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We reconsider the N /D equations for the s-wave spin-doublet trinucleon system and provide an
alternative analytic model solution to these equations, which clearly explains most of the low energy
properties of this system. The present model solution, is simpler than the previous approximate
solutions proposed by other authors, and it provides a better understanding of the various low-
energy correlations for this system including the linear correlation between trinucleon energies and

the neutron-deuteron scattering length.

I. INTRODUCTION

A strong correlation among the s-wave spin doublet
neutron-deuteron (n-d) scattering length and the triton
binding energy was first observed by Phillips! about fif-
teen years ago. [In this paper we shall simply use the
names trinucleon or neutron-deuteron system to denote
the s-wave spin doublet quantum state(s) of such a sys-
tem.] Later on Barton and Phillips? studied this problem
by using the partial wave dispersion theoretic (N /D) ap-
proach and concluded that once a correct value of the n-d
scattering length is achieved, low energy n-d elastic
scattering will not contain much qualitative new informa-
tion. Brayshaw,’ using his boundary condition model,
showed that once correct values of triton binding energy
and n-d scattering length are obtained in a numerical
model calculation, the essential features of the breakup re-
sults automatically follow. The n-d effective range func-
tion k cotd has a pole* below the lowest scattering thresh-
old, and this pole is expected to have a strong influence on
low energy trinucleon observables. More recently, Whit-
ing and Fuda® restudied the problem by the N/D ap-
proach and showed that the position of the pole of k cotd
and its residue are correlated with the n-d scattering
length a. Finally, Girard and Fuda® showed that an ap-
proximate linear correlation exists between the doublet n-d
scattering length a and the energy of the excited virtual
state of the triton. They also found out in a subsequent
calculation® of the asymptotic normalization parameter
(ANP) that it is important to use a potential which gives
the experimental binding energy for the triton, and that
the ANP and the binding energy of the triton are linearly
correlated. As the triton binding energy and the n-d
scattering length are linearly correlated, it means, in other
words, that all the low energy spin doublet s-wave three
nucleon observables are strongly correlated with the n-d
scattering length.

In this work we shall consider a simple analytic model
solution to the NV /D equations for this problem and try to
understand the various correlations among the low-energy
three-nucleon observables. In particular, we shall study
the linear correlation among the trinucleon energies and
the n-d scattering length @, which are commonly known as
the Phillips' (ground state) and the Girard-Fuda® (excited
virtual state) plots. We shall also study in the present
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model the correlation among the scattering length a and
various low-energy trinucleon observables, such as the po-
sition and the residue of the pole of k cot8, and the ANP
of the ground and the excited virtual states of the triton.

Recently, the present author in collaboration with
Torreao”® made an attempt to understand the Phillips and
the Girard-Fuda plots using an “ad hoc” expression for
k cotd. The present approximate analytic solution is iden-
tical to the effective range function employed in Ref. 8.
The present work provides a more fundamental derivation
of the results of Ref. 8 and exploits the full content of the
solution in order to understand the various correlations
among the low-energy trinucleon observables.

The approximate analytic solution of the N/D equa-
tions we employ produces by construction the correct en-
ergies for the ground and the excited virtual states of the
triton at the experimental value of the n-d scattering
length. As a result, the present approximate solution not
only explains the Phillips and the Girard-Fuda plots, but
also sheds light on the understanding of various other
low-energy correlations for this system.

In Sec. II we present the N /D equation and obtain its
approximate analytic solution. In Sec. III we present a
numerical study of the solution obtained in Sec. II and
consider the various low-energy correlations for the trinu-
cleon system. Finally in Sec. IV we present a brief sum-
mary.

II. THE MODEL

The spin doublet s-wave elastic n-d amplitude f(k?)
satisfies

f(k?)=e®Fsind(k)/k , 1)

where § is the phase shift and k is the wave number de-
fined by

E=—a?+3k%/4. (2)

In Eq. (2) E is the total three-particle energy, and a? is the
deuteron binding energy in units of #*/m=41.47
MeV fm?, where m is the nucleon mass. The amplitude f
has right-hand unitarity cuts due to two- and three-body
breakup processes starting at k?=0, and also has left-
hand potential cuts due to the exchange of nucleons and
mesons starting at? k?=b= —4a?/9 and extending to o
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and — o, respectively. Here we shall ignore the three-
particle unitarity cut and take 8 to be real for all positive
energies. This could be justified® if one is interested in the
low-energy process only.

The amplitude defined by (1) and having the above-
mentioned cut structure can be written in the form?

f(k)=N(k>/D(k?) , (3)

where D is dimensionless and N possesses the dimension
of f. The functions N and D are known to satisfy the
equations?>

a1 pb o Dk)Imf(k?)

Nk =— f_mdk 2———~k,2_k2
N(k?)

k'(k?—k?) "’

s 4)
k2 po

2y EA 2
Dk =1 fo dk (5)

or equivalently

1 b 2 2 )
D(k2)=1_%f dk D (k' )Imf (k) ©

—w k'(k +k") ’
N(k?)=—k 'ImD(k?) . (7)

These are N /D equations that we shall use and are essen-
tially the same as those of Ref. 5 apart from a scaling of
the energy variable.

Equations (3)—(7) are already approximate ones as we
have neglected the three particle unitarity cut, and are not
expected to produce the correct trinucleon energies unless
they are built into the formalism. Further approximations
about the left-hand cut are needed in order to solve Eq.
(6). In the present work we shall not attempt an exact
solution of Eq. (6) but will introduce a further approxima-
tion to it so that an analytic solution can be obtained into
which we build in the correct trinucleon ground and excit-
ed virtual state energies at the experimental value of the
n-d scattering length. This will “compensate” for all the
approximations introduced in writing and solving the
N /D equations.

Since it is not practical to include all of the left-hand
cut we follow Whiting and Fuda’ in order to introduce a
systematic way of parametrizing the effect of the omitted
portion of the cut. We treat the one nucleon exchange
part of Imf(k?) explicitly in Eq. (6), i.e., replace f(k?) by
the Born term B(k?) in the integral in Eq. (6), because
B(k?) is the only term in f(k?) that contributes to this
cut, and the neglected portion of the left-hand cut is treat-
ed as a power series in kK which is expected to converge at
low energies. The integral over the one nucleon exchange
cut is written as a contour integral C around this cut in
the counterclockwise sense. Retaining only one term in
the power series expansion, Eq. (6) is rewritten as

k. ¢ dk*D(k*)B(k?)
27 J¢ k'(k +k')
Next we approximate the one nucleon exchange cut by a
pole at k?= — L3 with residue d":

D(k¥)=1—icik+ (8)

B(k?)=d'/(k?+L3}); 9)

this will allow us to perform the contour integration in
Eq. (8), and we get

D(k*)=1—ic;k+dk /(k +iL,) , (10)

where d =d’'D(—L%/L,. Equation (10) is the approxi-
mate analytic solution of the N /D equations, which we
use in the present work. This solution is similar to the
one used by Whiting and Fuda.’ In their work, however,
d' and Lg are derived from the one nucleon exchange
Born term, whereas in the present work d’ and L3, and
hence d and L,, are adjustable parameters to fit the
correct energies of the trinucleon system. Recalling that
2 2
kcotS:M]—c—)=~kM~—)—, k2>0, (11)
N(k?) ImD(k?)
the unknown parameter c¢; of Eq. (10) can be eliminated in
favor of the doublet scattering length a:

—a=c,+d/Ly . (12)
Using Eq. (12), Eq. (10) can be rewritten as
(a+6‘1)k2
21tk g T
D(k*)=1+iak —i krily (13)

We shall parametrize Eq. (13) imposing the condition that
it should produce the correct trinucleon ground and virtu-
al state energies for the experimental n-d scattering
length® a =@=0.65 fm. The trinucleon ground and virtu-
al states appear as zeros of D(k?) for

k=iL=+i[4m(e—e,)/(3#)]/?,

where —e and —e, are triton and deuteron energies in
MeV. L is positive for a ground state and negative for a
virtual state.

Let Lp and L, represent the L’s corresponding to the
correct trinucleon bound and virtual state energies, respec-
tively, for a =a. Then D(—L2)=D(—L})=0 for a =a,
and we have from Eq. (13)

l—aLg+Lj(c;+a)/(Lg+Ly)=0 (14)
and

1+a@|L,| +LXc,+a)/(Lo— | L, |)=0. (15)
Equations (14) and (15) can be solved for ¢; and L, yield-
ing

L0=LB|LU|[LBILv|a_+LB_|Lv|]—1 (16)
and

clz—[LB|LvIa—+LB—|Lv|]_1' (17)

Next using Eqgs. (11) and (13) we obtain the following rela-
tion for the effective range function k cot8:

—A+B(1—Ca)k?

k cotd= wA LR , (18)
where
A=—L§/c;=L3L][Ly|L,|a+Lg—|L,|]17",  (19)
B=(1—c,Ly)/c, , (20)
C=Ly/(1—c,Ly) . (21)

Now we would like to find the condition for having a
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FIG. 1. Pole position and residue as a function of the doublet
scattering length. Solid lines represent the present calculation.
Circles and squares are from the Yamaguchi and Gaussian
separable potential calculations, respectively, of Ref. 5. Dashed
lines are from exact N/D calculations of Ref. 5. When the
dashed and the solid lines overlap only the solid line is shown.

trinucleon bound or virtual state at k=iL. This condi-
tion, given by D(—L?)=0, yields

1—aL +(c;+a)L*/(L+Lo)=0 (22)
or,
aL=(L+Lg+cL* /Ly, (23)
which using Eqgs. (16) and (17) can be rewritten as
aL=[|L,|Lg+L(aLg|L,|+Lpg
—|L,|)=L*]/Lg |L,|). (24)

Equation (24) yields the correlation among ¢ and L, which
will be used in the next section to explain the Phillips and
the Girard-Fuda plots. Equations (13) and (16)—(24) con-
stitute the analytic solution of the N /D equations which
we will study numerically in the next section.

III. NUMERICAL RESULTS

In order to see how the present analytic solution works
in practice we use the following input: @=0.65 fm,
Lp=0.44849 fm~!, and L,=—0.12449 fm~!. This Lp
corresponds to a triton binding energy of 8.48 MeV and
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FIG. 2. Energy-scattering length plot for the triton ground
state. The dark points are explained in the text.
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FIG. 3. Same as in Fig. 2 for the excited virtual state of the
triton. The broken line is taken from Ref. 6.

L, corresponds to a virtual state® 0.482 MeV below the
elastic scattering threshold. The deuteron binding is as-
sumed to be 2.224 MeV. Then Egs. (18) and (24) become

—0.00865—0.51525(1—0.10836a)k?

k cotd= >
k“+0.00865a

(25)

and

L?—0.36029L —0.05583
aL= —0.05583 ' (26
We verified that for ¢=0.65 fm k cot8 given by Eq. (25)
reproduces the low energy doublet phase shifts very well.
In this work, however, we are interested in correlation
among various trinucleon “observables” and the n-d
scattering length a.

First, we consider the correlation among the pole pa-
rameters of k cotd and the n-d scattering length. In Fig. 1
we plot the position of the pole in k cotd and its residue
versus the scattering length a and compare it with the “ex-
act” separable potential and N /D calculation of Whiting
and Fuda. The work by Whiting and Fuda does not have
the triton pole built in at the correct energy, and hence the
present numerical result is expected to be quantitatively
different from theirs and to be more close to the actual
“experimental” situation. Hence, Fig. 1 is aimed at a
qualitative comparison of the general trend of the correla-
tions and not at a quantitative comparison. From Fig. 1
we find that the present result agrees reasonably well with
the calculation of Whiting and Fuda; or in other words,

- the general trend of the correlation exhibited in Fig. 1 is

independent of the details of the model used in the calcu-
lation.

In order to see how Eq. (26) works in practice, we cal-
culated, using this equation, various points on the trinu-
cleon energy € versus n-d scattering length a curve for the
ground and the excited virtual states, and the results are
plotted in Figs. 2 and 3. In both cases the plots are ap-
proximate straight lines, as expected, for small a. The
dark points on Figs. 2 and 3 are results of various calcula-
tions and are taken from the work by Afnan and Read,!°
except the ones marked AAY (Ref. 11); RSCB (Ref. 12);
BM1 and BM2 (Ref. 13); SM1, SM2, SM3, and SM4 (Ref.
14); BSM (Ref. 15); SK (Ref. 16); P4, P5, and P7 (Ref. 1);
and AFT (Ref. 17). The broken line on Fig. 3 is taken
from the work by Girard and Fuda. From Figs. 2 and 3
we conclude that the present approximate analytic solu-
tion of the N /D equations explains the Phillips plot and
the Girard-Fuda plot for the trinucleon system.
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FIG. 4. The ANP of the excited virtual state as a function of
the doublet scattering length. The solid line represents the
present calculation. The dashed line is taken from Ref. 6.
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Next we calculated the ANP of the trinucleon system
using k cotd defined by Eq. (25). The ANP C? is defined
by

Jim f(k)= —3LC*k*+LH)". (27)

We recall that L is positive for the bound state and nega-
tive for the virtual state. For the ground state the ANP
obtained was much too small—smaller by about a factor
of 4 compared to C?=3.3 obtained by Girard and Fuda.
The ANP of the virtual state was, however, reasonable. In

Fig. 4 we plot the ANP of the virtual state for various
values of the scattering lengths, and comparing it with the
theoretical calculation of Girard and Fuda® we find that
the agreement is qualitatively reasonable. As the triton
pole is situated far away from the domain of validity of
the present model, the poor value obtained for the ANP of
the triton can be understood. Clearly, the three-body
breakup cut must be included in the analysis if one ex-
pects to extract a good value of the ANP of the triton.
This requires coupling to the three-body channel.

IV. SUMMARY

We presented a simple analytic solution of the N/D
equations for the s-wave spin doublet trinucleon system.
The present solution explains the linear correlations
among n-d scattering length and trinucleon energies and
sheds light on the understanding of various other low-
energy correlations for the trinucleon system.
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