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Using a two-body separable t matrix between pairs, we solve the resulting four-body equations for
four spinless bosons in the form that the 2+2 subsystem contribution is treated exactly by the con-

volution method. The 3+ 1 subamplitudes are represented as finite rank operators. We compare the

utility of these methods both in four-body bound state and scattering calculations. We also develop

an approximation that neglects four-body intermediate states in the 2+2 subsystem contribution

and compare it with exact results. Finally, we present the results for a four-nucleon calculation with

spin dependent s-wave separable interactions between pairs. These formally exact four-body equa-

tions are subsequently used to develop one parameter models to describe low energy phase shifts and

cross sections for the reactions n 'H —+n 'H, dd~dd, and dd~p 'H.

I. INTRODUCTION

In recent years, some progress has been made in the
solution of the four-body equations of Yakubovsky' for
the wave function or those of Alt, Grassberger, and San-
dhas (AGS) for the t-matrix components. In all calcula-
tions the two-body interaction is either separable or
represented as a finite rank operator through any of the
available techniques, such as the Hilbert-Schmit (HS) ex-
pansion or the unitary pole expansion (UPE). From
there onward, the methods used to calculate four-body ob-
servables range from the solution of a two-continuous-
variable integral equation to the expansion of all 3+ 1 and
2+2 subamplitudes in a separable form leading to a set of
coupled one-variable integral equations. Although most
of the work has been done in the negative energy region,
where several numerically converged calculations of the
four-nucleon binding energy already exist, there are a few
threshold and low energy scattering results. Since the an-
alytic complexity of the four-body kernel grows as the
center of mass energy goes beyond the three-body breakup
threshold, the accuracy of calculations in that energy re-
gion remains to be confirmed. This is in general the
underlying reason to develop approximations. The aim is
to simplify the analytic structure of the kernel leading to
four-body equations that may be solved with acceptable
accuracy in a specified energy domain. One hopes that
by retaining the dominant features of the four-body kernel
one may obtain results that are not too different from
those one may get with the full kernel. So far nothing has
really worked well, although some models may have come
closer than others.

Recently, Haberzettl and Sandhas formulated AGS
four-body equations for the r-matrix components in a way
that the 2+2 subsystem contributions are treated exactly
by the convolution method. In this approach all four-
body amplitudes can be calculated from the solution of a
single integral equation for the reaction (3)+1~(3)+1.
They also went on to show that, using single term sepa-

rable approximations for the two-particle and 3+1 sub-
system amplitudes, the driving term of the final four-body
equation is reduced to one of the field theoretic models of
Refs. 8 and 9, where the convolution method was first
used to calculate the 2+2 subsystem contributions. Their
work also showed the shortcomings of the approximation
used in the field theoretic model to formulate separable
three-body subamplitudes and suggested instead an exact
representation of all 3+1 subsystem amplitudes as finite
rank operators. At that time they proposed the general-
ized unitary pole expansion' (GUPE) because the effec-
tive three-body form factors are chosen there to be energy
independent, but one may well consider other methods
such as the energy dependent pole expansion" (EDPE) or
any of the recently developed expansions' (SE1 and SE2)
which represent the exact amplitudes with a fewer number
of terms than GUPE or EDPE. Of all methods, SE2 is
the only one that may be used at all energies since both
EDPE and GUPE fail to represent the exact three-body
amplitude above breakup threshold' ' and SE1 requires
a larger number of terms than SE2 for the same accuracy.

In the present paper we return to the field theoretic ap-
proach of Refs. 8 and 9 and replace the model 3+1
subamplitude by an exact representation of the three-body
amplitude as an operator of rank N. The four-body equa-
tions we obtain are identical to those in Ref. 7 where, as
mentioned above, the 2+2 subsystem contributions are
taken exactly by the convolution method. For a single
term expansion of the three-body amplitude we essentially
recover the equations of Ref. 8 but having now included a
proper representation of the underlying 3+1 subampli-
tude. Since we follow a field theoretic description of the
two-body interaction, we have access to the parameter z,
the wave function renormalization constant, that may
take the range of values 0&z & l. In the limit z=0, our
approach yields the same results as AGS or Yakubovsky
four-body equations with separable two-body interactions,
much as the Aaron, Amado, and Yam (AAY)' ' three-
body equations are identical to Faddeev equations with
separable two-body interactions. As in the Haberzettl and
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Sandhas modification of AGS equations, we treat the
2+2 subsystem contributions in an exact manner by the
convolution method. This has three main advantages over
the conventional procedure which consists of expanding
the 3+1 and 2+2 subsystem amplitudes in a separable
form: First, we deal with a smaller number of coupled
four-body equations; second, we avoid convergency prob-
lems connected with the number of terms necessary to ac-
curately represent the 2+2 subamplitude; and third, we
save computing time if the programming is carefully
done. This procedure has recently been attempted by Ha-
berzettl and Sofianos' in a four-boson bound state calcu-
lation using a single term in the expansion of the l=0
3+ 1 subamplitude.

In the first part of this paper we consider a system of
four identical spinless "nucleons. " our aim here is to
study how four-body observables, such as the binding en-

ergy and the low energy phase shifts for any 2~2 reac-
tion, depend on the number X of terms in the expansion
of the 3+1 subamplitude. Since any of the methods
referenced above (GUPE, EDPE, SEl, and SE2) requires
the calculation of three-body Sturmian functions at a
chosen energy B, we also study which among the possible
choices for B provides more accurate four-body results.
For the chosen two-body interaction we get —89.74 MeV
for the ground state which compares with the value
—89.6 MeV obtained by Gibson and Lehman' and
—90.1 MeV obtained by Narodetsky. ' For the excited
state we get —26.60 MeV compared with —26.64 MeV
obtained by Narodetsky. ' In the scattering region we
take only the contribution of the s-wave 3+1 subampli-
tude and solve the resulting four-body equations by ma-
trix inversion together with the contour deformation
method. ' The phase shifts for the reactions
(3)+1~(3)+1and (2)+.(2)~(2)+(2) are calculated as
a function of X. The GUPE, EDPE, SE1, and SE2
methods are tested in the reaction (2)+(2)~(2)+(2)
with two different choices for the energy B at which the
Sturmian functions are calculated in order to study the
sensitivity of the four-body results to the correct off shell

representation of the 3+1 subamplitude. The chosen
values for B are B=e&———25.53 MeV and
B=ez ———2.38 MeV, which are the energies of the two
l =0 three-body bound states.

In the present paper we also study the effect of an ap-
proximation previously developed that neglects a certain
class of four-body intermediate states in the calculation of
the 2+2 subsystem contribution through the convolution
method. We find that the four-body binding energy be-

comes —86.62 MeV for the ground state and —26.37
MeV for the excited state. This approximation is also
tested in the scattering region.

In the second part of the paper we consider a four-
nucleon calculation where as in Ref. 9 the two-body s-
wave interaction is spin dependent. Again for the chosen
two-body parameters we reproduce the results of previous
calculations for the bound states of the n particle. Our re-
sult for the 0+ ground state is e~= —45.59 MeV which
compares with —45.7 MeV taken from the work of Gib-
son and Lehman' and —45.73 MeV obtained by Naro-
detsky. ' For the 0+ excited state we get e~= —11.63

MeV which compares with the value —11.69 MeV taken
from Ref. 18.

Based on this four-nucleon calculation we develop sim-
ple models with which we attempt to describe low energy
scattering data for the processses n~H~n H, dd~dd,
and dd —+p H. Since, for the chosen two-body interac-
tion, the three-body binding energy is e,= —11.01 MeV,
we change the wave function renormalization constant zq
away from zero to adjust the position of the three-body
bound state pole with the triton binding energy. For
z& ——5.074&10 we get e,= —8.48 MeV together with
e~= —29.67 MeV for the four nucleon 0+ ground state
and e~ = —8.65 MeV for the 0+ excited state.

We also develop an alternative way to generate the
changes mentioned above without moving zz away from
zero. Instead we weaken the l =0 spin double three-
nucleon kernel until it develops a unit eigenvalue at
E3 ———8.48 MeV. Using the 3 + 1 subamplitude that
emerges from this modified spin doublet three-nucleon
kernel, one changes the four-body 0+ ground state to
e~= —37.24 MeV and the excited state to e~= —9.07
MeV.

These two models that are based on formally exact
four-body equations are subsequently used to describe
n H —+n H, p H, —+p H„dd —+dd, and dd~p H reac-
tions below breakup threshold. The results of our calcula-
tions are particularly good for the L, =0 and I.=2 I=1
phase shifts. Nevertheless, the correct description of
n H —+n H, dd~dd, and dd~p H reactions may require
the inclusion of the /=1 3+1 subamplitudes, at least in
first order perturbation.

In Sec. II we describe the equations for four identical
spinless bosons and in Sec. III we present the results of
our calculations for the spinless four-body system. In Sec.
IV we show the results of our four nucleon calculation
and in Sec. V we draw some conclusions.

II. FQRMAI. ISM

In this section we write the equations for a system of
four identical spinless nucleons and review some of the re-
sults that have been developed elsewhere. Although we
follow a field theoretic description of the two-body in-
teraction, the final equations are those of Haberzettl and
Sandhas, where the 2+2 subsystem contribution is taken
exactly by the convolution method. We use the following
units everywhere: %=2m =1, where m is the mass of the
nucleon.

A. Two-body interaction

As in Ref. 8 the two-body n-n interaction is mediated
by the quasiparticle d that is coupled in s wave to
d~n+n. The two-body t matrix has a separable form in
momentum space

where ~ is the d-particle propagator
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and

r(X) =S(X)IX, (2)

1=z+ y d n f2(n)
(2n —e)

(4)

'=-' f "",
(2n —e)(X+@—2n )

(3)

an elementary particle uncoupled to n+n, while if z =0, a
separable potential model is obtained in which the d is a
bound state of two n's with binding energy equal to e.
For z =0, Eq. (4) shows that, like in a separable potential
model, y takes the value that normalizes the two-body
bound state wave function to unity. Unless otherwise
specified, we always consider z =0. For the vertex func-
tion f ( q ) we chose the Yamaguchi form

f ( q )=(q +P ) ', where P is the range parameter.

The two-body interaction is therefore characterized by the
coupling strength y, the vertex function f(q), and the
wave function renormalization constant z that is allowed
to take on the range of values 0&z & 1. If z =1, the d is

B. Three-body equations

In the three-body sector, nd scattering proceeds by suc-
cessive n exchanges, and the scattering amplitude satisfies
the AAY three-body equation'

3
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~

T(E)
~
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(5)

where r is the d particle propagator given by (2) and V(E)
is the effective potential that results from a single n ex-
change

, f ( k+ —,
' k ')f ( k '+ —,

' k )
&k' V(E) i

k)=yz
E —k ' —(k+k ')' —k ' (6)

C. Separable expansions for 1+3 subaxnplitudes

The three-body a,mplitude T, once embedded in four-body
space, accounts for the 3+1 subsystem contributions to
the four-body sector. As shown in Ref. 7, a separable rep-
resentation of all 3+1 subamplitudes is required to obtain
a one vector variable four-body integral equation for the
t-matrix components. Therefore we now review some of
the methods we use as a means to express the t matrix T
for nd~nd as a finite rank operator.

I

where g„(Z) is an appropriate three-body form factor and
D „(Z) is the element of an X&&X matrix. The expres-
sions for g and D depend on the method we choose.

For GUPE,

[D '(Z)]„=b „(Z)—& g„(B) r(z)
~ g (8)), (11)

[& '(Z)]/~=&/„(8) r(8)V(Z)r(8) g~(8)) . (12)

The form factor g„(Z) equals g„(8) for all Z. Therefore
from the numerical point of view GUPE is the simplest
method since it involves energy independent three-body
form factors.

For EDPE,

[D '(Z)]„=[& '(Z)]„—&g„(z)
~

(Z) g (Z)), (13)

where b, '(Z) is given by Eq. (12) and

~
g„(8))= V(8)r(8)

~
g„(8)),

q„(B)
(8)

where g„ is the correspondent eigenvalue. The eigenfunc-
tions are normalized according to

& g„(8)
~
r(8)

~ g (8) &
= —5 „.

In any of the methods referenced above the T matrix
T (Z) may be written as an operator of rank X

Here we follow the work of Ref. 10 for GUPE, Ref. 11
for EDPE, and Ref. 12 for two recently developed sepa-
rable expansion methods (SE1) and (SE2) that are most
appropriate at energies above breakup threshold. Let T be
the three-body subamplitude and

T(z) = V(z)+ V(Z)r(Z)T(z)

the operator version of Eq. (S) where Z is the complex en-

ergy parameter. Given a suitably chosen energy 8, the
eigenvalues g„of the kernel Vr at that energy satisfy the
equation

~
g„(Z) &

= V(Z)r(8) g„(8)& .

For SE1,
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~
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i g (8) &

—&g„(z)
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where

~
g„(Z) ) = V(z)r (Z) g„(8)),

and r (Z) denotes the principal value part of r(z).
For SE2,

[D '(Z)]„=&(„(Z)7 (Z)V(Z)r (Z) g(Z))
—&g„(z) i

~(z)
i g (z) &,

where
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~
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1V

T~(z) = g ~ g (z) &D „(z)&g„(z) ~,
m, n =1

~
g„(Z) ) = V(Z)H(z)

~
g(z) ) . (19)

(10) The energy 8 at which the Sturrnian functions g„(8) are
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calculated depends an the properties of the original opera-
tor T one attempts to represent. The two common
choices of B are either the bound state energy or the ener-

gy of the lowest scattering threshold.

D. Four-body equations

Having chosen a separable representation for the 3+1
subamplitude T we now praceed to the faur-body sector.

The possible two-to-two reactions are 1+(3)~1+(3)and
1+(3)—+(2)+(2), as well as (2)+(2)~(2)+(2) and
(2)+(2)~1+(3), where (3) stands for a bound state of
three n's and (2) for a bound state of two n's. As in Refs.
7 and 16 we treat the 2+2 subsystem contributions exact-
ly by the convolution method. Therefore all four-body
amplitudes can be calculated from the solution of a single
one vector variable integraI equation. Letting
represent the full 1+3~1+3 four-body amplitude, the
specific form of the equation is

1V 3

&k'I~'i'«) Ik&=&k'I"«) Ik&+Xf,&k'I~' «) Iq&D .« —
3 q')&ql~i'«) Ik&

m, n

where

A J'(E)=B,'(E)+ U,'(E)+ U,'(E),

(20)

(21)

D „ is an element of the N XN matrix shown in (10), and N is the number of terms in the expansion of the 3+ 1 subam-
plitude. This equation is graphically represented in Fig 1(a). where Bi(E) is the d-particle exchange Born term, Ui(E) is
the box amplitude depicted first in Fig. 1(b), and Uz(E) is the sum of the last two box amplitudes. Both Ui(E) and
U2(E) are respansible for the 2+2 cantributions to the four-body sector through the intermediate d+d propagator. The
solution af Eq. (20) also provides a means of obtaining the rearrangement amplitude for 1+(3)~(2)+(2). This ampli-
tude has been depicted in Fig. 2 where we see that it may be written in terms of an integral over the half-off-shell elastic
amplitude Mi(E). Letting W2 be the amplitude for 1+3~2+2, the precise farm of this relation is

&k'l~z'«) lk&=&k'IB2'«) lk&+2 f,&k'IBr «)
I q&D .« —

3 q')&ql~i'«) lk&
m, n

(22)

where a is the (2)+(2) channel dd. The Born term B,(E) may be written as

& k'IB "(E)
I
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W =E e k————,
'
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where g is the three-body form factor of Eq. (10). Since r is the full d-particle propagator, Bi(E) contains both the d-
particle exchange pole as well as the n-n continuum contribution. The Born term Bz(E) is given by
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2
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(25)

The presence of a direct and an exchange term in B2(E) is due to the identity af the particles in the (2)+(2) channel. As
mentioned before, the box amplitudes Ui(E) and Uz(E) are calculated through the convolution method.

d k"
& k'I U~"(E)

I
k&=f,«" IB;-(E)

I
k'&G~(E;k, k",k')&+k" B2"(E)

I
k&, (26)

where the plus sign corresponds to Ui(E) and the minus sign to U2(E). The Gi and G2 prapagators are

G (E k k pp k p) ( y)
( I —Q)( F—Q ) f d
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7r (F—Q+e —x)( Y —Q'+e —x)
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f dx
Im[w(x —e)]r( F+e—x)

(x —e—Q")(F—Q+e —x)
where

(28)
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Y=E—2e—k"

Y —Q =E —e——,
' k"—(k "+k) —k

Y Q—'=E e——,
' —k "~—( k "+k') —k '2,

Y Q"=—E —e——,
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Having written the equation for the 2—+2 reactions initiated by the 1+(3) state we now present the equations for the
incoming (2)+(2) state dd. Again, all amplitudes may be calculated from the solution of a single integral equation.
Naming M3 the amplitude for 2+2—+3+ 1, the specific form of the integral equation is

N d3
(k ~~~;(E)~k)=(k ~BJ;(E)~k)+g J q, (k'~u& (E)~q)D.„(E—3q')(q~~3'(E)~k), (30)

Itl& 5

where Bz(E) is given by (24) and A(E) is the sum of B~(E), U~(E), and U2(E) given by Eqs. (23) and (26). Since the
kernel AD in Eq. (30) is the same as in Eq. (20) one can calculate ~ 3 once the resolvent (1—O'D) ' is obtained from
(20). Finally, letting M4 be the amplitude for dd —+dd the precise form of the integral relation between M3 and M4 is

N d3
( k ' [~&(E)

~

k ) =g f ( k '
~
B2 (E)

~ q )D „(E——,q )( q ~

u 3 (E)
~

k ) .
mn

(31)

III. RESULTS: FOUR SPINLESS NUCLEONS

Here we present the results of our four-body calculation
for a system of four spinless nucleons. The equations are
from Sec. II where the form factor f(q) of the two-body
interaction is f(q)=(q +P2) ' with P=1.45 fm '. The
two-body binding energy is always e= —2.226 MeV and
z =0. Since in the limit z =0 the two-body n-n interac-
tion is equivalent to a separable potential between pairs,
we reproduce the results of previous four-body work' 's
where AGS or Yakubovsky equations are solved with
two-body separable potentials of the Yamaguchi type.
The aim of this work is threefold. First, we want to study
how four-body observables such as the binding energy and
the low energy phase shifts for all 2~2 processes depend
on both the method we choose to represent the 3+1
subamplitudes in a separable form and the rank N of the

expansion. For that purpose we consider GUPE, EDPE,
SE1, and SE2 methods with N varying from one to six.
Second, we want to investigate how four-body results de-
pend on the value chosen for the energy B at which the
Sturmian functions g„(B) [see Eq. (8)] are calculated. As
mentioned above, the functions g„(B) are used to express
the three-body subamplitude T as a finite rank operator.
The common choice for B whenever there is a three-body
bound state is the energy of that same state. Since for the
chosen two-body interaction we have two I =0 three-body
bound states at e3 ———25.53 MeV and e3 ———2.38 MeV,
there are two possible choices for the energy B. Therefore
two different representations of the l =0 3+1 subampli-
tude may be used in the four-body sector and one would
hke to know which is best. Finally, we would like to
show the utility of the formalism we use where the contri-
bution of the 2+2 subsystem is taken exactly by the con-
volution method.

A. Bound state results

cl

(M
d

rn, n I

L
m m

m n

j cl

Qd7
CWWA )

J d

d I

The four-body equations of Sec. II C are solved by ma-
trix inversion with 21 points in the momentum variable
integration mesh. For all integrations leading to the par-
tial wave expansion of the driving terms we use a 6 point
Gauss-Legendre mesh, whereas in the solution of Eq. (8)
we take a 28 point momentum variable integration mesh
to calculate the Sturmian functions g„(B) corresponding
to the X largest eigenvalues. In Tables I and II we show
how the four-body binding energy converges as we in-

d I

N

+g
m, n

(b)

FIG. 1. Graphical representation of the integral equation for
the 1+(3)~1+(3)amplitude (circles).

FIG. 2. Graphical representation of the integral relation for
the 1+(3)—+(2)+(2) amplitude (hexagons).
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TABLE I. Four spinless "nucleons" ground state energy as a
function of the number N of terms in the expansion of the 3+1
subamplitude for different methods and B=eq ———25.53 MeV.

TABLE II. Four spinless "nucleons" excited state energy as a
function of the number N of terms in the expansion of the 3+ 1

subamplitude for different methods and B=@~———25.53 MeV.

GUPE
EDPE
SE1
SE2

—85.08
—88.96
—89.60
—89.00

—89.65
—89.69
—89.72
—89.73

—89.76
—89.74
—89.74
—89.74

—89.74
—89.74
—89.74
—89.74

GUPE
EDPE
SE1
SE1

—26.47
—26.16
—26.13
—26.06

—26.68
—26.54
—26.53
—26.50

—26.63
—26.60
—26.60
—26.60

crease the number N of terms in the representation of the
l =0 3+1 subamplitude in a separable form for different
expansion methods. Table I refers to the ground state en-

ergy and Table II to the excited state energy. The energy
B at which the Sturmian functions are calculated is
B—63 ——25.53 MeV. The converged results are —89.74
MeV for the ground state and —26.60 MeV for the excit-
ed state energy. These values agree within 0.5% with the
results of previous calculations of Gibson and Lehman'
and Narodetsky' which obtained, respectively, —89.6
MeV and —90.1 MeV for the ground state energy. Naro-
detsky also obtained —26.64 MeV for the energy of the
excited state. As mentioned in Ref. 21 we also find that
four-body results obtained with the GUPE method do not
converge monotonically and that N =3 terms are required
to get a converged ground state energy if one uses EDPE
(the same is true for SEl and SE2). For the excited state
a larger number of terms (N =4) is required to obtain a
converged result.

Considering now the other possible choice for
B—63 ——2.38 MeV, we show in Tables III and IV the
values we get for the energies of the four-body bound
states. Comparing these results with those of Tables I and
II we find that they differ roughly by 0.5%, which is
within the precision of the calculation. Nevertheless the
choice B=e3 gives rise to bound state results that are
slightly more bound than those obtained with B=e3 and
in better agreement with the results of Narodetsky. Since
both choices give rise to formally exact expansions for the
3+1 subamplitude there should be no difference between
the two calculations as long as the four-body results have
converged with X. The small discrepancy we get, though,
within the precision of the calculation may be attributed
to the nature of the basis sets g„(ei) and g„(Ei) for which
the corresponding eigenvalues satisfy the relation
Y/g(63) (ri„(eq ) for all n For a f.inite number N of terms
the sets g„(es) and g„(es) may lead to expansions that
differ slightly on the representation of the subamplitude.
Due to a lack of numerical precision this difference may

not disappear as we increase X. It is, however, interesting
to know that with roughly the same number of terms one
gets equally good results using values for B that are wide
apart. It is with the choice B=e3 that one realizes the
strength of the SE2 method over EDPE or GUPE where
for N = 1 one gets a four-body ground state result that
has essentially converged. Nevertheless for bound state
calculations there is no real advantage in using SE2 since
it leads to 40% more computing time than any of the oth-
er methods which with suitable programming are tirne-
wise equivalent.

B. Scattering results

In the scattering region we use matrix inversion togeth-
er with the contour rotation method to calculate the low
energy phase shifts for the reactions 1+(3)—+1+(3) and
(2)+(2)~(2)+(2). As shown in the Appendix the path
of integration is different from the one which is usually
employed in order to avoid crossing dangerous singulari-
ties of the kernel. For simplicity we have included only
the contribution of the l =0 3+1 subamplitude and per-
formed calculations at energies below breakup threshold.
In the presence of two three-body bound states there are
two different reactions initiated by 1+(3) states. Here we
consider only the phase shifts for the scattering of a "nu-
cleon" n from the ground state of three n's. For that
reason we choose B=ez in order to associate the three-
body ground state form factor with a single Sturmian
function, in particular the one corresponding to a unit
eigenvalue.

In Tables V, VI, and VII the I.=o, 1, and 2 phase
shifts for the reaction 1+(3)—+1+(3) are shown as a
function of N for different expansion methods and
E=—15, —4, and —2.5, MeV, respectively. We find
that, at all energies, N =4 terms are sufficient to obtain a
converged four-body phase shift for L =1 and 2 partial
waves and that results obtained with EDPE, SE1, and
SE2 are in closer agreement with each other than with

TABLE III. Four spinless "nucleons" ground state energy as a function of the number N of terms in
the expansion of the 3+ 1 subamplitude for different methods and B=e& ———2.38 MeV.

GUPE
EDPE
SE1
SE2

—69.82
—83.92
—90.10

—74.48
—89.53
—90.09
—90.10

—90.45
—89.80
—90.10
—90.10

—90.00
—89.81
—90.10
—90.10

—90.12 —90.10
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TABLE IV. Four spinless "nucleons" excited state energy as a function of the number N of terms in
the expansion of the 3+ 1 subamplitude for different methods and B=e3 ———2.38 MeV.

GUPE
EDPE
SE1
SE2

—26.47
—26.63
—26.39

—27.00
—26.65
—26.66
—26.63

—26.64
—26.66
—26.66
—26.66

—26.68 —26.66

those obtained through the GUPE method. In Tables
VIII and IX the L =0 and 2 phase shifts for the reaction
(2)+(2)—+(2)+(2) are shown as a function of N for dif-
ferent expansion methods and E=—4 and —2.5 MeV,
respectively. Here we find not only considerable
discrepancies between results obtained with different ex-
pansion methods but also lack of convergence as one in-
creases N up to six. Since the (2)+(2)—+(2)+(2) observ-
ables depend only on the off shell 3+1 subamplitude
there is no reason from the computational point of view to
prefer the choice B=e3 over the choice B=e3. There-
fore, using the experience gained in Ref. 12 and in Sec.
II A we take B=e3 and compare the new results shown in
Table X for E= —4 MeV and in Table XI for E= —2.5
MeV with those obtained previously with B= e'3. We find
that with B=e3 one gets converged four-body phase
shifts for all expansion methods. These results agree with
those obtained with choice B=e3, but only for the SE2
method. This again clearly indicates the strength of this
method which independently of the choice of B leads to
converged four-body results at energies away from the en-

ergy B with which the Sturmian basis set is calculated.
I

This also shows that four-body observables can depend
strongly on the correct representation of the off shell
behavior of the 3+1 subamplitudes. Although we have
not tested these methods at energies above breakup thresh-
old, this indicates that in this energy domain one may
only be able to use the SE2 method since it is the only one
we know which can represent accurately the 3+1 subam-
plitudes

1 1,Im[r(x' —e)]
Z rT Z+E —x

(32)

one may express G ~ (E) and G3 (E) as

C. Approximate calculation of the 2+2 contribution

We now test an approximate calculation of the 2+2
subsystem contribution that has been previously
developed but never studied in the framework of an ex-
act four-body calculation. Starting with Eqs. (27) and (28)
for the intermediate' 2+2 propagator and using a disper-
sion relation for r,

G (E)=G (E)+
772

G (E) G (E) (Y Q)(Y '

Q )

7T2

(33)

(34)

Im[r(x —e) ]Im [r(x ' —e )]dx dx
( Y —Q +@—x)( Y+2e —x —x')( Y Q'+e x—')—

Im[r(x —e) ]Im[r(x' —e)]dx dx
( Y —Q +e x)( Y+2e—x —x'—)( Y Q"+e x')— —

where Y, Q, Q', and Q" are given by (29) and

TABLE V. L =0, 1, and 2 phase shifts (in deg) for the 1+(3)—+1+(3) reaction as a function of N
for different expansion methods and B=@3———25.53 MeV. The four-body center of mass energy is
E= —15 MeV.

GUPE
EDPE
SE1
SE2

—38.07
—12.42
—9.06
—5.15

18.79
17.97
17.87
17.54

20.08
20.02
20.20
20.11

20.12
20.30
20.31
20.32

20.50
20.59
20.59
20.60

20.74
20.77
20.78
20.75

L=1
GUPE
EDPE
SE1
SE2

—29.55
—32.45
—32.85
—33.32

—29.87
—31.35
—31.47
—31.60

—29.98
—30.60
—30.63
—30.69

—30.06
—30.26
—30.27
—30.29

—30.11
—30.15
—30.15
—30.15

—30.14
—30.13
—30.13
—30.12

L=2
GUPE
EDPE
SE1
SE2

9.27
8.58
8.52
8.43

9.10
8.75
8.73
8.69

9.03
8.87
8.86
8.83

9.00
8.93
8.92
8.90

8.97
8.95
8.95
8.94

8.96
8.96
8.96
8.95
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TABLE VI. L =0, 1, and 2 phase shifts (in deg) for the 1+(3)—+1+(3) reaction as a function of 1V

for different expansion methods and B=e3———25.53 MeV. The four-body center of mass energy is
E=—4 MeV.

GUPE
EDPE
SE1
SE2

—63.11
—43.52
—40.56
—36.90

—15.29
—15.50
—15.59
—16.01

—14.36
—14.33
—14.26
—14.13

—13.81
—12.99
—12.94
—12.87

—12.58
—12.31
—12.44
—12.56

—11.69
—12.34
—12.45
—12.49

GUPE
EDPE
SE1
SE2

—46.25
—52.10
—53.28
—54.62

—47.79
—49.86
—50.05
—50.18

—48.42
—48.87
—48.90
—48.94

—48.64
—48.68
—48.68
—48.70

—48.68
—48.66
—48.66
—48.64

—48.67
—48.64
—48.64
—48.62

L=2
GUPE
EDPE
SE1
SE2

20.58
19.11
18.93
18.66

19.95
19.48
19.44
19.36

19.73
19.62
19.62
19.58

19.66
19.65
19.65
19.63

19.66
19.65
19.65
19.64

19.66
19.66
19.66
19.65

G ) (E)=r( Y) ——+ —[r( Y —Q) —r( Y)]— [r( Y —Q') —r( Y)] . ,
1 (Y—Q)(Y —Q') 1 1

Q —Q' Q
(35)

G2(E) = „[r(Y —Q")—r( Y)]+
QPI Y—

[r( Y —Q) —~( Y)]——+ „r(Y —Q)r( Y —Q") . (36)
( Y —Q)( Y—Q")

Y —Q —Q"

The last term in Eq. (36) corresponds to the box diagram
depicted last in Fig. l. If one approximates G~(E) and
G2(E) by G~(E) and Gz(E), respectively, one neglects all
four-body intermediate states in the first two box ampli-
tudes depicted in Fig. 1. This not only speeds up the cal-
culation by a factor of 30%, but also allows us to study
the importance of four-body intermediate states in an ex-
act four-body calculation. Since the full propagators
G~(E) and Gz(E) result from the convolution of the indi-
vidual propagators for each pair, one may view this ap-
proximation as neglecting the part corresponding to the
convolution of the continuum contribution in one pair

with the continuum contribution in the other pair.
Using the GUPE method with 8 =@3 and N =4 for the

3+ 1 subamplitude, and the approximation previously
described for G, (E) and G2(E), we get —86.62 MeV for
the four-body ground state energy and —26.37 MeV for
the excited state. These results should be compared with
the converged results in Tables I and II, respectively.
This indicates that the correct description of four-body in-
termediate states in the 2+2 subsystem is responsible for
4%%uo more binding in the energy of the ground state and
l%%uo in the excited state. In the scattering region the re-
sults of this approximation are shown in Table XII for the

TABLE VII. L =0, 1, and 2 phase shifts (in deg) for the 1+(3)~1+(3)reaction as a function of N
for different expansion methods and B=@3———25.53 MeV. The four-body center of mass energy is
E=—2.5 MeV.

L=0
GUPE
EDPE
SE1
SE2

GUPE
EDPE
SE1
SE2

—65.70
—46.60
—43.68
—40.02

—47.84
—54.06
—55.38
—56.88

—18.49
—18.76
—18.90
—19.43

—49.61
—51.69
—51.89
—52.01

—17.61
—17.76
—17.83
—17.83

—50.31
—50.72
—50.75
—50.80

—17.06
—16.69
—16.73
—16.63

—50.53
—50.56
—50.57
—50.58

—15.90
—16.16
—16.22
—16.20

—50.57
—50.54
—50.54
—50.52

—15.40
—16.09
—16.09
—16.00

—50.55
—50.51
—50.51
—50.49

GUPE
EDPE
SE1
SE2

21.69
20.16
19.96
19.67

21.01
20.54
20.50
20.42

20.77
20.68
20.67
20.64

20.71
20.70
20.70
20.69

20.71
20.70
20.70
20.69

20.72
20.70
20.70
20.69
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TABLE VIII. L =0 and 2 phase shifts (in deg) for the (2)+(2)~42)+(2) reaction as a function of N for different expansion
methods and B=@3———25.53 MeV. The four-body center of mass energy is E= —4 MeV.

GUPE
EDPE
SE1
SE2

—25.81
—30.51
—32.82
—34.08

—25.50
—25.51
—23.09
—15.71

—24.35
—14.63
—5.93
+7.65

—21.21
0.20

10.55
20.72

—1S.45
12.90
20.15
25.54

—6.96
20.92
24.81
27.21

L=2
GUPE
EDPE
SE1
SE2

—2.83 X 10-'
—5.02X10 '
—6.14X10—'
—6.92 X 10

—2.92 X10—'
—2.87 X 10
—2.02 X 10
—7 58X10

—2.43 X10—'
4.73 X 10
2.80 X 10-'
6.08 X 10

—1.49X10-'
4.48 X 10-'
7.22X10 '
1.08X10 '

1 07X10-2
8.35 X 10
1.10X 10-'
1.45 X 10-'

1.86 X 10
1.20X 10
1-44 X 10
1.77 X 10

1+(3)~1+(3)phase shifts at two different energies and
for I. =0, 1, and 2. Compared with the corresponding
phase shifts of Tables V and VI we find that the
discrepancies are larger in the I, =0 partial wave than in
I- =1 or 2. Since the energy of these calculations is well
below the four-body breakup threshold it is useful to
know how important four-body off shell continuum con-
tributions are in that energy region.

IV. FOUR-NUCLEON CALCULATION

Next we develop a four-nucleon calculation with a spin
dependent s-wave two-body interaction. As in the three-
nucleon calculation of Aaron, Amado, and Yam' the
nucleon-nucleon interaction is mediated by the quasiparti-
cles d and P that are coupled in s wave to n+n. Two-
body nn scattering proceeds through the d (deuteron) each
time a spin triplet pair interacts and through the P when-
ever a spin singlet pair interacts. Each interaction is
characterized by a coupling constant y and a vertex func-
tion f(k). The triplet interaction is also characterized by
the wave function renormalization constant zd that takes
on the range of values 0 &zd & 1. For zd ——0 this nonrela-
tivistic field theoretic interaction is equivalent to a one
tenn separable potential between pairs with f(k) being
the two-body form factor. By setting zd different from
zero one weakens the nucleon-nucleon triplet interaction
through the introduction of a bare d with probability zd in
the wave function of the physical deuteron. Therefore
(1—zd) X 10 is the percentage of s-wave nucleon-nucleon
component in the deuteron wave function. Unless other-

wise specified we always set zd ——0. The remaining pa-
rameters of the interaction in each spin channel are fit to
the low energy triplet and singlet nucleon-nucleon data.
For f(k)=(k +p )

' we take p, =1.45 fm ', y, =73.92
fm i, and P, =1.165 fm '. The value of y, is related to
the deuteron binding energy ed ———2.226 MeV through an
equation similar to Eq. (4). In the three-body sector both
the total spin s and the total isospin i have two possible
values, —,

' and —', , and the dynamical equations for the
three-body amplitudes are those of Ref. 15. Since no ten-
sor or spin orbit force is included in the two-body interac-
tion, both the total angular momentum I and the total
spin s are conserved. For each value of l there are three
independent amplitudes whose spin s and isospin i take on
the values ( —,', —,

'
), ( —,', —,

'
), and ( —,,

—', ), where the first num-
ber refers to spin and the second to isospin. For 1=0
there is a single three-nucleon bound state at e,= —11.01
MeV with s = —, and i = —,.

In ihe four-body sector we take only ihe contribution of
the three I =0 three-body subamplitudes. Considering the
importance of the p-wave contribution to neutron-
deuteron scattering, this may be viewed as a very drastic
approximation, particularly when we already know from
the work of Tjon that the inclusion of the I = 1 3+1
subamplitude has a noticeable effect on four-body scatter-
ing observables such as phase shifts and cross sections for
n H, ~n H, or n H~n H. Since computer size and
time limitations prevented us from going any further we
consider on.ly the I =0 subamplitudes which are
represented exactly as operators of rank X„ through the
GUPE method [Xi, N2, and X& are, respectively, the

TABLE IX. L =0 and 2 phase shifts (in deg) for the (2)+(2)~(2)+(2) reaction as a function of X for different expansion
methods and 8 =@3———25.53 MeV. The four-body center of mass energy is E= —2.5 MeV.

L=0
COUPE

EDPE
SE1
SE2

1

—52.09
—62.58
—69.47
—72.69

2
—51.61
—51.27
—43.65
—27.19

3
—49.22
—31.70
—18.43
—9.85

4
—42.61
—16.49
—9.39
—7.45

5
—31.96
—9.96
—7.27
—7.24

6
—20.47
—7.33
—6.95
—7.14

L=2
GUPE
EDPE
SE1
SE2

—6.76X 10-'
—1.10
—1.33
—1.47

—6.90X 10
—6.98 X10—'

—5.25 X10—'

—7.57X10—'

—6.05 X10—'

—5.92 X 10-'
3.89 X 10
9.61 X 10-'

—4.10X 10
6.31X10-'
1.12
1.58

—1.09X 10
1.23
1.62
1.95

2.86X10—'

1.71
1.96
2.17
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TABLE X. L =0 and 2 phase shifts (in deg) for the (2)+(2)—+(2)+(2) reaction as a function of X for different expansion

methods and 8 =e3 ———2.38 MeV. The four-body center of mass energy is E=—4 MeV.

GUPE
EI3PE
SE1
SE2

—52.38
—41.78
—37.58
—36.61

27.47
26.78
17.73
9.42

27.06
27.65
25.43
22.61

27.01
27.67
27.41
26.59

27.83
27.72
27.77
27.43

27.97
27.77
27.80
27.78

GUPE
EDPE
SE1
SE2

—8.9 X 10-'
—1.94X 10-'

1 07X10
—9.07 X 10-'

5.02 X 10
1.60 X 10
9.42 X 10-'
6.36 X 10-'

3.86 X 10
1.86 X 10-'
1.40 X 10-'
1.14X10-'

3.20X 10
2.10X 10-'
1.79 X 10-'
1.57X10-'

2.81 X 10
2.27 X 10
2.07X 10-'
1.91X10-'

2.62X10-'
2.37X 10-'
2.25 X 10
2.24 X 10-'

number of terms in the ( —, , —, ), ( —,, —, ), and ( —,, —, ) I =0
subamplitudes]. The Sturmian functions for the subam-
plitude ( —,', —,

'
) are calculated at the energy of the three-

body bound state pole 8 =@,= —11.01 MeV and the re-
sulting eigenvalues are both positive and negative. The
absence of three-body bound states in the ( —,', —, ), and

( —,, —, ) channels leads to the choice 8=ed ———2.226 MeV.
The four-body equations we solve are similar to those

of Sec. II D but are more complicated due to the inclusion
of spin and isospin coupling coefficients. For a single
term in the expansion of the three l =0 3+1 subampli-
tudes we get the same equations as in Ref. 9 but having
now included a suitable one term representation of the
underlying three-body subamplitude. As in the spinless
equations the contribution of the 2+2 subsystem comes in
through the box amplitudes in the driving term, the
difference being that one may get in intermediate states
both d and P propagators. Due to the lack of tensor and
spin orbit force in the chosen nucleon-nucleon interaction
and the neglect of / &0 3+1 subsystem contributions, the
total four-body angular momentum I. and the total spin S
are conserved. Both the total spin S and the tota1 isospin
I may take the values 0, 1, and 2.

A. Bound state calculation

First we solve the four-body equations by matrix inver-
sion with 21 points in the momentum variable integration
mesh. The four-nucleon bound states are the 0+ states

with e = —45.59 MeV and e*=—11.63 MeV with quan-
tum numbers S=O, I=0, and I, =0. The converged re-
sult is obtained with X~ ——4 terms in the GUPE expansion
of the l=0 ( —,', —,') 3+1 subamplitude. Since we take

zd ——0, these values may be compared with the results of
previous work by Gibson and Lehman' and Narodetsky
which obtained —45.7 and —45.73 MeV, respectively, for
the ground state energy. Narodetsky also obtained
—11.69 for the energy of the 0+ excited state. The agree-
ment between calculations clearly indicates that one can
trust the methods we use to calculate four-body observ-
ables, in particular those that depend on the alpha-particle
wave function.

Since for the chosen two-body parameters the three-
nucleon bound state is too deeply bound (e;= —11.01
MeV), one cannot expect to describe low energy scattering
data such as n H~n H phase shifts and cross sections
with the present four-nucleon calculation. Therefore we
develop a very simple model by changing zd away from
zero and keeping P„y„and P, fixed. As mentioned
above this weakens the s-wave component of the triplet
nucleon-nucleon interaction leading to e,= —8.48 MeV
for zd =5.074 X 10 . Having adjusted the three-nucleon
bound state pole to the triton binding energy, the con-
verged result for the energy of the four-nucleon 0+ bound
states is e = —29.67 MeV and e*= —8.65 MeV. Further
weakening of the effective four-body kernel may be ob-
tained by retaining only two terms (one attractive and one
repulsive) in the expansion of the ( —,', —,

'
) l =0 subampli-

TABLE XI. L =0 and 2 phase shifts (in deg) for the (2)+(2)~(2)+(2) reaction as a function of N
for different expansion methods and B=@3———2.38 MeV. The four-body center of mass energy is
E=—2.5 MeV.

L=0
GUPE
EDPE
SE1
SE2

81.56
—85.43
—79.66
—78.59

—17.71
—10.29
—8.26
—9.26

—11.23
—9.13
—7.80
—7.89

—7.90
—7.72
—7.44
—7.49

—6.69
—6.90
—6.96
—6.95

—6.54
—6.55
—6.61
—6.60

GUPE
EDPE
SE1
SE2

—9.61
—3.45
—2.14
—1.86

3.96
2.05
1.42
1.02

2.90
2.21
1.90
1.64

2.49
2.31
2.18
2.01

2.40
2.34
2.30
2.28

2.40
2.36
2.35
2.35
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TABLE XII. L =0, 1, and 2 phase shifts (in deg) for the
1+{3)~1+(3)reaction with %=4 terms in the GUPE expan-
sion of the 3+1 subamplitude and an approximate calculation
of the 2+2 subsystem contribution.

E= —1S MeV E= —4 MeV

L=0
L=1
L=2

+15.65
—30.55

8.80

—17.33
—49.88

18.99

tude. This leads to e = —28. 11 MeV and no 0+ excited
state. Since (1—zd)&&10 is the percentage of s-wave
component in the deuteron wave function, moving zd
away from zero may be physically interpreted as a means
to compensate for the lack of tensor force in the chosen
nucleon-nucleon interaction. For zd ——5.074)& 10 we get
approximately 95% for the s-wave component which cor-
responds to what one should have in the presence of ten-
sor force. It is interesting to note that Gibson and Leh-
man have calculated the four-nucleon binding energy
with a two-body interaction between pairs that includes
tensor force. They obtained values for e~ that range from
—30.5 to —26.6 MeV, depending on whether the percen-
tage of d state is either 4% or 5%.

We have also developed an alternative way to generate
the changes mentioned above without moving zd away
from zero. Although this model may be considered more
phenomenological than the previous one, we use it for
comparison. Instead of changing the two-body interac-
tion, we weaken the ( —,', —,

'
) l =0 subamplitude until we

get a three-body bound state pole at the triton
hindi'

en-
ergy. For the chosen two-body interaction the ( —,, —, )

I =0 three-nucleon kernel has a eigenvalue g=1 at the
three-body energy E3 ———11.01 MeV, which becomes
q=1.105 at E3 ———8.48 MeV. Therefore, dividing the
( —,', —,') l =0 kernel by A, =1.105 we generate a weaker ker-
nel that sustains a unit eigenvalue at E3 ———8.48 MeV.
Using the 3+1 subamplitude that results from this modi-
fied ( —,', —,

'
) 1=0 kernel, one changes the four-body 0+

ground state to e = —37.24 MeV and the excited state to
e~= —9.07 MeV. Again by retaining only two terms in
the expansion of the modified ( —,', —,

'
) I =0 3+ 1 subampli-

tude we get e = —33.6 MeV and no 0+ excited state.
The first model is denoted A while the second is denoted
8.

B. Scattering results

Having developed two simple four-nucleon models that
are based on formally exact four-body equations, we now
proceed to calculate phase shifts and cross sections for the
I =1 reactions initiated by the 1+(3) state and the I=0
reaction initiated by the (2)+ (2) state dd. As in the spin-
less calculation, the equations are solved by matrix inver-
sion together with the contour rotation method. Due to
lack of computer time the number of points in the
momentum variable integration mesh has been reduced to
14. For this reason the precision of this calculation has
an upper limit of the order of 3%. The convergence of
the calculation is shown in Table XIII for the I = 1

I+(3)~1+(3) phase shifts 5L at E= —7 MeV as a
function of the number of terms N, in each 3+1 subam-
plitude. We find that, in general, two or three terms per
3+1 subamplitude are sufficient to obtain a converged
four-body result, although about 95% of the final result
emerges with just a single term in each subamplitude.
Therefore to save computing time and memory space we
take N„=2 (for all r) in the I =1 reactions, while in the
I =0 reactions N~ ——2(3), N2 ——3(2), and N3 ——0 since the
isoquartet subamplitude does not contribute to I =0
four-body reactions.

In Figs. 3—8 the n H~n H phase shifts are shown as
a function of the neutron laboratory energy for different
values of S and L. The calculation (the crosses) corre-
sponds to the parameters of model 3 where
zd ——5.704X10 . For comparison, the predictions of a
resonating group calculation (dashed line) for
n H~n H and the results of the phase shift analyses of
Tombello (open circles) are also shown together with the
four-body results of Tjon (black dots). With the excep-
tion of "5,, all other phase shifts conform with what is
expected from previous calculations or phase shift analy-
ses. The absence of a resonant behavior in "5, may be at-
tributed to the neglect of l =1 3+1 subsystem contribu-
tions as the work of Tjon already suggests. For this
reason the calculated cross sections for n H~n H and
p He~p He are too flat when compared to existing data
(see Figs. 9 and 10). Since we have neglected the Coulomb
potential between protons in the four-body calculation,
the Coulomb amplitude is added to the nuclear ampli-
tudes multiplied by the appropriate Coulomb phases when
compared with p He~p He data. With the exception of
E„=1MeV results, all other cross sections at higher ener-

TABLE XIII. Four-body phase shifts '5L, at E= —7 MeV for the reaction 1+(3)—+1+(3) as a
function of the number of separable terms N„ in each 3+ 1 subamplitude. Here we set zd ——0.

1

1

1

1

1

2
3

01'
0

—61.21
—62.05
—61.23
—61.21
—61.21
—62.76
—63.12

Olg
1

19.37
19.42
19.72
19.37
19.37
18.85
18.26

11'
0

—66.05
—62.27
—61.46
—58.37
—60.17
—59.59
—59.84

15.77
1S.82
16.10
16.43
16.19
16.46
15.95
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TABLE XIV. Phase shifts 51. (in deg} at Ed ——6 MeV for the reaction dd —+dd resulting from dif-
ferent four-body calculations.

Exact
four-body

00'

—71.1

—80.9
—78.5

—3.13

—3.28
—3.18

—29.2

—36.2
—36.4

20'
0

—65.5
—67.5

—2.84

—2.47
—2.32

O 22~22

774
765

Model 8 —81.2 —36.0 —72.1 —2.50 752

gies lack sufficient structure. In Fig. 9 we show the re-
sults for both models A and B. Except for the relative
magnitude, the shape of the cross section is essentially the
same for both models. This indicates that the strength of
the 1=0 subamplitudes has little effect on the L =1
four-body phases. Therefore any improvement on the re-
sults we show has to come primarily from the contribu-
tion of the I = 1 3+ 1 subamplitudes and to a lesser degree
from the inclusion of tensor force in the nucleon-nucleon
interaction. This is best understood by taking into ac-
count both the results depicted in Fig. 11 and those shown
in Table XIV where we compare the dd —+dd 5~ phase
shifts and total nuclear cross sections at Ed ——6. 1 MeV for
different four-body calculations. The results in the first
line of Table XIV (dotted line in Fig. 11) correspond to
the exact four-body calculation with zd ——0. Therefore the
underlying ( —, , —,

'
) subamplitude has a pole at

E3 ——1 1 .01 MeV and the S =O,L =0 four-body kernel
supports two 0+ bound states at —45.59 and —11.63
MeV (see Sec. IVA). The second and third lines corre-
spond to model A calculations where zd ——5.704)&10
(full and full dotted lines in Fig. 11). The ( —,', —,

'
) subam-

plitude now has a pole at E3 ———8.48 MeV, and the
difference between N) ——3 and N~ ——2 four-body kernels

in 5 =O,L =0 is the number of 0+ bound states (two with
N~ ——3 and one with N~ ——2). Finally, the fourth line cor-
responds to model 8 calculations (dashed line in Fig. 11)
where the pole position of the ( —,', —, ) subamplitude has
also been fit to the triton binding energy. Comparing the
results of these calculations we find that by changing the
nature of the underlying l =0 subamplitudes in different
ways one cannot increase the nuclear part of the dd~dd
total cross section or, in another way, the value of the
dd~dd cross section at 90 deg. Since the dominant in-
direct effect of the tensor force is to reduce the strength of
the triplet s-wave nucleon-nucleon potential which in turn
changes the I =0 3+1 subamplitudes, we think that one
cannot attribute the shortcomings of this four-nucleon
calculation to the absence of tensor force. As shown by
Tjon for the n H~n H observables, we expect the I =0
3+1 subamplitudes to contribute strongly to dd~dd ob-
servables as well as to dd —+p H. In Fig. 12 we show the
cross section for dd —+p H at Ed ——6.1 MeV. Again, the
results show a considerable lack of structure although the
overall magnitude appears to be correct.

V. CONCLUSION

Using the field theoretic approach of Refs. 8 and 9 with
an exact representation of the 3+1 subamplitude, we have
shown the results of a four-nucleon calculation. The
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FICx. 3. Singlet s-wave phase shifts '50 vs E„. The crosses
correspond to the results of model A with zd ——5.704&10
The dashed line corresponds to the resonating group calculation
of Ref. 26, the dots to the four-body results of Tjon (Ref. 23)
and the open circles to the phase shift analyses of Ref. 27.
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FIG. 4. Singlet p-wave phase shifts '5& vs E„. All symbols
are as in Fig. 3.
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FIG. 7. Triplet p-wave phase shifts "5~ vs E„. All symbols
are as in Fig. 3.
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n H~n H

equations are identical to AGS equations in the form that
the 2+2 subsystem contribution is calculated exactly
through the convolution method. In the spinless calcula-
tion, the 3+1 subamplitude is represented as an operator
of rank N through the GUPE, EDPE, SE1, and SE2
methods and the effectiveness of these methods studied
for different N and the energy B, at which the Sturmian
functions are calculated. If the four-body energy E is
close to or below the energy B at which the Sturmian
functions are calculated, we find that both GUPE and
EDPE methods lead to four-body results that converge
fast (N=3), but for E «B or E »B the results converge
slowly (N &6) or not at all. It is in the E »B domain
that one needs SE1 or SE2 which are more powerful ex-
pansion methods than GUPE or EDPE. Nevertheless, a
note of pessimism should be added concerning the use of
separable expansion methods for the representation of
three-body subamplitudes in a separable form. Since cer-
tain four-body results (see Sec. III B) are very sensitive to
the correct representation of the underlying amplitudes,
one has to be extremely careful as far as choosing the
method and the energy B at which the Sturmian basis set

is calculated. For this reason we expect the SE2 approach
to be most useful in the scattering region, particularly
above breakup threshold. If this procedure does not work
then one is left with two variable integral equations as the
only tool to obtain the solution of a four-particle problem.
We also use the spinless calculation to test an approxima-
tion that involves neglecting four-body intermediate states
in the calculation of the 2+2 subsystem contribution. We
find that the off-shell four-body continuum contribution
is responsible for 4% more binding in the ground state en-
ergy and affects by as much as 15% the L =0
I+(3)~1+(3)phase shifts at energies well below break-
up threshold.

In the four-nucleon calculation we confirm the results
of Gibson and Lehman' and Narodetsky' for the 0+
states. Since for the chosen two-body interaction the
three-nucleon bound state is at e,= —11.01 MeV, we use
this four-body calculation to formulate one parameter
models where the position of the three-nucleon subsystem
bound state pole is moved to the triton binding energy.
Subsequently, we calculate the four-body phase shifts and
cross sections for the reactions n H n H, pH, p H„
dd~dd, and dd~p H. We find that triplet p waves are
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(f) 120

CL

90—

1.1
0

y 0
i Oo

o
o

4
0

l I I I I w)

10
Ei b (MeV)

20

6"
4

2

0

& —2
Qr

CL

I
)

n3H-+ n H

11
'2

0
0

~ 0

10,K x

I I I I I i I s

Eiab ~~

20

FIG. 6. Triplet s-wave phase shifts "6O vs E„. All symbols
are as in Fig. 3.

FIG. 8. Triplet d-wave phase shifts "5z vs E„. All symbols
are as in Fig. 3.
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FIG. 9. Angular distribution for H(n, n) H at different neu-

tron laboratory energies. The solid line corresponds to model A

calculations whereas the dashed line corresponds to model B.
The dots are the experimental points of Ref. 28.
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FIG. 10. Angular distribution for H, (p,p) H, at different
proton laboratory energies. The solid curve corresponds to
model A calculations and the crosses to the experimental points
from Ref. 29.

too small and that the calculated cross sections are either
too flat (see Figs. 9 and 10) or lack sufficient structure
(see Fig. 12). This may be attributed to a lack of four-
body p-wave strength due to the neglect of the l =1 sub-
system amplitudes. By studying the behavior of dd~dd
and dd~n H, observables to changes in the I =0 3+1
subsystem amplitudes we conclude that the shortcomings
of this calculation can only be attributed primarily to the
neglect of l = 1 three-body subsystem amplitudes and to a
lesser degree to the absence of tensor force in the
nucleon-nucleon interaction. Therefore any future four-
nucleon scattering calculation has to include both 1=0
and 1=1 3+1 subamplitudes and the s-wave modified
nucleon-nucleon t matrix due to the presence of the tensor
force.
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APPENDIX

The solution of the four-body equation (20) by matrix
inversion together with the contour rotation method re-

FIG. 11. Angular distribution for H(d, d) H at Ed ——6. 1

MeV. The dotted line corresponds to the exact four-body results
with zd ——0, the solid and solid-dotted line to model A calcula-
tions, and the dashed line to model B. The crosses are the ex-
perimental points from Ref. 30.
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dd~ n He
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X X-
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FIG. 12. Angular distribution for H(d, p)'H at Ed ——6. 1

MeV. The solid line corresponds to model A calculations and
the crosses are experimental points from Ref. 31.

FIG. 13. Singularities of V~(E3,q', q) in the fourth quadrant
of the complex q plane. The dashed line represents the path of
integration used to solve the four-body equations by matrix in-
version together with the contour rotation method.

u =(—,q +q' +qq'x)

u'=( —,q' +q +qq'x)
(A2)

quires the calculation of the driving term

( k '
~
A J'(E)

~

k ) and effective propagator D „(E —', k )—
for complex momentum k and. k'. As long as one re-
stricts oneself to the calculation of on-shell 2~2 ampli-
tudes, the limitations of deforming the path of integration
in Eq. (20) are similar to those encountered in the three-
body problem. The only difference involves the con-
straints that emerge from the calculation of the three-
body form factors g;(E3,q) for complex E3 and q where

E3 is the energy of the underlying three-body system [see
Eqs. (23) and (25)] and q depends on k and k'. Since
g;(E3,'q) is either equal to or related to the Sturmian func-
tions gt(8;q), the most severe limitation comes from the
calculation of ( q ~

V (E3 ) q ') for complex E, and q and
real q' running from zero to infinity. In a momentum
space representation this matrix element appears either in
Eq. (8) for E3 Bor in Eqs——. (14), (16), and (19) for
Z =E3. In each partial wave l the partial wave projection
of the effective potential (6) is given by

Vt«3, q, q')=2 I, &t«)
+1 f(Q)j"(u')

E3 —q —q' —qq'x

zt(q') =2q' —i 2P,
z2(q') = , q' i p-, —

z3(E3,q') = —,
' q' ——,

' (2E, —3q')'~z .

(A3)

Since in Eqs. (8), (14), (16), and (19) one integrates over q'
from zero to infinity, the complex momentum q can only
take on values in the hatched region shown in Fig. 13.
For R, (E3) &0 (E below four-body breakup threshold),
one can always find a path of integration for the four-
body momentum variables k and k' that conforms with
both Im(k) &0, Im(k') &0 and q within the allowed re-
gion shown in Fig. 13. Our final choice for the path of
integration in variables k and k' is given by the dashed
line (kp ——[ —,'(E —e', )]' or kp=(E —26d)' are the elas-
tic on-shell momenta in channels 1+(3) and (2)+(2),
respectively ).

and Pt(x) is the Legendre polynomial of order l. The
only limitations on the allowed complex values of q stem
from the singularities of Vt(E3,'q, q') which depend on
E3,q' and the range p of the Yamaguchi form factors
f(n)=(n +p ) '. In the fourth quadrant of the com-
plex q plane the branch points of V~ move with q' accord-
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