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We have calculated the ratio of the rate for nonmesonic decay of the A in nuclear matter to that

of the free A decay rate using a pion and rho meson exchange model. Including tensor force effects

and a final-state correlation function generated from the Reid-soft-core potential, we estimate

I „ /I f, to be of order 1. A discrepancy with respect to the prior estimate of Adams is resolved.

I. INTRODUCTION

The free A particle decays principally into a pion and a
nucleon, the nucleon having a momentum of 101 MeV/c.
Even if one neglects the A binding energy, a A at rest in
nuclear matter cannot decay into a nucleon of this
momentum because the nucleon would lie below the
Fermi surface (k~ ——268 MeV/c). Early in the history of
hypernuclear physics it was recognized that this Pauli
blocking effect would severely inhibit such a decay of
heavy A hypernuclei, and that the major decay mode
would be via the weak nonleptonic reaction process
AN~NN. ' In fact, this nonmesonic decay process is al-
ready quite important for M=5.

We know of two early attempts to estimate the non-
mesonic decay rate I of a heavy A hypernucleus.
Dalitz obtained for the ratio of I „ to the free decay rate
r,

be reinvestigated. We report here such a reinvestigation.
We adopt a pion and rho meson exchange model, de-

picted in Fig. 1, for the weak nonleptonic AN~NN in-
teraction. This is totally analogous to the models of the
weak nucleon-nucleon interaction which have been used to
study parity mixtures in nuclei. The m. exchange mecha-
nism was considered very early by Karplus and Ruder-
man and is the better defined, because the weak A~Nn.
vertex can be determined from experiment. The p ex-
change process must, in the factorization approximation,
approach the contact interaction considered by Block and
Dalitz' as mz becomes infinite. The weak ANp coupling
is not directly accessible experimentally (perhaps a study
of the decay modes of heavy hypernuclei will enable us to
determine this coupling), and we have taken the simplest
factorization approximation as our guide, knowing that it
could be in error by a factor of 3 or so if our experience
with weak parity violation in nuclei is any indication. '"

In a preliminary account of this work' we reported re-

while Adams included correlation effects and obtained as
his final result

r =0.06 . (2)

Cheng, Heddle, and Kisslinger recently reported a quark
model calculation giving I /I ~——0.33. The only mea-
surement of the lifetime of a heavy hypernucleus of which
we are aware is that of Nield et al. , who obtained in the
M=16 system

r(' z~) =(0.86+o 26) X 10 ' sec

from 22 events, which yields

r =3+] .r, =—
The discrepancy between Adam's result and the experi-
mental value on the one hand and Dalitz's estimate on the
other, and the fact that further experimental studies are
proposed demands that the calculation of the decay rate

(b)

FIG. 1. (a) The pion exchange contribution to AN —+NN. (b)
The p meson exchange contribution to AN~NN.
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=2.9 or 0. 1 .
~A

(4)

The value of 2.9 resulted when the n and p exchange
terms mere added and the 0.1 value when they were sub-
tracted, because the relative sign is not known a priori. In
this paper we include tensor force effects and use correla-
tion functions generated by the Reid-soft-core (RSC) po-
tential. The net effect is that we estimate the ratio
I /I ~ to be of order 1, independent of whether the m

and p terms are added or subtracted.
In our earlier report we quoted for the Karplus-

Ruderman m exchange term alone a value of I „ /I'~ ——4.1

when no correlations mere included, passing over without
comment the discrepancy between this value and Adams's
value of I „ /I x——0.51 for what should have been the
same calculation. We have since discovered the cause of
this discrepancy: Adams employed a value of the AN1r-
coupling strength which was too small to reproduce the
experimental value of the free lifetime I ~. Of course, this
would have no effect upon the ratio I „ /I ~ if the same
coupling constant were used to calculate both I „and
I &, as it is in our calculations. However, Adams used his
coupling constant to calculate only I „;he used the ex-
perimental value of 1 z to form the ratio. All of his re-
sults are therefore too small, and should be multiplied by
6.81. When this is done, Adams's result becomes 3.5 in
the uncorrelated case, and the discrepancy is almost re-
moved.

In this paper we describe the AN~NN amplitudes that
we have constructed in Sec. II. In Sec. III we describe
how these amplitudes are modified in nuclear matter, how
they may be related to the decay rate f'or heavy hypernu-
clei, and the results from our detailed calculations. In
Sec. IV we outline a simple, back-of-the-envelope calcula-
tion which proves to be a useful way of estimating I „.
Finally, in Sec. V we summarize our conclusions.

suits for I /1& which were obtained using simplified
correlation functions and omitting tensor effects . We
found p exchange terms contributed significantly to I „,
reporting as the final result of that calculation

where tp (q ) is the product of the form factors at the
weak and strong vertices.

Because we want to include the effects of correlations
in determining the amplitude in nuclear matter it is con-
venient to Fourier transform Eq. (7) to obtain a transition
potential V (r) in configuration space

V(r)= Ir= 3e q

V~+V~ +V

which we have separated into central, parity violating, and
tensor parts. The central term has the structure

V,'= —, V,"(r)o1 oz&1 Fq

V'tl
(r) G , Af k

Wo 2(r,p;@ ),
p 2' 2&

while the parity violating term is of the form

Yz„——Vz (r)o 1.r v 1.22

with

zAf 1

p 2'
and the tensor term is

(10a)

(lob)

We note (1) that the phase of A is not determined experi-
~~~tally, and (2) that a factorization model for the vertex
gives the wrong magnitude for A and the wrong sign for
A, , although the magnitude of A, is predicted quite mell. '

Taking the nonrelativistic limit of Eq. (5), the effective
Hamiltonian with the usual m.NN vertex gives for the am-
plitude of Fig. 1(a),

@.(q') .M~(q)=G~I2 1+ o'1 q toz. q~1.rz,
p 2m q 2+p2

(7)

II. THE AN~NN AMPLITUDE
Vt Vd(r)[(~1 )(t72 r) 3 ~1 ~2]r1 2

with

(1 la)

~=G~I2'AA (1+~1's)& 'P~ 0 (5)

where p is the pion mass and 6+——1.02)&10 mz is the
Fermi constant. The %~——(~ ) is the spurion containing
the A field (which is introduced to incorporate the M = —,

rule), and A and A, are dimensionless, empirical constants
for which we take the values'

/A
J
=1.05,

A, = —6.87 .

(6a)

(6b)

A. The pion exchange contribution

The pion exchange contribution to AN —+NN is illus-
trated in Fig. 1(a). The ANm. vertex is fixed by the experi-
mental decay rate and asymmetry parameters. It may be
represented by the effective Hamiltonian'

Vd(r) =GFp 2Af A, 1
W'z 2(r,p;@ ) .

p 27?l
(1 lb)

In Eqs. (9)—(11), the operators subscripted 1 act on the A
particle, and we have adopted the notation

j1(kr)
W1~(r,P, ;N)= J k + dk

z @(r) .
k 2+1'

(12)

Note that except in the case of 8'& &, the integrals re-
quired in Eqs. (9)—(11) diverge when no form factor is in-
troduced (i.e., C1 =1). The divergence corresponds to the
well-known delta function in the one pion exchange po-
tential.

However, the strong ~NN vertex must be momentum
dependent. It is required by the Goldberger-Treiman
discrepancy, '" it is obtained in dispersion relation calcula-
tions of the vertex function, ' and it is obtained in the
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(13)

Reasonable choices for A are the following: A =10p
and A~=20p . The first comes from a semipole (or
square root) approximation to the cloudy bag model m.NN
form factor, ' and the second is based upon the sa,me ap-
proximation to the dispersion relation mNN form factor.
The semipole approximation to the ~NN form factor,
with the assumption that the weak and strong form fac-

tors are identical, leads to the monopole form for 4 (k )

given in Eq. (13).
Using Eq. (13) we find'

Wo q Ako(——A r) pko(pr—), (14a)

W~ ~ pk&(pr——) Ak, (A —r),
W2 2 A+——2(A r ) pk2(pr )—, (14c)

(14b)

where k~(x) is the spherical Bessel function of the third
kind:"

k/(x) =v'(7r/2x)K/+]/2(x) .

quark model. ' There is no reason to suspect that a funda-
mentally different form factor is required at the weak
vertex —indeed for the parity conserving coupling in the
pole model, the weak and strong form factors are the
same. Following conventional procedure, we combine the
strong and weak vertex form factors, and any propagator
corrections, into a single form factor @ (k ) which we
parametrize with a monopole form

A-
@~(k ) =

A~+ k

In the limit A ~ 00, one has @ —& 1 and therefore
A ko(A~)-r 5(r), such that one recovers the 5 func-
tion term in the potential. The correct identification of
the singularity at r =0 in the case of Eq. (14c) when we
let A become infinite is more subtle, but the singularity
in the difference A k2(A~) p—kz(pr) is a delta func-
tion. In any practical case, one is interested in the matrix
elements of these potentials taken between wave functions
which vanish at the origin, and the delta function singu-
larity is of no consequence. However, in the uncorrelated
plane wave calculation different results may be obtained
depending upon how the singularity is treated. Thus, one
must exercise care in comparing the results of different
authors in that case. Having defined the pion exchange
transition potential we now turn to the rho exchange con-
tribution.

B. The rho exchange contribution

The p meson exchange contribution to the AN~NN
amplitude is depicted in Fig. 1(b). This time, however, the
weak ANp vertex cannot be determined from experiment.
It must be estimated theoretically. These theoretical esti-
mates will be discussed below, when we assign numerical
values to the constants a, P, and e in the effective Hamil-
tonian

(17)

ek)(x) =—
2 x

~ e
kz(x) =—

2 x
1+ +3 3

X

In particular, for I=0, 1, and 2 one has
e

ko(x) =—
2 x

(16a) In writing the effective Harniltonian we have used
B&p& ——0 to eliminate possible terms in k" and k "y5, as-
surned the absence of second class currents to eliminate
the o" k,y5 term, and assumed that the AT= —,

' rule

remains valid.
In this manner we construct the p exchange contribu-

tions to the AN~NN transition potential (in momentum
space):

2
Gmp

q +mp
o»& q cr2X q +ie o ~ X o 2 q (18)

Here we have used as the strong vertex

where k is directed towards the vertex. We have em-
ployed the conventions of Bjorken and Drell regarding
metric, y matrices, etc.

Using the well-known identity

(oiXq).(o2Xq)=(o~ o2)q' —(o~ q)(o~ q),
V~( r ) = Vf + V~„+VP . (21)

f (q)Zf q, which was the momentum space structure of
the m. exchange piece; although the spin vector W is dif-
ferent in the two cases, the previous transformation to
configuration space applies to this case also.

The resulting transition potential in configuration space
is of the same structure as the m. exchange potential of Eq.
(8)

the parity conserving part of Eq. (18) may be transformed
to configuration space following the procedures of Sec.
IIA. The parity violating term also has the structure

Vf =[—V~(r)+ —', V~ (r)o. ( ] o]2' Try, '

V~„=—Vg(r)o X o2.r,
(22a)

(22b)
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VP= —Vg(r) T2 (rr ) Tq( o ~ o q) .

The radial shapes are given by

Gmp
V, (r) = g& Woo(r, m;F~a~),p2 2 ' p'

6mp
&~ (r)=

4v2 '2+ (2m)'

(22c)

F((q ) mp
u =v'(3/2)

gp foal p
—g

(24)

about a factor of sino, cos8, too small for pion decay of
the A, and because the model gives the wrong relative sign
between the parity conserving and parity violating terms,
we omit the sin8, cosO, factor which naturally appears
and treat the relative signs of the pc and pv terms as arbi-
trary. In this approximation, illustrated in Fig. 2, one has

&& Wo 2[r, m~;(FR+F2)(a+l3)], (23b)
33F2(q) mp

gp mp —q
(25)

l Gm p
Vf (r) = g~ 8',

& [r,m~;(F&+F2)e],4vz p 2~' 2m

(23c)

Gmp $ l
4.v2 &2~2 (2m'

X Wz 2[r,m~;(F&+Fz}(a+P)], (23d)

where 8'~ (r,p;@) was defined in Eq. (12). To complete
the definition of the p exchange potential we must specify
the functions a, P, and e which characterize the weak ver-
tex and must specify the form factors F~ and F2 used at
the strong vertex.

The weak vertex (A~Np) should be calculated using
the weak, ES=1 effective Hamiltonian at the quark lev-
el, ' taking matrix elements of this Hamiltonian between
bag model or oscillator states. For the case A —+Nm. , in
which one can use current algebra to reduce the matrix
elements to (8'

~

0
~

8 ), this procedure does not give en-
tirely satisfactory results for the hyperon decays. Alter-
natively, one could use SU(6)~ to relate (A~Np)~ to the
weak vertex (N~Np}~, reviving the suggestion of
McKellar and Pick. ' However, while a consensus seems
to be emerging on the magnitude of the parity violating
part of (N~Np)~, the parity conserving part is totally
unknown. In any event, a knowledge of (N —+Np)~ does
not uniquely determine the reduced matrix elements in
SU(6)~. For these reasons we have not attempted to make
a definitive calculation of (A~Np)~, preferring to use
simple models for the amplitudes. In the present experi-
mental circumstances these models should be an adequate
guide to the order of magnitude of the p meson effect.

The first and simplest model is the factorization model,
which has a long history in weak interaction physics. Be-
cause the factorization model result is known to be

&(3/2)(F+ —,D)

my —P71N
(27)

where (1—a)/a=1. 7 is the D/F ratio of the strong
baryon-baryon-meson vertex where the overall strength is
given by the mNN coupling constant, g NN. Here, D and
F are the D and F reduced matrix elements of the b,S= 1

weak Hamiltonian (assumed to be the 6 component of an
octet), defined by

&4 I~a && &=GfV~(+fiej+Dd;ej} . (28)

A fit to the p-wave hyperon decay amplitudes shown in
Table I gives

F
gwNN

my —fPlN
(29)

Fq(q } mpE=0.71' (3/2)
gp tlat p

—q

where I'] and I'2 were defined above and I'z is an axial
form factor. To obtain these results we have used SU(3)
symmetry for the weak currents with D/F ratios of 0, 32

and 2 for the vector, tensor, and axial vector form factors,
respectively. The additional factor of mg(mz —q ) arises
from the vector meson dominance representation of the
vector form factors.

The second model we consider applies only to the parity
conserving weak amplitudes (A~Nm)~ —which we shall
see below give the dominant contribution to the A life-
time. This model is based on the observation that, in the
current algebra approach to the pionic decays of the
hyperons, the parity conserving decay of the A is dom-
inated by the pole graphs of Fig. 3. This pole model
determines the coefficient AA, in Eq. (5) as

(1—~)&(2/3)(D F)—
gmNN

Vly —PEN

(F+ —,
' D)

PPZ p —Pl N
(30)

~W
N N

A
FIG. 2. The factorization approximation for (A —+Nm) .

FIG. 3. The baryon pole graphs for the parity conserving
part of (A~Nm) .
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TABLE I. Pole fit to 8~8'm. parity conserving amplitudes.
The fit has been chosen to favor the A and X amplitudes. The
data are from Ref. 25. The fitted values are F=4.8 1p,
D = —4.12 p, and &/+= —0.88.

Process

~Am
A~p~
X+~nm+
X+~pm'
X —+no.

Amplitude/(G~p )

Observed

6.73+0.41
10.17+0.24
19.05+0.16
12.04+0.59

—0.65+0.08

Fitted

13.7
94

19.0
12.0
2.0

&(3/2)(F+ —,
' F )

mA —mN
(31)

p~ (1—ap)v'(2/3)(D D)—/l 2

Olp I?l y —I?l N

We can then approximate the pc part of (A —+Np)~ with
pole diagrams similar to those of Fig. 3 but with a p
meson replacing the m. meson. The result may be ex-
pressed as

(1—a, )v'(2/3 )(D —F)
a=F]—

I?l p
I?Z y —Nl N

When evaluated at q =0 [where F~(0)=1, Fq(0)=3.7],
one finds from Eqs. (33) and (34)

(a+P) ~ ———0.036;

but one finds

(35)

(a+P), =0.79 (36)

from Eqs. (24) and (25) with g+4+=2. These results
differ by a factor of —20, which is a very significant
difference, both in magnitude and sign.

We can only conclude from these model studies that the
(A~Np)~ vertex is very model dependent. The critical
question is whether the dimensionless parameter measur-

ing the strength of the B~B'M weak interaction type is

G~mM —as occurs naturally in the factorization
models —nr is GF/J, independent of M—as will occur in
pole models fitted to the 8~8'm. data. Perhaps experi-
ments such as the observation of the nonmesonic decay
rate of heavy A hypernuclei will help decide this question.

Finally, it is necessary to specify the form factors F&

and Fq. These have recently been discussed extensively in
the context of three-body forces. It has been suggested
that F&/Fz& constant. It was also pointed out that one
can use form factors to extrapolate between the Hohler
and Pietarinen value of «=Fz/F~ ——6.6 (the value at
q =m&) and the vector dominance model value of «=3.7
(the value at the photon mass shell q =0). To simplify
the structure of the resulting potential we have fixed the
ratio at q =m&,

V (3/2)(F + ,D)—
I?l p —mN

(32) Fp/F) ——6.6,
but we utilize

(37)

with the same weak Hamiltonian parameters D and F as
in the m. case, but with (1 —a&)/a~ and (1—aq)/az being
the vector current D/F ratios for the y& and o„Jc"cou-
pling, namely 0 and —,'. Numerically, one has

F~(q')/F~(q') =
z

Ap —q

with a value of

(38)

a =(0.088)V'(3/2)F i (33) Ap ——2.27m' . (39)

and

P= —(0.053)—', &(3/2)Fq . (34)

The effect of using the pole model has been to substantial-
ly reduce the value of the weak form factors a and P with
respect to the factorization model values, and even to
change the sign of one of the form factors. The q depen-
dence of the form factors is also altered. We note that the
tensor potential of Eq. (23d) is proportional to (a+p).

This rather low value of Az reflects the known rapid vari-
ation of Fq. Because it happens that the tensor potential
produces the principal effect, we have chosen to select our
form factor to match the variation of the dominant o&„k"
contribution to that part of the potential.

Now that the form factors have been specified, we may
obtain the radial forms of the potential in Eq. (23). For
the case in which the factorization approximation is em-

ployed, these are

P 2Vs~(r)= V'(3/2)mq fko(mar)+ko(Ag)]+ q q [APo(Ag) —mpko(mar)]

G~' 1 (1+«)(1+—,'«) 4+m
Vg~ (r)= &(3/2) mz —[Azko(A&r)+mzko(mar)]+ z z [Azko(A&r) mzko(mar)] ', —

4V2 2

(40b)
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Vp~(r) =i Gmp 1 (1+~)(0.71gg )
V'(3/2) m~. —[mpko(m~r)+APo(Ag)]+ 2 ~ [APi(A~r) —m ki(m~r)] . ,

T

4 2 2~' 2m W,
2 —m,2

(40c}

Gm,' 1 (I+~)(1+-',~)
2 ~ 2 2 2 3Vg(r) = V(3/2)mq, —[mzk&(mar)+Alki(A&r)]+ z 2 [Azkz(A&r) m—zk2(mar)] . .

4 2 2m (2m)

(40d}

In the case of the pole model, different radial forms are obtained because of the different form factor structure of the
model. As an example we quote the tensor potential from Eqs. (33) and (34),

6 2

Vd( )= " ', '+ ', ' ' x(2.70)v'(3/2)(A,'—,'). , ', [ p,(,.) —Ap, (A,.)]——,'A,'k, (A, ), .
4 2 2n (2m) A,

2 —m,2

(41)

Note the appearance of Gp in Eq. (41) compared to Gm
in Eq. (40), a reflection of the difference in the models of
the weak vertex. The strength is further reduced by the
(1—0.36m) factor, resulting in a p exchange potential in
the pole model which is signficantly weaker than that in
the factorization approximation.

The complete transition potential is obtained by adding
the p exchange potential obtained in this subsection to the
m exchange potential derived in Sec. II 8. It may then be
used to compute the transition rate.

III. THE AN~NN TRANSITION RATE
FOR A A PARTICLE IN NUCLEAR MATTER

The rate due to the AN —+NN transition for a A parti-
cle in nuclear matter is obtained by calculating the matrix
element of the transition potential V + Vz between the
initial AN state and the final NN state, antisymmetrizing
with respect to the final nucleons, squaring, dividing by
the initial flux, integrating over the possible initial (nu-
clear matter) nucleon states, and summing over the final
state phase space. It is useful to make a number of sim-
plifying approximations in this calculation. The validity
of some of these approximations has been tested by
Adams, and the corrections are quite small. In particular
we will assume that:

(i) The initial AN state is an s-wave state, with zero rel-
ative momentum between the A and the N.

(ii) The relative momentum of the final N-N pair
ranges from 407 to 429 MeV/c. We have computed the
matrix element at a fixed relative momentum which we
took to be Q=420 MeV/c. We have verified that the
matrix elements vary by only some 10% over the range
quoted.

(iii) We ignore the spin dependence of the initial- and
final-state wave functions.

This has little effect on the final rate. Because of the
x=6.6 factor, the Vf part of Vz is larger by a factor of
6.3 {for the longest e ~ term) than the central V, tenn;
we therefore neglect the latter contribution from the
outset.

where

F,o
p'+ ' —J' r'dr qr(g, r)yo(kr)IV, , ,(r,p;e ) (43)

describes transitions from an initial s state to a final state
with angular momentum l, and

2, l even
[3+(—1 )']= (44)

This leads to
(m)

=1 009(0 3gg IFoo I
+4 5 IFio I

+1 55 IF20I free

(45)

which yields the results in Table II, where we illustrate
the effects of including a form factor and of including
correlations with different correlation lengths R.

First we note that the formula (42) is consistent with
that given by Adams, and that our uncorrelated value forI' '/I' f„, is in reasonable agreement with Adams's value,
after the latter has been corrected as was discussed in the
Introduction. Next we note that including correlations
decreases I „'

' and increasing the correlation length de-
creases I'"' still more, as one would expect intuitively.

In our initial survey to establish the dominant effect, we
make two additional approximations, which we later re-
lax:

(a) We neglect the tensor correlations in the initial and
final states induced by the strong nucleon-nucleon interac-
tion.

(b) We multiply the potential by an empirical correla-
—r2/R2tion function, 1 —e " ~ with R =0.75 fm and calculate

matrix elements using plane wave states.
The rate for the pion induced transition is given by

2

—(G fA) — iF
i

—' iF
7T' 2 2'

2

+6 ~
2m
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TABLE II. (I „' '/I ~„,) from w exchange.

No form factor
No correlations

S~S

0.01

S ~P

1.00 3.12

Total

4.13

No form factor
R=0.7 fm

0.003 0.54 1.95 2.49

No form factor
R =0.75 fm

0.001 0.44 1.87 2.31

No form factor
R =1.0 fm

2&& 10-4 0.25 1.31 1.56

Form factor
A =20p
R =0.75 fm

0.031 0.005 1.03 1.06

Our results at this point are consistent with Adams's re-
sults without tensor correlations. The s~d transition
dominates the amplitude, but the s~p parity violating
transition gives a significant contribution, until the form
factor effects which reduce the s~p transition contribu-
tion drastically are included.

We remark in passing that, even with R=1.41 fm, we
find I „' '/I'r„, =0.75. Cheng, Heddle, and Kisslinger
quote r„'=0.16&&10 sec, which when corrected for
their use of Adams's parameters becomes equivalent to
I „' '/I r„,=1.11, for the ir contribution cut off at 0.8 fm.
This seems to correlate reasonably with our Gaussian cut-
off calculations.

Including a form factor reduces the total rate by a fac-
I

tor of about —, , but reduces the s~p contribution to the
total rate substantially, so that all but 3% of the non-
mesonic decay process in the nucleons proceeds through
the s~d transition induced by the tensor component of
the one pion exchange AN~NN transition potential.

Next we must investigate the consequence of adding the

p exchange parts of the transition potential. The central
and tensor parts of the transition potential are readily in-
cluded by straightforward modifications of Eq. (42),
which we will specify below. The parity violating part of
the p exchange potential has a new spin structure, and the
modification of the s~p transition rate is not so obvious.
The result is that the s —+p transition rate becomes

(p +p) Qp (G fg)2IF I2 P PGFg m
nm s~p 3 2 F 10 +T 4~2

2

IFio I'+ i (Gzf~) ' ' Re(Fio)'(F~io)
4 22m (46)

where

Ff' =mz J r dr/i(Q, r)po(kr)

X 8'i i[r,m&,'(Fi+Fq)e] . (47)

where

F~zo ——mz J r dr $2(Q, r)go(k, r)

X II 2,2[r mp (Fi+F2)(~+0)] (49)

Without form factors, this alters the s~p decay rate in-
duced by m exchange by 30% for the factorization param-
eters. It is increased or decreased depending on the un-
known relative sign of the m and p exchange potentials.
This partial rate is also greatly reduced when the form
factors are included.

Similar results hold for the s ~s transitions, induced by
the central potential, but there remain to be considered the
s —+d transitions induced by the tensor potential. For
these transitions we may write

6mQpGF gfgp m p gp

(2m )
+20 2 F20

(4&)

Numerical results from this expression are presented in
Table III for the factorization form of the potential. The

p contribution is 4 to —', of the a contribution in the rate,
but because the contributions add in the amplitude the ef-
fect of including both terms can be quite dramatic. Since
we cannot trust the factorization approximation to give
the relative signs of the amplitudes correctly we quote
answers for both constructive and destructive interference
of the amplitudes. Had we used the pole model, the con-
tribution of the p exchange transition potential would
have been reduced by a factor of order 10 and would be
quite negligible.

It is clear that our results with form factors included
are consistent with the datum. Adams reported that in-
cluding tensor-force, final-state interactions significantly
reduced the s —+d transition rate. For this reason we relax
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TABLE III. (I „ /I q, ) including m. and p exchange (s~d transitions only). The p potential is the
factorization type.

No form factor
No correlations
Kp= 3.7

m. alone

3.12

p alone

0.49 6.08 1.13

No form factor
R=0.75 fm

vp ——6.6

1.86 0.26 3.52 0.72

No form factor
R=0.75 fm

Kp ——6.6

1.86 1.13 6.13 0.06

Form factor
R=0.75 fm

vp ——6.6
A~=20@,A =2.27m

1.03 0.49 2.91 0.10

assumptions (a) and (b) above and recalculate the dom-
inant parity conserving transition rate.

The tensor force couples the s and d partial waves, both
in nuclear matter and in the final state. Because we have
assumed that the relative momentum of the initial A-
nucleon pair is very small, we can neglect the d-wave
component in the initial state. In this case, Eq. (48) be-
comes

tude of the effect. The transition appears to be dominated
by the parity conserving m exchange transition potential
and it can therefore be represented, using pole dominance
of the ANn. vertex, as in Fig. 4. If we consider just the
first diagram and compensate for this by renormalizing
the matrix eleinent of H~ to give the total A~Nn @-
wave amplitude, we can then estimate

'2

+d =96mgpir g I
~ (",oI+~~~~ (",o')'

I

'
i=a, y

where the potential is written in the form

&=[ 3 &., «)tri't72+ &d(r»2(r r)'~z(rr ttr2)1(&i &2)

(50)

(51)

+AN-+NN
mA —mN

+NN —+NN ~ (53)

~AN N P AN N

where K is the renormalized matrix element of H~. We
then take

and

~Pl, l') Jo r dr u(I', i) (Q r) V/(r)u01;ol(k, r) . (52)

Here, the u J~~;~ are the scattering-state, Blatt-Biedenharny~l
Ieigenphase solutions, and uoi. ot(k, r) is the s-state com-

ponent of the initial St + D
~

wave function. The
'So~'So transition is omitted in Eq. (50); but as we have
seen that all s~s transitions are negligible, this is an ac-
ceptable approximation.

Using the factorization approximation for the NAp ver-
tex, the Reid soft core potential to generate the scattering
states, and a nuclear matter correlation function due to
Negele, we obtain the results given in Table IV. Com-
paring these results to those in Table III we see that the
tensor force in the final state, and a more realistic correla-
tion function have not altered the results very much, in
contrast to the results obtained by Adams. Once again we
note that the pole model for the ANp vertex would have
given a negligible contribution.

IV. A SIMPLE ESTIMATE GF AN ~NN

It is useful, especially when the literature contains wide-
ly different estimates of the value of I „,to be able to
generate a simple estimate to establish the order of magni-

E
~Up

mA —mN

2

~NN~NN (54)

Using U=3kF/4m, p=0. 17 fm 3, and E/(mx —mN)
=1.1X10,we find

r„ ~NN-0.3I ~„, 100 mb
(55)

where 100 mb is a reasonable estimate of the appropriate
NN cross section. Because this simple estimate is of the

m. only, no form factor
~ only, form factor A~=10@
m only, form factor A~=20@
p only, form factor A~=2.27m~
m. +p, form factor A =20p',

A =2.27m'
vr p, form factor A =2—0p',

27m

2.03
0.54
0.97
0.52

2.33

0.71

TABLE IV. Parity conserving transitions contributing to the
AN~NN rate in nuclear matter. The values quoted are for
I „ /r~ and include correlations and tensor force effects.

r„ ir,
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FIG. 4. Pole representation of the transition potential.

physics today, they are not particularly sensitive to the
nuclear wave functions. This holds open the possibility of
using experimental results on I ~ to fix the ANp cou-
pling. This will not be easy, but it would be informative
because obtaining information on these couplings from
other experiments is difficult.

Lacking this information, perhaps the best way to quote
our final result is as

same order as our detailed results, we feel confident that
we have not omitted any significant effects.

I
logto———0+0.3 .

A
(56)
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