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The Fermi-hypernetted-chain method for quantum many-body calculations is studied and investi-

gated in some detail by calculations of the ground-state energy for neutron matter. The calculations
are done for five different two-body potentials and results are compared with other theoretical re-
sults. Our Fermi-hypernetted-chain results are rather close to results obtained by lowest-order con-
strained variation calculations, and the results are quite dependent on the chosen potential, especial-

ly at high densities.

I. INTRODUCTION

eF-40 MeV,

and it follows that

(1.4)

(T/TF) =(kT/eF) «1 (1.5)

in a neutron star, i.e., the neutron system (liquid) can be
considered to be (at zero temperature) in the ground state.
For p=pp we also get

(E/mc ) «1,
i.e., the system can be considered to be nonrelativistic, but
for high densities we may get

(E/mc )) 1 .

Neutron matter is an infinite, homogeneous, and unpo-
larized system of interacting neutrons at densities p) po,
where po is the typical nuclear-matter particle density of
nucleons in ordinary nuclei, i.e.,

pp-0. 17 fm

One reason for studying such a system is that neutron
stars are considered to consist, to a large extent, of neu-
trons at densities ranging from po to p=20po, and a first
approximation to neutron star matter should be neutron
matter. To calculate or estimate properties of neutron
stars like mass, moment of inertia, luminosity, etc. , we
need an equation of state and the energy E(p) for neu-
trons in the ground state. Neutron matter is also a useful
test for quantum many-body theories, and relatively sim-
ple test models can be used to compare different methods
numerically.

The most "probable" densities in neutron stars are in
the range from po up to p=3 fm . Neutron stars are as-
sumed to have temperatures of the order of

T=10 K, (1.2)

which corresponds to energies

E =kT=100 keV,

where k is Boltzmann's constant. The Fermi energy for a
noninteracting neutron system at pp is

II. GENERAL THEORY

The energy in the ground state in the nonrelativistic
limit is assumed to be given by

E =(q in i
q )/(e

i
q ),

where

(2.1)

H = —g (A' /2m)V;+ g v(r;J), (2.2)

~
g) is the ground-state wave function, v (r,J ) is the two-

body potential corresponding to the interaction between

Some of the first energy calculations for neutron matter
were done by Brueckner et aI. ' by their reaction matrix
theory at small densities. They found that neutron matter
is unbound, which has been confirmed by all later calcula-
tions. Binder et al. obtained energy, pressure, and criti-
cal mass for neutron stars, and 6stgaard calculated
neutron-matter energy and magnetic susceptibility for
p & 1.5 fm . Siemens and Pandharipande" used
Brueckner theory and the lowest-order constrained varia-
tion (LOCV) method to calculate the energy E (p) for 0.03
fm 3&p&4.2 fm 3, with the Reid soft-core (RSC) poten-
tial. Schlenker and Lomon used the Bressel-Kerman-
Rouben (BKR) potential correspondingly for densities
0.02 fm &p &0.3 fm . The first reliable variational
calculations for high densities, however, were performed
by Pandharipande and Bethe in the Wu-Feenberg ap-
proximation, which gave approximately the same results
as LOCV calculations, but they used only the central part
of the RSC potential. Bethe and Johnson constructed
new and theoretically more satisfactory potentials, and the
LOCV method then gave somewhat larger energies for the
ground state and the RSC potential. Variational methods
have been improved further after 1976 to include noncen-
tral parts of the potentials in the calculations. Smith in-
cluded spin correlations, but obtained approximately the
same results as Bethe and Johnson by their LOCV
method. Later, Friedman and Pandharipande have used
a more "realistic" potential where tensor and spin-orbit
terms are included. The energies then become consider-
ably smaller than in the "old" RSC calculations, where
only the central part of the RSC potential was included.
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the neutrons, and m is the neutron mass. The "true"
wave function will be determined by the two-body interac-
tion potential, and a possible assumption for the total
wave function of an X-body system is'

1&i &j &N

1&i &j&N
f(rj) ~4)= ~4), (2.3)

which should be antisymmetric and "physically accept-
able. "

We want to consider a "power series" (PS) expansion
for the energy, which is a systematic expansion in powers
of density and integrals of the functions

h(r)=f (r) —1

and the Slater functions

(2.4)

L ( kyar) =3(kFr) [sin(k~r) —k~r cos(kFr) ) ' (2.5)

The energy can then be expressed by the PS expansion,
but the convergence of the expansion will depend on the
density and the functions h(r) and L(kFr) We .would
normally expect fast convergence for low density or when

f(r)~l relatively fast with increasing r, i.e., for a short
"healing" distance. Calculations where only a few terms
of the PS expansion are included have been tried for many
different many-body systems, " ' where f (r) is chosen
to give a fast convergence of the PS expansion.

Pandharipande, for instance, has suggested a method of
lowest-order constrained variation, "' where only the
first term (the "two-body cluster" ) is kept in the PS ex-

pansion, and certain boundary conditions or healing con-
ditions are included for f(r). The LOCV method is a rel-
atively fast and simple method for calculating physical
quantities like the binding energy of many-body sys-
tems. ' But it is not a purely variational method since it
requires the additon of a parameter A, to the interaction
potential, and in some cases it gives poorer results than
other methods. ' The main virtue of the LOCV method,
therefore, seems to be the simplicity of the calculations.

The most important assumption in the LOCV method
is that the PS expansion can be neglected after the first
term, but this is not well founded on theoretical grounds.
To include higher-order terms, we want to consider the
Fermi hypernetted-chain (FHNC) method, which is
developed analogously to the hypernetted-chain (HNC)
method for classical gases. ' In one version of the FHNC
method, which is probably best for long-range interac-
tions, certain systematic cancellations between terms are
included, but relatively few terms are summed over (in-
cluded) at the end. In another version of the FHNC
method, ' which is probably best for short-range interac-
tions, more terms are included in the final expressions.

To sum all the terms in the PS expansion we use a dia-
gram representation, i.e., we consider irreducible diagrams
only, since reducible diagrams cancel out. Each diagram
can be factorized into simple diagrams, and simple dia-
grams are nodal diagrams or elementary diagrams. All
elementary diagrams can be obtained from basic diagrams

by replacing simple connections by summation of all types
of (nodal and non-nodal) diagrams.

A possible way to obtain the sum of all diagrams in the
FHNC method then would be to choose the correlation
function f(r), set all sums of elementary diagrams equal
to zero, solve the FHNC equations, calculate the sum of
elementary diagrams obtained from basis diagrams and
sums of all (nodal and non-nodal) diagrams, and go back
and iterate through the same procedure until we get con-
vergence. The main problem here is to calculate the sum
of elementary diagrams, and this sum is generally approx-
imated by some basic diagrams with just a few internal
points. The simplest approximation would be to set the
sum equal to zero, i.e., we get the FHNC/0 approxima-
tion. If we classify diagrams according to how many
points enter in the basic diagrams included, we get a
(FHNC/n) expansion where FHNC/0 is the "lowest-
order" approximation where no basic diagrams are includ-
ed.

We may now assume that the FHNC/0 approximation
should give a useful first approximation to the ground-
state energy, but there may be some cancellation between
elementary and nodal diagrams because of the antisym-
metry of the wave functions. For short-range interac-
tions and for liquid He, however, the FHNC/0 approxi-
mation seems to work reasonably well as a first approxi-
mation.

III. THE FHNC/0 APPROXIMATION

The FHNC method, and the FHNC/0 approximation
in neutron-matter calculations, have been outlined and ex-
plained in detail earlier, so we will here simply give the
equations to be solved in our method. We may choose a
trial function 4(d) to be varied to give a minimum value
for the energy (2.1), i.e.,

E =(%(d)
~

H
~

%(d) )/(%(d)
~

'Il(d) &, (3.1)

k,„=v'0. 3k~ &0.3(3np) 'i', —— .
(3.3)

ji(kr) are spherical Bessel functions, and the boundary
conditions are

f((0)=0,
fi(d) =1,
ft (d)=0.

(3.4)

It seems to be a good approximation to use such a correla-
tion function as an input in our FHNC calculations. ~

We also calculate the functions

where d is a healing distance for the wave function.
We first calculate the correlation function f(r), i.e., in

the LOCV method, fi(r) should satisfy the equation'

ft"+2fi ~i'(kavr)/&i(kavr) (I/&')(U—i+Xi)fr=0 (3 2)

where
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f (r) = t [1 +L (kfr)]f0(r) +3[1 L—(kFr)]f 1(r)+ T(kFr)[f0(r) —f2(r)] j /4[ 1 ——,
' L (kFr)] (3.5)

f,'„(r)/f, „(r)= I [1+L (kFr)]f0(r)f0(r)+3[1 L—(kFr)]f1(r)f1(r)
+T(kFr)[f0(r)f 0(r) —f2(r)f 2 (r)) j /I4f, „(r)[1—

2 L (kFr)] j,
where L (kFr) is given by (2.5), and

T(kF ) (kFr) I(kFr) (kF—r) [1+cos (kFr)l+ kFr sin(kFr)cos(kFr) —2sin (kFr) j —1 (3.6)

Sums of nodal diagrams are represented by the functions G»(r,z), G,h(r,j), Ghh(r;~), and Gdd(r, z), and sums of ele-
mentary diagrams are represented by the functions E„(rif), Esh(r~j ), Ehh(rij), and Edd(r J ). For

Ess =Esp =Egg =Edd =0,
we solve the integral equations

G„(r12)=p f [G„(r12)+a(r13)]p(r23)d r3

G h(r12)=p J Ia(r12)P(r23) y(r13)y(r23)+[G h(r13)+y(r13)]P( 23) jd r3

Ghh(r12) =p f Iy(»)y(r23) — (r»)P(r23)+[Ghh( 13)+@r»)]p(r23)jd'r3,

Gdd(r») =p J 5(r13)[Gdd(r2&)+5(r23) —,'L(kFr—23)]d r3,
where

(3.7)

(3.8)

a( r J ) =f,„(rij )exp[6„(r;J)] G„(r~ ) —1—,
Ãrij ) =fa.(ri, )[Gh„(rJ )+G,h(rij) 2Gdd(riJ )+—2L(kF r&)Gdd(rij) ,

' L (kFr—&)]eXp—[G»(rJ )]—Ghh(rij),

y( r;, ) =f.'„(rij)G l, (rij)exp[G„(rj )] G l, (r;, ), —

@ri;)=f»(ri&)[Gdd(rij) zL(kFrij)] ePx[G (ssjr)]+ 2L( 'Frj) Gdd(rij)

p(rz) =a(rz)+2y(r J)+p f [a(rih)p(rjh) y(rih—)y(rjh)]d rh .

The energy per particle is calculated as

E/E =e'F+ W+ WF+ U+ UF,

where

eF ———,'0 (A' /m)(3+p) ~

1

W'+ 8'F ———,'P f d r g U,
'

g, (r,2)
s=0

U= —4+p'(&'/m) f, r12[fa', (r12)/fav(r12)]«12 f, r13[fav(r13)/fav(r13)]«13
1

X d (cosg12)cos012g3(r12, r13,cos812),—1

UF = —8&p (1ri /m) f r12[fa'„(r12)/f»(r12)]«12 f r»L'(kFr13)dr13
1

d ( coHs1)23g( re 21r3)cos812)cos812 ~—1

Here

(3.9)

(3.10)

(3.11)

U 0 U l UI=0+(Ul=0 U1=2)T(kF 12)/[ +L (kF 12)]
—eff —eff eff

g, (r») =(2s + 1)[l+(—1)'L'(kFr»)]H(r»)+H, (r») —( —1)'H, ,„(r»),
g3( 12& 13' 23 )= »(r12 )L»(r13)L»(r23 )+2

X [L,h (r12 )L„(r13)L„(r23 ) +L,h (r13 )L„(r12 )L» (r 23 ) +L,h (r23 )L„(r12)L„(r13)]

+3[L,h(r12)L„(r23) h(r, 2)+L,h(r12)L„(r»)L,h(r23)

+L,h (r, 3 )L„(r12 )L,h (r 23 )]+2L,h (r12 )L,h (r13 )L,h (r 23 )
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+2[Lhh{r13)L {r12)Lh{r23)+L s{r13)Lhh{r23)L h{r12)+Lhh{r12)L h{r13)L {r23)]

+L»(r12)L»(r23 )Lhh(r13 )+Lhh(r23)L»(r12)L»(r13)+Lhh(r12)L„(r13)L„(r23 )

2sLdd {r12 )Ldd ( r23 )Ldd {r13 )

L '( kFr ) =d [L(kF r ) ]ldr = ( 3 lkF r )[sin(kF r ) —kF rL ( kFr )],
g 3 (r 12,r 13,r 23 ) =L„(r 13 )F1 (r 13 )L„(r 12 )[L„(r23 ) —1 +L„(r23 )G,h (r23 )]

+L-{r13)L;{r12)F1(r12)[L„(r23)—1]F1{r23»
where

H( r12) =exp[6„(r12)],

H1(r 12)=[2 G, h(r 12) +G h(r 12)+ Ghh(r 12)]e xp[6~ {r12)l

Hl, {r12) 4[L {kFr12)Gdd(r12) Gdd(r12)lexp[G {r12)]

F, (r) = —, L (kF r) +—Gdd(r),
L„(r)=f,„(r)exp[6„(r)],

Lhh(r) =f,„(r)[Ghh(r)+G, h(r) 2G—dd(r)+2L(kFr)Gdd(r) —
z L (kFr)]exp[G»(r)],

L,h(r) =f,„(r)G,h(r)exp[G„(r)],

Ldd(r) =f,„(r)[Gdd(r) ,' L (kFr)]e—xp[—G„(r)].

(3.12)

(3.13)

For comparison, we may also calculate the energy in the LOCV approximation, where we use the healing condition

pco(d) =1,
where

co(d) =coo(d)+co1(d)+m f [fo(r) —f2{r)]T(kFr)r dr,

coo(d)=~ f fo(r)[1+L (kFr)]r dr,

co,(d)=3~ f f21(r)[1—L'(kFr)]r'dr .

The energy is then given by

Ezocv/&=~F+ 2~p f r «Iuo~ [1+L (kFr)]+3u1 [1—L (kFr)]+(uo —u2 )T(kFr)I
r

,', (m2/m—)(3~2p)2" ,'p Xg—oo—(d)+X,co,(d)+~ f [XQf02(r) —X2f22(r)]T{kFr)r2dr .

(3.14)

(3.15)

(3.16)

+ , ~p f Iuo(r)[—1+L'(kFr)]+3u1(r)[1—L'(kFr)]+[uo(r) —u2(r)]T(kFr)}r'dr,

when

eff
UI

—$1f( for r (d
U(, for T)d,

d is the healing distance, and f& should satisfy (3.2).

IV. NUCLEON-NUCI. EON POTENTIALS

(3.17)

lations, and the strongly repulsive short-range part of the
potential can be very important for calculations at high
densities.

At relative distances greater than 3 fm, the nucleon-
nucleon interaction should be dominated by the one-pion-
exchange potential

V = ,', g m c —(m /m„) r1 r2.
The energy is calculated for four different potentials,

which are assumed to be local and static, but different for
states of different isospin T, spin S, orbital angular
momentum I., or angular momentum J. Neutron matter
has total isospin T=1, and the neutron-neutron interac-
tions show a strong exchange character, i.e., a great differ-
ence between odd-I. and even-L, state potentials, but oth-
erwise a weak L dependence. Potentials of different
forms generally give different results for the energy calcu- and

S12——3(o1 r)(o2 r) — ccrr21, (4.2)

X [cr1 cr2+S12(1+3x '+3x )]x 'exp( —x),
(4.1)

where m is the pion mass, m„ is the nucleon mass, the
tensor operator 5&z is
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x =(I clfi)r,
(4.3)

spin-orbit, and quadratic spin-orbit potentials, and the
quadratic spin-orbit operator L ~z is defined by

g =14.
L)z=[5Lj+(o ).oz)]L' —(L.S) (4.5}

At shorter distances, the nucleon-nucleon potential is
represented by sums of Yukawa potentials of the form
x 'exp( —nx), where n is an integer. Hard or soft cores
represent the strong short-range repulsion because of
meson exchange.

The Hamada-Johnston (HJ) potential is defined by

V(r)= V, (r)+ VT(r)S&z+ VLs(r)(L S)+V lr(r)L~ z,

(4.4)
~here V„VT, VLz, and VLL are central, tensor, linear

I

r, =0.4855 fm (4.6)

in all states, represented by a potential of 10 MeV for
r & r, in our numerical calculations, and a neutron-
neutron interaction given, for r & r„by

The noncentral components of the triplet-odd interaction
are not important in energy calculations and can be
neglected. We finally get a potential with a hard core of
radius

V(S =0)= Vo ———15.93lr 'exp( 0.7r) 1—98.005—r exp( —1.4r) 344.639—r exp( —2. 1r),

V(S = 1)= V~
——5.310r 'exp(0. 7r) —68.809r exp( —1.4r)+ 37.715r exp( —2. lr)

(4.7)

in MeV when r is given in fm.
For the Reid soft-core (RSC) potential we use the 'Dz central potential for all even-L+0 states, and we use the cen-

tral part of the P-state potential for all odd-L states, which we again represent by the V, ( Pz Fz) pot-ential since energy
calculations seem to indicate that this ls a good approximation for average densities, i.e., the potential is given by

V(S =O,L =0)= Vo ———14.947r exp( —0.7r) —2358.0r ~exp( —2.8r)+9263. 1r 'exp( —4.9r),
V(S =O, even L )2)= Vz ———14.947r 'exp( —0.7r) —17.603r 'exp( —1.4r)

—1589.4r 'exp( —2.8r) +9263. lr 'exp( 4.9r), —
V(S = l, odd L)= V, ( Pz- Ez) =4 982r 'ex. p( 0 7r) —13.33.5—4r 'exp( —2.8r)+5931.6r 'exp( 4 2r), —.

in MeV when r is given in fm.
The hard core in the Hamada-Johnston potential is replaced by finite square wells in the Bressel-Kerman-Rouben

(BKR) soft-core potential, which is defined by

V(singlet even) = V(triplet odd) =670 MeV,

for r(r„where

r, =0.6983 fm=0. 7 fm .

For r &r„we get

V(S =O,even L)= —15.670r 'exp( 0 7r} 194—.92.r e—xp( —1.4r) —338.978r exp( —2. 1r),

V(S = l, odd L) =5.223r 'exp( —0.7r) —83.572r exp( —1.4r)+34.964r exp( —2. 1r),

(4.9)

(4.10)

(4.11)

when noncentral components are neglected.
Bethe and Johnson have constructed several potentials where hard or soft cores represent the strong short-range repul-

sion because of co and p meson exchange. The simplest potential is their model-I potential which is constructed by using
the RSC potential (4.8) for all even-L states. For odd-L states, the potential is

V(S =1 odd L)=4.982r 'exp( —0.7r) —32.56r 'exp( —1 4r) 528 57.r —'exp( .—2.8r)+9262. 86r 'exp( 4.9r), —

(4.12)

in MeV when r is given in fm.
A convenient potential for comparing different many-body methods and calculations is a simple Yukawa-type poten-

tial, suggested by Bethe and defined as

V& ——9263. 1r 'exp( 4.9r), — (4.13)

which corresponds to the repulsive part of the Reid soft-core V(S =O,L=0) potential. This potential is used, for in-
stance, for comparison with Monte Carlo calculations.
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The total binding energy E/N per particle for neutron matter is now calculated by the LOCV method and the
FHNC/0 method for the different potentials, with

m„c =939.573 MeV,

fi /m„=41. 443 MeVfm
(5.1)

where m„ is the neutron mass, c is the speed of light, and A is Planck's constant. In both methods we have to solve (3.2)
with the boundary conditions (3.4), and we need

Jo(kr)/Jo(kr) =k cot(kr),

J~ (kr)/J, (kr) =k Ikr/[1 kr—cot(kr)] —(kr) (5.2)

The differential equation (3.2) is solved by the Runge-
Kutta-Nystrom method' ' for /=0, 1, and 2. It is a gen-
eral method for solving second order differential equa-
tions and it is correct to fourth order in the Taylor expan-
sion for y and y' when we, in general, have a second order
problem

y"=f(x y,y'), (5.3)

with the boundary conditions

y(xo) =yo

y'(xo) =y 0 ~

J2(kr)/J2(kr)=r 'I6kr —(kr) +[3(kr) —6]tg(kr)I/I[3 —(kr) ]tg(kr) —3krI .
I

Assuming that f (x,y,y') has a unique solution in some in-
terval containing xo, we can find the solution by Taylor
expansions for y and y'. ' ' In the calculations we have a
self-consistency problem from the beginning because A,t(p)
is not known, but at the same time p enters the equations
explicitly. The procedure, therefore, becomes as shown in
Fig. 1 for the LOCV method.

The integral equations in the FHNC method contain
two-dimensional integrals of the type

(54) Z(Iri —r2I)=s f x(Ir3 —r~l»(Ir3 —r2I)d'r3 (5»
which can be rewritten

00 oo

rbd"by'(ra )x (rb )jo(kr i2 )jo(«, )jo(krb ),
by the convolution theorem. Numerically, we have to calculate the integrals as

(5.6)

N

Z(r&2)=8p f k jo(kr) g y(rJ. )J'o(krj)cojrj
j=1

g x(r;j)o(kr; )to;r;

N N

=Sp f g g r &q r;r~y (r~)x(r; )co;co& f k 'dk sin(kr;)sin(kr~)sin(kr~2) . (5.7)
i =1 j=l

The last integration can be performed as

f k 'sin(kr; )sin(krJ )sin(kr, 2 )dk = —,
' f k 'dk [sin(&k) +sin(8k) +sin(Ck) —sin(Dk) ]

= —,
' n.[sgn( A ) +sgn(8) +sgn( C)—sgn(D) ],

where
(5.8)

A = Pi —I~+712,

g = I' +P'12 —f.

C =~i+I"j "k ~

D ="i+"j+I'k ~

(5.9)

+1, for x ~0,
sgn(x) = 0, for x =0,

—1, forx &0,

1.e.,
N N

Z(rk)=pm g Q x(r;)y(rJ)[sgn(A)+sgn(8)+sgn(C) —1]r;rjrk 'co;co~
i=1 j=l

=p~rp ' y I (r;)+lb(r;)+1, (r;)+I/(r;)
i=1

(5.10)
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STA~T START

CoC).C2,C3,C

Find
'0 dO

Try newkn. A~, A2

Given
p, Ap, k),Q

CO,C),C2,d

Try new ko

Find

Trv new At

Find
f), d)

Try new p &

Find

Find
f), d)

0

Yes

Find
p4)

No
Find
f2, d2

Trv neve A, 2

No

No

Find
energy

Find
G~,Gas,

STOP
Find

energy

FIG. 1. The scheme of calculations for the LOCV method.

STOr

where

I~ =x (r; )rancor [T(+k,—(T~ —T;+k)],

Ib —.

FIG. 2. The scheme of calculations for the FHNC/0 method.

x(r;)r;co;(T~ —Tk; —Tk; )), for i &k,
x (r; )r; co; T&, for i )k,
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TABLE I. Binding energy of neutron matter calculated with the Hamada-Johnston potential.

P
(fm-')

0.4
0.6
0.8
1.0
1.1
1.4

E(o)
2

(MeV)

—35.2
—38.8
—39.0
—33.1
—29.6
—12.3

E(1)
2

(MeV)

—4.4
—0.6
—4.8

2.2
7.9

32.6

T3
(MeV)

3.7
10.1
32.7
58.4
75A

150.9

EHo
(MeV)

—0.8
9.5

27.9
60.6
83.3

183.6

6'F

(MeV)

64.6
84.7

102.5
119.0
126.8
148.9

E/N
{MeV)

28.6
55.4
91.4

146.5
180.5
320.1

TABLE II. Binding energy of neutron matter calculated with the Reid soft-core potential.

P
(fm )

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2-'

3.4
3.6
3.8
4.2

E(0)
2

{MeV)

—19.0
—25.3
—21.8
—12.3

1.5
7.5

28.0
50.5
77.0

107.6
142.8
178.3
218.8
261.6
304.3
353.1
406.2
457 4
514.7
622.4

E(1)
2

(MeV)

—2.2
—3.7
—2.1

4.8
14.2
25.4
40.2
57.0
74.6
98.0

118.2
146.5
164.6
196.8
213.2
248.2
258.7
291.6
331.5
370.8

T3
{MeV)

0.6
4.8

11.6
20.2
30.3
43.2
54.3
66.2
78.3
86.9

101.8
109.1
125.3
131.3
149.5
155.4
173.8
183.9
187.4
218.4

EHo
{MeV)

—1.6
1.1
9.5

25.0
44.5
68.6
94.5

123.2
152.9
184.9
219.9
255.6
289.8
328.1

362.7
403.5
432.5
475.5
518.9
589.2

6'F

(MeV)

40.7
64.6
84.7

102.5
119.0
134.4
148.9
162.8
176.1
188.9
201.3
213.3
225.0
236.4
247.5
258.4
269.1

279.5
289.8
309.8

E/N
{MeV)

19.5
39.8
70.0

110.1
156.4
210.5
271.4
336.5
406.0
481.4
564.0
647.2
733.6
826. 1

914.5
1015.0
1107.8
1212.4
1324.4
1521.6

TABLE III. Binding energy of neutron matter as function of
the healing distance d, calculated with the Reid soft-core poten-
tial for p=0.8 fm

Emod/N

(MeV)
E/N

(MeV)

TABLE IV. Model energies for neutron matter calculated
with the Reid soft-core potential.

P E'F EF
(fm-') (Mev) (MeV)

d/rp

1.05
1.35
2.0
2.2
2.5

E/N
(Mev)

144.6
118.8
115.2
116.3
125.6

Lo/N
(MeV)

30.2
—2.3

—12.3
—12.9
—6.0

0.2
1.0
1.2
1.4
1.6
1.8
3.0
4.2

40.7
119.0
134.4
137.5
162.8
176.1
247.5
309.8

41.3
124.1

127.2
137.6
146.3
157.7
191.6
225.7

20.0
165.1
214.1
271.4
336.5
406.0
914.5

1530.9

21.1
172.4
210.5
275.5
341.0
411.5
921.1

1521.3
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TABLE V. Binding energy of neutron matter calculated with the Bressel-Kerman-Rouben potential.

P
(fm }

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.6
3.0
3.4
3.8
4.2

E(P)
2

(MeV)

—20.1
—30.1
—31.9
—29.2
—24.7
—18.1
—7.5

4.0
18.3
35.7
55.3

106.7
167.5
255.1

359.4
474.7

E(1)
2

(MeV)

—1.9
—1.9
—1.2

3.5
12.3
24.8
39.7
59.4
79.7

106.8
130.0
181.6
230.3
262.8
286.2
286.6

T3
(MeV)

0.65
3.2

10.4
18.3
26.7
31.8
43.4
55.6
61.5
59.4
65.8
64.3
53.6
44.3
28.9
17.5

EHo
(MeV)

—1 ~ 3
1.4
9.2

21.8
39.0
56.6
83.2

115.0
141.1
166.2
195.8
245.8
283.9
307.1

31S.1
304.1

40.7
64.6
84.7

102.5
119.0
134.4
148.9
162.8
176.1
188.9
201.3
225.0
247.5
269.1

289.8
309.8

E/N
{MeV)

19.3
35.9
62.0
95.1

133.3
172.9
224.6
281.8
335.5
390.8
452.4
577.5
698.9
831.3
964.3

1088.6

EHo
(MeV)

E/N
(MeV)

TABLE VI. Binding energy of neutron matter calculated with the Bethe-Johnson potential.

E(P) E(&)
2 2

) (MeV) (MeV) (MeV)

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

5.2
29.8
61,0
87.2

129.7
175.7
227.4
285.0
349.3
411.0
486.5
558.5
637.6

1.3
11.8
28.6
42.9
64.9
89.3

115.8
152.6
181.8
207.4
254. 1

276.7
328.6

19.0
32.2
48.6
63.0
79.7
97.6

115.9
129.5
149.9
172.8
185.2
211.5
221.0

20.3
44.0
77.2

105.9
144.6
187.4
231.8
282. 1

331.7
380.4
439.3
488.2
550.3

84.7
102.5
119.0
134.4
148.9
162.8
176.1
188.9
201.3
213.3
225.0
236.4
247.5

107.8
171.3
248.5
327.5
423.2
525.9
635.3
756.0
882.3

1004.7
1150.8
1283.1
1435.4

TABLE VIII. Binding energy of neutron matter calculated

by the LOCV method with the V& potential.

P
(fm )

0.6
1.2
1.8
3.0

E'F

(MeV)

84.7
134.4
176.1
247.5

~od

(MeV)

88.8
122.7
148.2
161.1

(MeV)

110.2
327.5
635.3

1435.5

EIIlod/N

(MeV)

113.6
334.2
645.6

1439.7

TABLE VII. Model energies for neutron matter calculated
with the Bethe- Johnson potential.

P
(fm 3)

0.2
0.4
0.6
0.8
1.0
1.4
1.8
2.2
2.6
3.0
3.4
3.8
4.2

ELocv
2

(MeV}

58.9
160.5
291.1
444.4
616.1

1003.9
1439.2
1911.8
2415.5
2945.2
3497.1

4068.7
4658.1

EF
(Mev)

40.7
64.6
84.7

102.5
119.0
148.9
176.1
201.3
225.0
247.5
269.1

289.8
309.8

d /rp

1.30
1.24
1.26
1.26
1.27
1.27
1.28
1.28
1.28
1.28
1.28
1.28
1.29

ELOCV/N
(MeV)

99.6
225. 1

375.8
546.9
735.1

1152.8
1615.3
2113.1
2640.5
3192.7
3766.2
4358.5
4967.9
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TABLE IX. Binding energy of neutron matter calculated by the FHNC/0 method with the V1 po-
tential.

p
(fm )

0.2
0.4
0.6
0.8
1.0

E(P)
2

(MeV)

59.6
131.2
208.1

309.1
420.4

E(1)
2

(MeV)

11.7
37.8
70.9

110.8
157.3

T3
(Mev)

1.8
12.1
39.6
60.4
81.8

EHO
(MeV)

13.5
49.9

110.5
171.2
239.1

Ep

(MeV)

40.7
64.6
84.7

102.5
119.0

E/N
(MeV)

113.8
245.7
403.3
582.8
778.5

TABLE X. Binding energy in MeV of neutron matter calculated with the V1 potential. MC is ob-

tained by Monte-Carlo calculations (Ref. 32), KR by Krotscheck (Ref. 33), FR by Fantoni and Rosati
(Ref. 34), and Z by Zabolitky (Ref. 22) for different kinetic energy expressions.

P
(fm ')

0.17
0.2
0.3
0.4
0.6
0.8
1.0

MC
E/N

89

175

KR
E/N

105

393

FR
E/N

112

424

824

93
112
181
257
432
629
844

EJF

91
109
174
247
412
598
802

Z
EpB

88
105
166
234
388
562
753

3
4
7
9

21
32
42

113.8

245.7
403.3
582.8
778.5

28.1

12.8
10.0

TABLE XI. Energy terms for neutron matter calculated with

the V1 potential.

TABLE XIII. Binding energy of neutron matter as function
of healing distance d, calculated with the V1 potential for
p=1.0 fm . AU=0. 1U.

0.2
0.4
0.6
0.8
1.0

EH 1

(MeV)

11.3
31.4
46.8
73.7

107.2

EH l, ex

—3.4
—9.0

—10.0
—16.1
—24. 1

E —E(p)

(MeV)

3.9
15.4
34.0
53.2
74.2

1.2
1.3
1.5
2.0
2.1

888.6
856.5
807.0
778.5
778.0

E/N+ 6U
(MeV)

889.5
857.8
809.7
786.2
786.4

d/rp

1.2
1.5
1.8
2.0
2.1

E(P)
2

(MeV)

466
376
322
309
305

T3
(MeV)

9
25
46
60
72

EHo
(MeV)

90
128
161
171
177

E/N
(MeV)

659
606
586
583
585

TABLE XII. Binding energy of neutron matter as function
of healing distance d, calculated with the V1 potential for
p=0.8 fm

p
(fm ')

0.2
0.6
0.8
1.0

(MeV)

40.7
84.7

102.5
119.0

~od

(MeV)

112.8
115.3
129.0

E/N
(MeV)

113.8
403.3
582.8
778.5

EIIl(xi/N

(MeV)

118.4
411.5
595.7
795.0

TABLE XIV. Model energies for neutron matter calculated
with the V1 potential.
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TABLE XV. Binding energy in MeV of neutron matter, calculated with the Reid soft-core potential
for a healing distance d = 1.2ro.

P
(fm 3)

0.6
1.0
1.4
2.2
2.6
3.0
3.4
3.8

E(0)
2

—10.8
44 5

129.1
373.1

523.5
694.3
868.3

1062.0

E(&)
2

4.2
21.7
41.8
91.6

129.0
145.6
185.8
190.2

T3

3.6
6.4
9.3

14.1
16.1
18.9
20.1

22.3

EHO

7.8
28.0
51.1

105.7
144.6
164.3
205.9
212.4

84.7
119.0
148.9
201.3
225.0
247.5
269.1

289.8

81.7
191.5
329.1

680.1

893.1

1106.1
1343.3
1564.2

1.22
1.23
1.24
1.24
1.25
1.25
1.25
1.25

The integral equations (3.8) are solved by iteration, i.e.,
the scheme of calculation is

(1) set all G„» equal to zero, i.e., G„'»'= 0;
(2) calculate the functions (3.9) for G„'»'=0;
(3) calculate new G„» =G„'»", i.e., the left-hand side of

(3.8), using (5.10) and (5.11);

(5) if G„'»'&G„'»', continue the iteration process until
convergence is obtained.

E'2 ' ——(8'+ WF)Lo,

ELo=E2 +&F ~

(0)

E2 ' ——(W+ W») —(W+ WF)~o,

T3 ——U+ UF,

EHo=E2 +T3(&)

E/N =E2 '+EHo+e» .

(5.12)

This method does not, however, always work for high
densities. Then one may use, for instance, a Newton-
Raphson iteration method.

The scheme of calculation becomes as shown in Fig. 2
for the FHNC/0 method, and the results are shown in
Tables I—XIV and Figs. 3—12. In the tables and figures
are given

In addition, E~, E~~, and EH&,„are contributions from
terms including H, H&, and H~,„ functions defined in
(3.13), and we also calculate model energies defined by

E/N &Milk
I

&MIV&

1400—

300—

1000-

200-

100-

200—

04 0.6 0.8 1.0

P&fm

1.4 0.2 1.0 1.8 2.6 34

p&fm '&

FIG. 3. Binding energy of neutron matter calculated by the
FHNC/0 method with the Hamada-Johnston potential.

FIG. 4. Binding energy of neutron matter calculated with the
Reid soft-core potential.
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E/N&N e V&

1600
E/I &M eV&

1200-

1200-

1100—

800—

400—
1000-

1.0 1.4 2.2

d/r,

0.2 1.0 1.8 2.6 3.4

FIG. S. Binding energy of neutron matter calculated with the
Reid soft-core potential by Pandharipande and Bethe (Ref. 6),
the LOCV method of Owen et aI. (Ref. 15), and our FHNC/0
method.

E2 ' then gives the energy when only the first (lowest or-
der) term of the PS expansion is included, while EHo
gives the correction from the other (highest order) terms
calculated in the FHNC/0 approximation. The model en-
ergies are calculated as a check on our method, i.e., E
and e~' should be close to E and e~.

E/M&M eV&

1600-

FIG. 7. Binding energy of neutron matter as function of the
healing distance d, calculated by the FHNC/0 method with the
Reid soft-core potential for p =3.2 fm

Results for the HJ potential are shown in Table I and

Fig. 3, and we could not get numerical solutions of the
FHNC equations for p& 1.4 fm . The HJ potential has

a hard core for r & 0.49 fm, and the free volume per parti-
cle becomes smaller and correlations between the particles
more important than for the RSC and BJ potentials.

Results for the RSC potential are shown in Tables
II—IV and Figs. 4—7. We see in Table II that T3 be-

comes greater than E2" for p ~ 1.9 fm, since the RSC
potential has a deep attractive well in the singlet-even

state ( Vo). Also, the contribution EH& will cancel the
contribution EH &,„ for p ( 1.6 fm because of the

1200— E/I&Me V&

1000-

800-

700-

400

400

Q2 1.0 1.8 4.2

100-

0.2 1.0 1.8 2.6 3.4
FIG. 6. Binding energy of neutron matter calculated by our

FHNC/0 method with the Reid soft-core potential, and by
Smith (Ref. 8) and Friedman and Pandharipande (Ref. 9) with

noncentral tensor and spin terms included in the potentials and

the correlation functions.

p &fm-s&

FIG. 8. Binding energy of neutron matter calculated with the
Bressel-Kerman-Rouben potential.
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I
IE/N(NIVAL

'1300-

E/NCMev&

900— 60 ~

40-

500—

300- 20-

100—

0.6 1.4 2.2 3.0 0.2 04 Q6 0.8

P&fm 3&

FIG. 9. Binding energy of neutron matter calculated with the
Bethe- Johnson potential.

FIG. 11. Energy contributions for neutron matter calculated
by the FHNC/0 method with the V& potential.

triplet-odd potential ( Vl). The choice of healing distance
d is checked as in Table IIE and Fig. 5, and we see that we
get a minimum for d =2ro. Model energies are shown in
Table IV, and we see that the difference between eF and
eF is 10—30%.

Results for the BKR potential are shown in Table V
and Fig. 8. Here, it was not possible to obtain a healing
distance d =2ro for f2(r) for p &2.6 fm, i.e., we could
not obtain the self-consistency condition, and we had to
use the approximation

A,+2=A,Qfo . (5.14)

The BKR potential has a rather "soft" core ( V=670 MeV
for r &0.7 fm), so the correlations between the particles
will be correspondingly small, EHO becomes less impor-
tant compared to E, and T3 decreases for increasing den-
sity. E(p) finally becomes an almost linear function for
the highest densities.

Results for the BJ potential are shown in Tables VI and
VII and Fig. 9. We see from Table VI that correlations

E/M&NI eY& E/N (MeV)

600

820-
FH

400

780

FHNC/

200- 740—

FHNC/O-Z

0.2 0.4 0,6 0.8

PC m-3$

1, 2 1.6 2.0 2,4 2.8

FIG. 10. Binding energy of neutron matter calculated with
the VI potential. The circles labeled EMC are obtained by
Monte-Carlo calculations (Ref. 32).

FIG. 12. Binding energy of neutron matter as function of the
healing distance d, calculated with the Vl potential for p=1.0
fm . The calculations FHNC/0 —Z and FHNC/4 —Z are done
by Zabolitsky (Ref. 22). The straight line is obtained by Monte-
Carlo calculations (Ref. 32).
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between more than two particles are very important for
large densities, and give approximately 40% contribution
to the energy for p=3 fm . The three-body term T3 is
also approximately 40% of EHo for the highest densities.
Model energies are shown in Table VII, and we see that ez
and e~ are very different for the highest densities.

Results for the V& potential are shown in Tables
VIII—XIV and Figs. 10—12, since it is very convenient
for studying the FHNC/0 method compared to the
LOCV method, the various terms in (5.12) and (5.13), and
the effects of the H functions in (3.13) and the healing
distance d. We see from Table XII and Figs. 10 and 11,
for instance, that the energy changes very little for
d ~2ro. We also see from Table XIII that E is quite
close to E ', but there is a greater difference between ez
and Ep

The energy per particle as function of density for the
Hamada-Johnston and the Bethe-Johnson potentials are
shown in Figs. 3 and 9, and Fig. 4 shows correspondingly
results for the Reid soft-core potential together with the
corresponding LQCV results. Figure 7 shows that the
RSC energy, for instance, does not change very much
when the healing distance is greater than 2ro.

In Fig. 8, a comparison between energy curves calculat-
ed by the LOCV method and the FHNC/0 method for
the Bressel-Kerman-Rouben potential shows a rather dif-
ferent behavior for the two curves for p&0.8 fm . The
sudden change in the energy predicted by the LQCV
method at p=0.8 fm has earlier been interpreted as a
phase transition"' occurring when the repulsion from
the soft core in the potential is not strong enough to keep
the neutrons apart from each other. The FHNC/0 results
show, however, that the energy increases smoothly with
density, and such a phase transition will not occur.

Figures 10 and 12 show that our results for the V& po-
tential are quite close to FHNC/4 results and Monte Car-
lo results. We also see that the energy changes very little
with increasing healing distance for d &2ro. Tables IV
and VII show model energies eF' and E ' /N calculated
for the Reid soft-core and the Bethe-Johnson potentials,
which are in quite good agreement with energies shown in
Figs. 4 and 9. Table XIV shows ez' and E ' /N which
are not too far from eF and E/N for the V~ potential, and
Table X also shows that our V& results are generally in
good agreement with other calculations, even at high den-
sities.

Figure 10 shows the energy per particle as function of
density for the V& potential, and our results agree very
well with results from Monte Carlo calculations. A
comparison with results obtained in the FHNC/4 app«xi-
mation is given in Fig. 12 for the V~ potential and a
particle density of p=1.0 fm 3. The FHNC/4 calcula-
tions and corresponding FHNC/0 calculations were made
for a correlation function f(r) obtained from Eqs. (3.2)
and (3.4) in the limit k,„~0,i.e., they consider in effect a
system of "bosons" interacting via the V& potential. The

healing distance d is then treated as a variational parame-
ter and the energy E(d) is varied numerically to give a
minimum value. Since the boson-type correlation func-
tion could be quite different from the optimum correla-
tion function, an upper bound to the energy is not ob-
tained unless a massive partial summation of contribu-
tions or diagrams is performed. This is shown in Fig. 12,
where the FHNC/0 calculations for the boson-type corre-
lation function give results below the Monte Carlo results
and the FHNC/4 results for large values of d.

In our calculations, a "true" fermion correlation func-
tion is used. And in addition, the healing distance d is
not a true variational parameter, but simply a parameter
introduced to improve the convergence of the cluster ex-
pansion. At the two-body level, as in the LOCV method,
it is necessary to impose restrictions on the healing dis-
tance. When many-body contributions are included, how-
ever, the range of the correlation functions may be in-
creased without problems for the convergence of the ener-

gy expansion.
It is important to try a large healing distance, since fer-

mion systems should have an optimum correlation func-
tion which "goes" like 1+ W(r ) for r~oo. And, in
the limit d ~ oo, we should expect the energy to approach
a correct limiting value if the wave function is close to the
true wave function and the energy is evaluated correctly.

Since our correlation function is obtained at the two-
body level and the FHNC/0 method is not exact, neither a
correct value nor a true upper bound for the energy per
particle will be obtained. Our FHNC/0 calculations,
however, should be better than FHNC/0 calculations
based on a boson-type correlation function.

From Table X we see that the FHNC/0 approximation
seems to be reasonably accurate for state-independent
correlation functions and Yukawa-type potentials for
d (2ro and p (2 fm . To permit an l-dependent corre-
lation function, i.e.,

foddl+f2 feven 1~0 ~

we have used the approximations (3.3) and (3.5) in our cal-
culations. The terms U and UF could be rather sensitive
to the choice of f,'„(r), and one should possibly take a dif-
ferent f,'„(r) in singlet and triplet states. 3O 3'

We have neglected all noncentral components in the po-
tentials. For most potentials this would only matter for
the triplet-odd states, but we see from Fig. 6 that it could
be important. Noncentral interactions seem to be able to
reduce the energy for the Reid soft-core potential by al-

most 40% at high densities. '

To check the choice of healing distance in the LQCV
method compared to the FHNC method, i.e., (3.14), we
also calculated the energy by the FHNC/0 approximation
for approximately the same healing distance as in the
LQCV method. The results are shown in Table XV, and
we find that EHo is only 10% of ELo. We also find, in
general, that the results from LOCV calculations are
quite close to our FHNC/0 results.
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