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Pion form factor and the Klein-Gordon equation
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We compute m ground state energy levels in the Coulomb field of nuclei as a function of the
external charge Z, taking into account the pion electromagnetic form factor in the Klein-Gordon
equation. We compare our results to those obtained by solving the Klein-Gordon equation without
the form factor or by solving an approximate Klein-Gordon equation from which virtual pair terms
have been removed. We find the approximate Klein-Gordon equation to be a priori a better approx-
imation to the form factor Klein-Gordon equation for an external point Coulomb field. In contrast,
the Klein-Gordon equation turns out to be an excellent approximation to the form factor Klein-
Gordon equation for physical (finite size) nuclei, unlike the approximate Klein-Gordon equation.

I. INTRODUCTION

Although other forms of relativistic wave equations
have also been studied, ' the Klein-Gordon (KG) equation
is the standard equation used to calculate pionic (m )

bound states in the Coulomb field of nuclei. In such cal-
culations, the influence of the pion electromagnetic form
factor F (q ) turns out to be very small, ' so that neglect
of the composite nature of the pion (and hence use of the
KG equation, treating the pion as a point particle) is an
excellent first approximation to the problem. However,
Brodsky recently argued that composite particles like nu-
cleons or pions should not be described by the Dirac or
the KG equations, as their form factors actually suppress
particle-antiparticle virtual pair (VP) creation, a process
that is automatically included in the Dirac or KG equa-
tions. Thus a relativistic spin zero wave equation
without VP terms [approximate Klein-Gordon (PKG)
equation] would then provide a better description of com-
posite scalar particles than the KG equation itself, without
inclusion of the particle form factor.

In this paper we wish to study whether the electromag-
netic pion form factor indeed suppresses VP terms in the
KG equation, as argued in Ref. 3. In order to do that, we
have computed m ground state energy levels in the
Coulomb field of a nucleus of charge Z

~

e
~

for
0(Z(240. Those ~ bound states were computed first
by means of the KG equation with proper inclusion of the
n electromagnetic form F (q ) factor. Our results were
then compared to ~ bound states obtained by either
neglecting F (q ) in the KG equation or by deleting VP
terms in the KG equation, also without the F (q ) term
(PKG equation). We carried out the above calculation
both for a "pointlike" nucleus and for a physical (finite
size) nucleus. In the first case our results show, in quali-
tative agreement with Ref. 3, that suppressing VP terms
in the KCx equation decreases the binding energy of ~
states, just as the inclusion of F (q ) in the KG equation.
However, the repulsive effect of F (q ) is much greater
than the repulsive effect introduced by pair suppression.
In particular, we find that the critical value Z, at which
spontaneous pair production of ~+a. pairs occurs is now

Z,—240 for a physical pion in the Coulomb field of a
point nucleus, compared to Z, =84 for the PKG equation,
and Z, =—69 for the KG equation.

In the case of a "physical" (extended size) nucleus, how-
ever, we find that suppression of VP terms increases the
binding energy, whereas inclusion of F (q ) in the KG
equation yields (within the accuracy of our numerical
computation) the same binding energies as those coming
from the KG equation.

We are thus led to the following result: If one wishes to
evaluate vr bound states in a pure point Coulomb field
for instance as a first approximation to the problem of the
Coulomb field of a finite size nucleus, it is a priori better
to use the PKG equation, which is obtained from the KG
equation by suppressing VP terms, rather than to use the
KG equation itself and ignore the pion form factor.
Suppression of those VP terms plays the same qualitative
role as the inclusion of the pion form factor F (q ) in the
KG equation. For 0 &Z (60, the effect is even quantita-
tively reproduced. However, for physical nuclei, the PKG
equation gives systematically too large binding energies
while, because of the nucleus finite size, the effect of the
form factor is practically negligible, so that the KG equa-
tion is definitely a better equation to use.

Our work is organized as follows. In Sec. II, for com-
pleteness sake, we briefly discuss VP terms in the KG
equation. In Sec. III we discuss the form of F (q ) and
of the Coulomb interaction for a finite size nucleus. Sec-
tion IV discusses the PKG equation, while in Sec. V we
discuss our results and state our conclusions.

II. VIRTUAL PAIR CREATION
IN THE KG EQUATION

For completeness sake, we briefly discuss the interpre-
tation of the KG equation. The KG equation for a parti-
cle of mass m and total energy E in an external vector
field Vis

[(E—V) —p —m ]/=0.
The meaning of Eq. (1) is best studied in the "free particle
representation, " where Eq. (1) is written in a "two-
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component" form. One then gets the Hamiltonian form
of Eq. (1) (Ref. 4), [Ez ——(p +m )'/ ],

Ep Eq(E E—)u (p) = f d q V(p —q) u (q)
2(E E )1/2

+ f d q V(p —q), v(q), (2)
2(EpEq )'

V (r)=—,r &R,c
R

(8)

V (r)=—,r&R .

We took

proton number Z. For V (r), we take the form (a is the
fine structure constant),

Ep Eq(E+E~)v(p)= f d'q V(p —q)
' v(q)

2 EpEq
'/

+ f d qV(p —q), u(q) . (3)
2 EpEq

Let us record that the connection between P and

ra= 1.2 fm ~

whereas

/I =2Z, (Z & 100),

/I (Z) =63.6+1.30Z+0.00733Z', (Z & 100) .

(10)

(12)

(13)

is given by

(q+x),1

2

(q —x),
m V2

r r

Ep+m

2(mE )'/

m —E gP

Ep+m U

F(q)= 2
1—

p

1

I"
(14)

p =680 MeV .

Formula (13) is taken from Ref. 5.
As usual, ' the pion form factor has been taken to be the

three dimen-sional Fourier transform of the experimental
elastic form factor F (q ). We chose the form of I' (q )

as parametrized by Bebek et al. ,
6 i.e., q2=q20—q

2

In Eqs. (2) and (3), v(p) describes virtual particle-
antiparticle pair creation (VP terms) by the external field
associated with the existence of negative energy states in
the original KG equation (1). An approximation to Eq.
(1) which consists of ignoring VP terms is then given by

In configuration space, (14) has a "Yukawa" form,

y2( ) f d3 gq ry ( 2)

p2 e
—PP

4w r
(16)

(E E)u(p)= f—d q V(p —q) u(q) .
2(E E )1/2

P

where P (r) in (16) is normalized to unity. The effective
interaction V for the pion to be used in (1) is then given
by

Eq +Ep
(E E~)u (p) = f q— , Vo(p, q)u (q)dq,

2(Eq Eq )
'/ (7)

Equation (6) will be referred to as the PKG equation. In
particular, the s-wave PKG equation reads,

V(r)= f X'(r')V (r' —r)d'r'.

In the case of the point Coulomb

[ V (r) = —(aZ/r)] we find from (16) and (17),

V(.) = — (1—e-~") .CZZ —r
r

(17)

field

(18)

when we write,

V(p —p')= g Vi(p»p')~~ (p)I'i (p ).
l, m

III. KI.KIN-GORDON EQUATION
FOR A COMPOSITE PION IN THE
COULOMB FIELD OF A NUCLEUS

We now discuss the explicit form of Eq. (1) when the
particle of mass m has some structure, i.e., is described by
a form factor F (q ). We shall refer to (1) for such a
composite particle as the form factor Klein-Gordon
(FFKG) equation. As stated in the Introduction, we shall
only be concerned with m bound states in the external
Coulomb field of a nucleus V (r) of mass number 2 and

In the extended nucleus case (8) and (9), we find from (16),
(8), and (9),

aZ e
1 — sinhpr, (r &R),

pr
(19)

aZ e i" . aZV(r)=+ sinhpR —,(r &R) .
R pr r

(20)

2

+[(E—V) —m ]u =0,
dr

(21)

We solved the s-wave KG equation corresponding to (1)
for the reduced radial wave function u (r), (1'=u Ir),
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where Vis given by (18) or (19) and (20). In order to solve
(21) numerically, we used a suitable modification of the
BOsTAw code.

PKG

IV. PKG EQUATION

In momentum space, the s-wave interaction Vo corre-
sponding to V (r) given by (8} and (9) is

Vo(q}=—4m. I V (r)vsinqrdr
q 0

cxZ + sin/A
d

3
(22)

q =(p +p' 2''c—os&)'~ (23) I

l, P 200 2&0

For the point Coulomb case, one has, instead of (22),
2

Vc( i) &Z
1

P +P
o pp (24)

z
FIT&. 1. Z dependence of E/rn calcula, ted with the KG

(dashed curve), PKG (full curve), and FFKG (short-dashed
curve) equations for the ground state level of a m in the point
Coulomb field of a nucleus.

In order to solve the PKG equation (7) with interactions
(23) or (24), we found it convenient to introduce the 1
matrix associated with (7). For the s wave, To(E,p,p')
satisfies the following equation:

(25)

Bound state solutions to (25) were then found as poles
of To(p', p). The singularity at p =p' was dealt with us-
ing Lande s subtraction method, which is discussed in de-
tail in Ref. 1. This method works equally well for the
pure Coulomb interaction (24) or the finite size Coulomb
interaction (22).

indistinguishable within the numerical accuracy of our
computations. The PKG curve is now below the KG
curve, showing that VP terms now have a repulsive effect
for finite size nuclei, in contrast with the point Coulomb
case, where VP terms were attractive.

The main goal of this paper was to study whether the
KG equation was a priori the best equation to be used to
describe the interaction of pions. We chose to investigate
a simple model with a priori known forces, and calculated
m bound states in the Coulomb field of a nucleus. Our
conclusions are then as follows.

If, as a first approximation, one wishes to compute m

bound states, taking the pion to be a point particle in the
external point Coulomb field of the nucleus, the KG equa-
tion does not offer a priori the best framework for such a
calculation. The PKG equation, where VP terms are de-
leted, is indeed a better approximation to the FFKG equa-

V. RESULTS Al CONCLUSIONS

In Fig. 1, we show the variation of Elm for the ground
state with Z for a n. in the external Coulomb field of a
point nucleus. The dashed curve is the KG result, taken
from Ref. 8. It shows that for Z~Z, =69, the bound
state has "dived into the lower continuum, " and the "nu-
cleus" is unstable with respect to spontaneous ~ m+ pair
production. The continuous curve is the PKG result ob-
tained by deleting VP terms from the KG equation. One
can see that such VP terms increase the binding energy.
The criticaI value is now Z, =84. The short-dashed curve
(FFKG) comes from including the pion form factor X(r)
in the KG equation with a point Coulomb interaction
[formula (18)]. It shows, like the PKG curve, a repulsive
effect. This repulsion, however, is much greater than for
the PKG equation, as now we get Z, =240. Figure 2
shows the variation of the binding energy e=m —E with
Z for a physical extended size nucleus, as described by
formulas (19) and (20). The KG and FFKG results are

-20
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50
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FIG. 2. Z dependence of the binding energy e calculated with
the KG, FFKCx (dashed curve), and PKG (fu11 curve) equations
for the ground state level of a m in the Coulomb field of a fin-
ite size nucleus. The discontinuity in the curves results from a
discontinuity at Z =100 in the relation between the mass num-
ber A and the proton number Z [formulas (12) and (13)].
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tion (Klein-Gordon equation with full inclusion of the
pion form factor) than the KG equation itself. This result
is in agreement with Brodsky's arguments. On the other
hand, if one includes nonperturbatively the effect of the
finite size of the nucleus right at the beginning of the cal-
culations, the KG equation is a priori better than the
PKG equation, as the effect of VP terms is in opposite
direction for the point or finite size Coulomb problem.

ACKNGWLEDGMENTS

We wish to thank Dr. J. Cugnon for invaluable assis-
tance with our numerical calculations. The work of M.B.
was supported by the National Fund for Scientific
Research, Belgium, while the work of M.J. was supported
by the Inter-University Institute for Nuclear Science, Bel-
gIum.

~Yong Rae Kwon and F. Tabakin, Phys. Rev. C 18, 932 (1978).
G. Backenstoss, Annu. Rev. Nucl. Sci. 20, 467 (1970).
S. Brodsky, in New Horizons in Electromagnetic Physics, edited

by J. V. Noble and R. R. Whitney (University of Virginia,
Charlottesville, 1983), pp. 170—208. See also the discussion
session, pp. 168 and 169.

"H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 (1958).
5W. Pieper and W. Greiner, Z. Phys. A 218, 327 (1969).
C. J. Bebek et al. , Phys. Rev. 0 17, 1693 (1978).
F. Fabbri and A. M. Saruis, University of Bologna Technical

Report, 1967.
8M. Bawin and J. Cugnon, Phys. Lett. 107B, 257 (1981).


