A. Fayans, E. E. Sapershtein, and S. V. Tolokonnikov, J.
Phys. G 3, L51 (1977); M. Gyulassi and W. Greiner, Ann.
Phys. (N.Y.) 109, 485 (1977); M. Ericson and J. Delorme,
Phys. Lett. 768, 182 (1978). For a review see M. Ericson, in-
vited talk at the International Conference on Spin Excitations
in Nuclei, Telluride, Colorado, 1982.

2F. Calogero, in 1he ÃucIear Many-Body I'roblem, edited by F.
Calogero and C. Ciofi Degli Atti (Editrice Compositori, Bo-
logna, 1972), Vol. 2, p. 535; F. Calogero and F. Palumbo,
Lett. Nuovo Cimento 6, 663 (1973).

sA. B. Migdal, Z. Eksp. Teor. Fiz. 61, 2209 (1971) [Sov.
Phys. —JETP 34, 1184 (1972)];R. F. Sawyer, Phys. Rev. Lett.
29, 382 (1972); D. J. Scalapino, ibid. 29, 386 (1972).

~N. Lo Iudice and F. Palumbo, Phys. Rev. Lett. 46, 1054
(1981).

A. Friebel, M. D. Graf, W. Kniipfer, A. Richter, E. Spamer,
and O. Titze, Phys. Rev. Lett. 48, 567 (1982).

6W. H. Dickhoff, A. Faessler, J. Meyer-ter-Vehn, and H.
Miither, Phys. Rev. C 23, 1154 (1981);Nucl. Phys. A368, 445
(1981).

7J. Speth, V. Klexnt, J. Wambach, and G. E. Brown, Nucl. Phys.
A343, 382 (1980); see E. Oset, H. Toki, and W. Weise, Phys.
Rep. 83, 281 (1982) for an exhaustive list of references.

SN. Lo Iudice and F. Palumbo, Frascati Report No. 81/66(P),
1981;Lett. Nuovo Cimento 36, 91 (1983).

9A. Bohx' and B. R. Mottelson, Nuclear Structure (Benjamin,
New York, 1975), Vol. II, Chap. 6.

10F. Palumbo, in Lecture Votes in I'hysics, edited by J. G. Zabol-
itzky, M. De Llano, M. Fortes, and J. W. Clark (Springer,
Berlin, 1981),p. 482.

1~T. Terasawa, K. Nakahara, and T. Torizuka, Phys. Rev. C 3,
1750 (1971).

1~E. Grecksch, W. Kniipfer, and M. Dillig, Z. Phys. A 302, 165
{1981).


