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The Bethe-Salpeter equation for NN-Nh scattering is extended to include AA states also. With
the exception of 'So, the effects are small for T=1 because of dominance by Nh isobaric states.
For T=Q the influence is accordingly larger. Also a quasipotential approximation to the Bethe-
Salpeter equation is considered. Substantial differences are found. In particular, the quasipotential
results are considerably more sensitive to the coupling parameters of the transition interaction. As a
result a better fit to existing experimental phase shift parameters is obtained with the Bethe-Salpeter
equation.

I. INTRODUCTION

Recent years have witnessed great efforts to extend con-
ventional NN scattering theories to include extra degrees
of freedom. ' Interest has centered around the pion and
its production mechanism via 5 isobar doorway states.
Effects from coupling to these inelastic channels are obvi-
ously required for a reliable description of the intermedi-
ate energy region up to 1 GeV. Investigation of these
states is closely connected to the controversy over the ex-
istence of possible dibaryon resonances. The latter were
proposed after NN scattering polarization experiments re-
vealed rich energy and spin dependence at intermediate
energies. Since then, however, it has been shown that a
conventional mechanism like coupling to NNm. (Refs.
6—10) or isobar channels" ' could account for these
structures as well.

Previous work (Refs. 16 and 17, hereafter referred to as
I) showed that a reasonable description of NN scattering
in the isospin 1 channel for laboratory energies up to 1

GeV can be given with a Bethe-Salpeter equation (BSE) by
including 6 degrees of freedom. One of the main motiva-
tions for using the coupled channel ladder BSE as the
dynamical equation lies in the possibility of modifying the
relativistic propagators to also include the contributions
from NNm. inelastic channels. As a result such a model
can account in an appropriate way for the pion produc-
tion processes.

In this paper we study two separate problems: First, we
extend the existing NN~NA model to include AA chan-
nels. This allows consideration of isospin zero channds
also. The additional algebra and details of its numerical
solution are presented in Sec. II.

Second, we repeat these calculations in a quasipotential
approximation. This allows a better comparison with
several three-body models which have been presented so
far. The nature of this approximation and its numerical
implementation are described in Sec. III. Section IV gives
the results from both methods. A BSE variant taking into

account the composite nature of the 5 is presented in Sec.
V.

Some concluding remarks are made in Sec. VI, followed
by two appendices giving details about the partial wave
reduction and some comments on the 5-propagator used.

II. INCLUSION OF THE hh CHANNELS

Since the 5 isobar carries isospin —,, it can be excited
from the nucleon by isovector mesons only, the two candi-
dates being the pseudoscalar pion and vector rho meson.
Comparing Nb, and AA thresholds of 640 and 1400 MeV
we expect b 6 states to be of minor importance for isospin
1 channels. For isospin 0 they may be an important
source of inelasticity, however, due to the absence of Nb,
states. As before, Ab, vertices were disregarded in view of
the uncertainties about their form.

The resulting BSE is represented diagrammatically in
Fig. 1. In accordance with the notation of I we use a sub-
script i =1„2,and 3 to label NN, Nk, and hA states,
respectively. Going through the partial wave reduction
and Wick rotation we arrive at a BSE almost identical to
Eq. (17) of I:
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FIG. 1. Diagrammatic representation of the Bethe-Salpeter
equation for coupled channel NN+ NA+Ah scattering. The
dashed line indicates m+p exchange, the wiggly line stands for
combined m, q, e, 5, p, and ~ exchange.
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Here a(q):E —E&+—ig is the nucleon number two pole
position. The only difference is in the double integral,
where the sum over the virtual states now runs to three to
include AA states also. The single integral is due to the
Wick rotation which picks up contributions from the
propagator poles in the first and third quadrants of the qo
plane. As before we restrict our attention to laboratory
energies below 1 GeV up to which energies the 6 poles
remain in the second and fourth quadrants. Consequent-
ly, there is no contribution from hh states to the single
integral.

The integral equation (1) is supplemented by an auxili-
ary equation for @i[a(p),p,JLS] with j=1 or 2. This
equation has the same form as Eq. (1) with the argument
ipo replaced by a(p).

In I the Nhm and Nhp interaction Lagrangians were
given and the resulting NA transition amplitudes
Viz, Vzi, and Vzz derived. We again choose the center of
mass (c.m. ) kinematics to be (see Fig. 1)

qi=(E+qo, q), p'i=«+po 0)* pi=«+p'o p'»
qz =« —qo —q» pz =« —po, —p» (2)

V» ——,k„Z (pi)U(qi)k D (pz)V(qz)
4m.m k —m„

2

V31 z U( p I )~"(q i)k„V(p»D "(qz)k4' k —m

(3)

(4)

pz=« —po, —p'), k=pi —qi, E'=
4

Adopting the helicity formalism of Jacob and Wick' we
introduce U( V) and j3.(D) as the nucleon or delta spinors
of particle number one (two). Explicit expressions for
these helicity states have been given in Appendix A of I.
Omitting the isospin factors, the NN~hb, transition am-
plitudes are

(A) Pion exchange:
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for NN vertices
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for Nb, vertices

This entails a stronger regularization of the NN~Nh in-
teraction than in I, where a monopole form factor was
employed. The reason for not using monopole form fac-
tors is that the high momentum components of the
NN~b, h interaction lead to abnormally strong effects.

The definitions for obtaining the partial wave ampli-
tudes from the spinor amplitudes Eqs. (3)—(6) are given in
I [Eqs. (31) and (32)]. The procedure involves angular in-
tegration over rotation matrices for higher helicity values
than the earlier NA case. The reduction of these new ro-
tation matrices into a sum of I.egendre polynomials is
given in Appendix A.

The analytical expressions for the integrated spinor am-
plitudes were computed with the SCHGONSCHIP program
for algebraic manipulation. '

The resulting expressions were verified to satisfy time
reversal invariance

(popJL'S'
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)
V

~ p,pJL, 'S'),

Each transition amplitude carries an additional isospin
factor of —v 2 for T =0, V'10/9 for T =1, and 0 for
T & 1 (hA states with isospin T=2,3 are obviously inac-
cessible for NN scattering).

As in the previous work the singular behavior of the
amplitudes is regularized by form factors F. These con-
sist of two separate factors, one from each vertex:

F=F,F

(8) Rho exchange:

V„= ". . .~ (p, )y"y'U(qi)D'(pz)r ) 'V(qz)
4mmp k —mp

)&(k,k g„p+kpkqg, k~k g„p k,keg„)—, (5)—

and to comply with the bounds on the partial wave transi-
tion amplitudes near threshold (i.e., either for q or p~O)

;(popJL'$'{ V iqoqJLS)~=6' p +
q

+ . (10)

Under the particle exchange operator P&2 the AA states
transform just like NN states (the following relation does
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not hold for Nb, states):

Pi21popJLS ~i=( —) + +
l

p—opJLS); i =1 or 3 (11)

TABLE II. Quantum numbers for spatial parity ( —) +'.

Even J Odd J
where T is the total isospin. Just as in the NN case, the
A4 states with odd parity in the relative energy variable
are neglected, the motivation being that they vanish in the
nonrelativistic limit. For the NN problem this approxi-
rnation has been shown to be reliable in the elastic re-
gion. From Eq. (11) it is seen that the surviving states
have odd values for L +S+T. For these channels parti-
cle exchange symmetry is satisfied automatically.

Furthermore, the NA-interaction Lagrangians have
been chosen invariant under space reflection. The physi-
cal states (i.e., those surviving in the nonrelativistic limit)
therefore separate into two classes of definite signature
( —), the NN and b,b. states moreover having odd
L+S+T. For a given total angular momentum these
two classes are given in Tables I and II. From these we
see that we are left with at least five [parity group ( —),
isospin Oj, and at most twelve channels [parity group
( —) +', isospin I]. For lower angular momenta several
Nh or AA states obviously cannot be realized, however.

For the 44 propagator in Eq. (1) we used the analog of
the positive energy propagators defined in I:

D3 '(qoq) =[E+qo E3(q)+&' ql[—E —qo —E3(q) +ill .

(12)

Here E3(q) is the (complex) 6 energy in bb channels.
This form is not obvious in view of the relativistic b,

propagator normally used. The approximations leading to
Eq. (12) are studied in Appendix B for a very crude model
of the Nh box diagram. As before, pion production is
simulated by giving the 6 mass a negative imaginary part
I 3 (the subscript indicating that it is being used in the b,h
propagator):
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~
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with mo-——1236 MeV. For NA intermediate states with
width I 2 was made a function of the maximum invariant
energy S'N available in the presence of the spectator nu-
cleon

S~N ——(~s —m) for Nb, channels, (14)

where rn is the nucleon mass. This prescription ensures
that the 6 width I 2 in Nh channels vanishes below pion
production threshold at 287 MeV. For Ah intermediate
states, however, the spectator particle by itself is a nN
system, yielding a different value of S N

S~N = (3 s —m —m ) for b b, channels . (15)

Equation (15) leads to a threshold for I 3 which coin-
cides with the physical Num threshold at 595 MeV.
The values of I 2 and I 3 as functions of the laboratory en-
ergy are plotted in Fig. 2. Further remarks on the choice
of Eq. (15) will be made in Sec. IV.

The integral equation (1) together with its auxiliary
equation is solved in the same way as in I by iteration and

I. Quantum numbers for spatial parity
( —) (g,L„,T) =(spin, orbital angular momentum, isospin).
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FIG. 2. Effective 6 width in NA channels (I 2) and AA chan-

nels (I 3) as function of laboratory energy.
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construction of a Fade approximant to the Born series. In
the numerical implementation the nucleon pole singulari-
ties were coped with by a subtraction in the NN channels.
The single integral was done by Gaussian mesh points on
the integral [O,p ]. As noted in I, the driving force in this
integral can become complex for energies above pion pro-
duction threshold. The ensuing integral over the imag-
inary interval was done with the same number of Gauss-
ian mesh points. It was found that its points provided
very good accuracy for the single integral (accuracy of
box diagram better than 0.5%).

The double integral was done exactly as in Ref. 21, ex-
cept that eight points were used in the qo integration
(against twelve in Ref. 21). Trying various meshes for
'D2 (which has a strong coupling to a singlet Nb, state) we
found changes of about 1% in the box integral and con-
sidered this accuracy sufficient.

III. THE QUASIPOTENTIAL APPROXIMATION

In order to allow a comparison between our relativistic
BSE results and those from a nonrelativistic potential
model, it is natural to take a quasipotential model into
consideration. Considering the pure NN case first, there
is a well-known ambiguity in the reduction of the four-
dimensional 8SE to a relativistic three-dimensional
scattering equation. Two classes are favored in the litera-
ture, both involving a delta-function prescription for the
troublesome relative energy variable in the loop integral.
The Gross-type model comprises the positive energy
pole contribution from the two particle propagator, there-
by omitting contributions to the qo integration from the
negative energy pole, the meson poles of the driving force,
and possible cuts in the T matrix itself.

The Gross two particle propagator therefore is pro-
portional to 6(qo —E+Ez), where E2 ——(mz+q )' is the
energy of particle number two with three momentum q.
The Blankenbecler-Sugar —type two particle propagator
is proportional to

&[qo —«i —E2)~2]

which reduces to 5(qo) for the equal mass case. Other ap-
proximations like Thompson " or Kadychevsky differ in
the proportionality factor, but the 6 function basically be-
longs to one of these two possibilities. For our coupled

I

S;(qoq) =D (qp, q) g uu QUU
0'

) (72

2~iQ, (q)S(q, ) guu g UU .
c7 ) cT2

(17)

Here u and U are the particle number 1 and 2 spinors,
respectively. They can be N or 5 spinors depending on
the channel index i The qu. asipotential propagators Q;
are defined as

Q) '(q)=2(E~ —E),

Q2 '(q) =E +E2(q) 2E, —

Q3 '(q) =2[E3(q)—El

(19)

As before, the complex delta mass depends on the chan-
nel involved since different b, widths I 2 and I 3 are used
in NA and hh channels, respectively (cf. Sec. II). The
quasipotential analog of the BSE then becomes

channel approach the use of these 5 functions in the vari-
ous channels leads to complex transition potentials,
however. Physically this reflects the possibility of the de-
cay process h~N+~ for some values of incoming and
outgoing momenta. The potentials being independent of
the total c.m. energy 2E, we would end up with unitarity
violation below the first pion production threshold. To be
more explicit we observe that with the Gross prescription
the NN~NN and NN~Nh potentials are both real as
desired: For NN as well as N4 states the second particle
is a nucleon and the on shell condition for the pion

(E~ —E~) —(p —q ) —m =0
can obviously not be satisfied.

Difficulties are caused by b,h states, where the second
particle now is a heavier 6 and the potential becomes
complex. For a Blankenbecler-Sugar approach the same
reasoning shows that the NN~Nh potential would be-
come complex. A way out of this problem is to make the
static approximation in all channels. This yields real
potentials.

Just as in the BSE case, pion production then will be
taken into account by using a complex 6 mass in the 6
propagator. Explicitly, the two particle propagators
S;(qoq) are approximated as

3

4i(p JL S )=&(OpJL S
I

V OpJLS~i+ g J dq;(OpJL'S'~ V ~OqJL S),QJ(q)4, (qJLS) .
J=

(20)

In this equation the driving force V is identical to that
used in Eq. (1) with relative energy variables set to zero.
Equations (19) show that the NN propagator Q~(q)
develops a pole at q =p, where E=(m +p )'~2. There-
fore a subtraction is required in the intermediate NN
channels. The two other propagators do not develop poles
near the line of integration due to the 5 mass becoming
complex, thus obviating the need for a subtraction in these
channels. Equation (20) is solved by the same method as
the full BSE: Pade approximants are constructed for the

q(x)=2p —21ogx, for x&[0,1] (21)

where n2 Gaussian x points were chosen on the unit inter-
val. It was found that numerical stability was obtained
with n& ——4, n2 ——8.

Born series of the integral equation. The integration in-
terval was divided into three parts: The first two were
[O,p ] and [p, 2p ] containing n, Gaussian mesh points
each. The remaining half-line q ~2p was mapped on the
interval [0,1] by defining
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IV. RESULTS

All BSE results were obtained with the same parameter
set, which is given in Table III. Before turning to b, b,
states we briefly discuss the effect of the stronger regulari-
zation for the NN~Nb. amplitudes. In comparison with
previous calculations the largest changes occurred not
surprisingly in channels with the highest sensitivity for
the Nb, cutoff mass ANq. The phase shift of 'D2 was
lowered towards experimental results (this particular
channel couples to an S-wave Nb, channel). Similarly P2
is reduced about 4 deg over the whole energy range
200—1000 MeV. The change in the remaining isospin 1

channels is negligible. With regard to inelasticities the
prominent cutoff dependent humps for Po and P, have
vanished. Understandably the dependence on AN~ is re-
duced strongly. For reference, results from the old cutoff
procedure have been included in Fig. 3 only when justified
by a significant change. The parametrization used is that
of Amdt and VerWest, and has been given in Eqs. (45)
and (46) of I.

Figures 3 and 4 show the effects of hb, states. Prom-
inent changes occur for 'So, where a strong coupling from
the S wave AA channel was expected. The weak coupling
to the D-wave NA channel introduced only a small inelas-
ticity. Therefore the effect of the I i threshold at 595
MeV is very large. A choice different from Eq. (5) results
in a steep rise in inelasticity from the new threshold. This
explains the absence of a notable inelasticity from So in
the results of Ref. 9. In this model the spectator system is
considered a bare 6 instead of a m-N system as we did.

The corresponding threshold for pion production from
hh states is located at T~,b-970 MeV, just bordering the
energy region considered. This ambiguity in the prescrip-
tion for I 3 clearly points out the need for a pion produc-
tion mechanism which is more systematic than our
parametrization with an energy-dependent width.

In this context it is necessary to make some comments
on the sensitivity of the inelasticity on the value of I 2.
As mentioned in I different parametrizations of I 2 did
not produce appreciably different results. It turns out, in
fact, that, once I 2 is larger than about 60 MeV, there is
only a very modest influence on either phase shift or
inelasticity. This can be seen from Table IV which shows
results of a NN+ Nb, channel calculation in the quasipo-
tential approximation (cf. Sec. III). Only isospin 1 chan-
nels were considered. With the existing programs it is not
possible to determine the value of I 2 at which the inelas-
ticity begins to decrease (liml 2~0 brings the pole in the
Nb. propagator near the line of integration, making an ad-
ditional subtraction necessary). Similar conclusions hold
for the BSE also, although we restricted calculations to a

few cases in view of the required computing time: At 800
MeV laboratory energy the standard value of I z is about
176 MeV. Reduction to 60 MeV resulted in modest
changes comparable to those in Table IV. Stability of the
BSE integration at I i ——60 MeV was verified for the
NN + N4 box diagram.

This rapid saturation of inelasticity explains why AA
channels fail to increase the Nb;induced inelasticities for
isospin 1 channels, with exception of 'So. Apart from
this channel, P2 is the only other T =1 channel where
additional attraction from the (closed) hb, channels mani-
fests itself. The shift is about 4 deg towards experimental
data, and (accidentally) compensates the fact that we used
a stronger cutoff on the NN~Nb, amplitudes than in pre-
vious work.

For isospin zero the situation is different due to the ab-
sence of Nb, channels with their associated inelasticity.
Greatest attraction is seen to occur in the strongly in-
teracting S wave. The absence of sizable effects from D2
is remarkable in view of its coupling to an S wave Ah
channel. Comparing with phase shifts from the nonrela-
tivistic calculations of Holinde and Machleidt ' below
pion threshold, we find good agreement for isospin 1

channels. Differences occur for T =0 states. For S&
their prediction of 22 deg additional attraction is twice the
amount we find. This is surprising in view of their using
a smaller cutoff mass at 1200 MeV. In contrast to this
our additional attraction in P I is about twice the
Holinde-Machleidt result. Moreover, keeping only NN
intermediate states we already find too much attraction as
compared to experimental data. It indicates that the
NN+-+NN part of the interaction in the 'Pi state is not
described well. This particular channel is strongly depen-
dent on virtually every parameter in our model. We
therefore expect that more refined calculations will lead to
a better agreement.

Figures 4 and 5 show analogous results for the quasipo-
tential model of Eq. (20). The parameters of the BSE lead
to unstable Pade series and have to be modified. First, the
cutoff masses have to be reduced to ANN ——1.5, ANq ——1.3.
Reference 20 was used as a guide for the choice of the
coupling constants, which have been listed in Table III
also. The requirement of reducing the cutoff masses is
symptomatic for the greater sensitivity of the QP model
on various parameters. The pNb. coupling constant, for
instance, has to be taken 1.0, in sharp contrast to the
values of 8.0 used in BSE and 10.33 expected from quark
model considerations. if we had used 8.0 instead, the
pseudoresonance structures in 'D2 and I'3 would have
been suppressed considerably. Furthermore, P2 would
have become much too attractive. The wish to retain res-
onancelike structures motivated us to resort to a weak

TABI-E III. Coupling constants used in the Bethe-Salpeter and quasipotential equations. The cutoff masses are expressed in nu-
cleon masses.

BSE
QPE

2
gn.

4m

14.2
14.2

2
gs
4~

0.33
0.33

2
gg
4m

3.09
3.09

V2
gp gp
4m. 'g~

(0.43,6.0)
(0.43,6.8)

2
gN

4m

11.0
12.0

ge
4n

5.9
4.7

2f ~

4~

0.35
0.35

2
fp~
4'
8.0
1.0

+NN
2

1.9
1.5

+Nh
2

1.5
1.3
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FIG. 3. Isospin 1 Bethe-Salpeter results for NN+ NA channels (curve A); NN+ Nh+hh channels (curve 8); and NN+ Nh
with modified propagator of Sec. V (curve Cj. Curve D gives the analog of curve A when monopole form factors are used. It is in-
cluded only when justified by a significant discrepancy with A. Experimental points have been taken from Ref. 39.
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FIG. 4. Isospin 0 results from the Bethe-Salpeter equation {BSE)and the quasipotential equation (QPE) of Eq. {20). We show cal-

culations for BSE NN only (curve A), BSE NN+ hA (curve 8), QPE NN only (curve C), and QPE NN+ b,h (curve D). Coupling

constants are listed in Table III. Experimental phase shift data are taken from Ref. 39.

pNE coupling. Another remarkable aspect is the fact that
'D2 is too attractive in the low energy region. It turns out
that this behavior cannot be remedied without spoiling
predictions for I' waves completely, and BSE clearly al-
lows a better fit. Finally, the quasipotential equation
(QPE) is seen to reproduce much better the experimental
data for 'P& than BSE. It must be remarked, however,

that even this large discrepancy can be largely explained
from the different values of f&a/4m, ANa, and especially
g„/4m. (lowering g„/4~ to the BSE value of 11, for in-
stance, would raise the 'P~ phase shift by 16 deg at 800
MeV). Therefore one should not use 'P~ as a measure for
the quality of a particular model.

TABLE IV. Effect of the 6 width I on phase shift and inelasticity. Results are from a quasipotential NN+ Nh calculation at
800 MeV. Parameters are those of Table III.

'50
3p

3p
3Q

E2
'D
3Q

(22;33)
(2.9;3.8)
(4,4;6.7)
(1.2;0.64)
(0.45;0.25)
(0.074;0.016)
(0.64;0.34)
(0.17;0.20)

—52
—29
—51

0
—13

5
1

—9

I 2
——176 MeV

Box

16
44
18
31
16
3

25

I 2 ——100 MeV
Box

(22;33)
(3.1;3.8)
(4.4;6.7)
(1.2;0.61)
(0.46;0.25)
(0.054;0.008)
(0.68;0.40)
(0.20;0.23)

—51
—23
—50

2
—12

6
3

—8

12
41
19
30
18

37
29

I,=40 Mev
Box

(22;33)
(3237)
(4.4;6.7)
(1.3;0.57)
(0.48;0.26)
(0.027;0.0042)
(0.69;0.46)
(0.25;0.25)

—51
—17

49
5

—11
7
5

—6

P

36
19
28
19
4

40
31
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FICi. 5. Isospin 1 quasipotentia1 results for NN only (curve 2), NN+ Nh with pNA coupled omitted (curve 8), NN+ N5 with
pNE coupling included (curve CI, and NN + NA+AA (curve D). Coupling constants are as listed in Table IH. Experimental phase
shift data are taken from Ref. 39.

Comparing with a three-body calculation like that of
Kloet and Silbar we find that our results generally

predict higher inelasticities. In particular, this manifests
itself clearly for the higher partial waves (J)4). At first
sight this seems to be surprising since for these channels
one would expect the results to be model independent as
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long as the long range pion force is included. Within the
quasipotential and Kloet-Silbar model this has been stud-
ied in detail. The major reason for the difference in the
two models can be ascribed to the treatment of the b,

propagator. In particular, using the same 6 width
description, both models yield, in general, similar results
at least for the uncoupled I =J high partial wave chan-
nels. The fixed mass prescription of VerWest ' as has
been used here tends to overestimate the inelasticity by as-

signing the width according to the largest possible invari-
ant energy available for the 5 particle. To correct for this
we may introduce as in the Kloet-Silbar model a momen-
tum dependence in the 6 width. Assuming that the nu-

cleon in the NA intermediate state is on mass shell, the
corresponding squared invariant energy S N available to
the 5 is

20-

10-

S N ——(2E Eq) ——q (22)

The resulting q-dependent width 12——1 z(S N) then is

used in the BSE NA propagator. Note that this prescrip-
tion is rather phenomenological and leads to conceptual
difficulties if Ah channels are included. A proper treat-
ment of the m.N cuts in the 5 propagator is actually re-
quired for a consistent treatment. As before, I'z vanishes
below pion production threshold. At higher energies I z is
nonzero on a fimte interval [O,q ] of the q integration
only, where q satisfies

0.3 0.4 0.5 0.6 0.7 0.8 0.g

Throb (( cV)

FIG. 6. Inelasticity of '64 from various models: Graphs are,
in ascending order: Ref. 6 (three body, short dashes), this work
(variable mass, long dashes); Ref. 11 (fixed mass with recoil,
dots); this work (fixed mass, solid line). Experimental data are
from Ref. 39.

S N=(2E —E-) —q =(m+p) VI. CONCLUDING REMARKS

As in 1, the propagators appearing in Eq. (1) are given by

Dz '(qQq) =[E+qQ E2(q)+iE—](E qo Eq+i E—), —(24)

R2 (q) =Eq+E2(q) 2E, — (25)

E2(q) =(m g+q')', mq ——mo (i /2)1 —2(q) The.
position of the b, pole in the qo plane now has changed,
but still remains in the fourth quadrant. Therefore the
Wick rotation as described in I can be applied to this
model without modification. Associated with this is the
absence of a pole from the reduced propagator R2(q) in
Eq. (23), even though E2(q) becomes real again for q & q.

The results for the variable mass 5 propagator are
shown in Fig. 3 for the NN+ Nb, system only. From
this we see that the calculated inelasticities are smaller,
especially at lower energies. In order to compare with re-
sults from other authors we select the channel '64, which
is expected to be rather insensitive to details of the
model-like treatment of short range forces, regularization
procedures, or truncation of the Born series to the Nh
box. From Fig. 6 we see that the agreement with the
three-body calculations, at least in the low energy region,
is considerably improved. Similar results have been ob-
tained by Green and Sainio" when the recoi1 corrections
were included. For higher energies fixed and variable
mass results are virtually in agreement. This can be un-
derstood from the fact that at higher energies the phase
parameters depend only weakly on the actual value of the
width I 2 as has been shown in Sec. IV.

We have investigated the effect of hA channels on the
phase parameters of NN scattering. Their influence is
found to be small for T =-1 channels, except for the
strongly interacting S waves. This is particularly true for
the inelasticities, which are dominated by the coupling to
the Nh channels. The pion production through 4A states
is found to be very small. For T =0 states, where there is
no coupling to the NA states, the effects are accordingly
larger, especially with regard to inelasticities. Similar re-
sults have been obtained using quasipotential approxima-
tion to the fuH BSE. Apart from having to change vari-
ous coupling parameters to obtain a reasonable fit, in gen-
eral it is found that the QPE results exhibit a higher sensi-
tivity to the parameters, making the fitting process hard-
er. In particular, the pNA coupling is more strongly
suppressing the resonantlike behavior of the 'D2 and F3
channels as compared to the BSE case. As a consequence
the BSE allows for a better fit to the experimental phase
shift analysis. However, no 7 fit has been tried to im-
prove on either of the models.

The inelasticities in the various partial waves are very
sensitive to how the 6 propagator is treated. Although we
have attempted to include the momentum dependence of
the 6 width in the N channel phenomenologically, this
way leads to conceptual difficulties in the AA channel
case. In a field theoretical model like the BSE, however,
there is a natural way to account for these effects by sum-
mation of the series of bubble diagrams in the 6 propaga-
tor„ leading to a more consistent description of the 6
width in both the NA and hA channels. As a conse-
quence, since the AA production in the T=0 channel



294 E. E. van FAASSEN AND J. A. TJQN 30

plays an important role, it is expected that for this case
the inelasticity may be significantly different from the
ones found in this study.
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APPENDIX A: REDUCTION OF THE ROTATION MATRICES

The angular momentum decomposition of NN-Nb, -hh amplitudes involves integrals of the type

~,() 'i) 2 Isa 2) =—2~J«os'} &Sop(~ 0)Vier I
V

I roe(0 0)Vi@2&jd;p (~»
where poM2 (p'&p2) are the helicities of the incoming (outgoing) particles and p =p~ —pz, p'—=p& —pq. As explained in I,
Appendix A, it is possible to separate the kinematic singularities from the spinor amplitude V in such a way that the d
functions can always be written as a sum of I.egendre polynomials. For p, (2, the relevant functions have been given in
Appendix A of I. For the b b, problem p, p' can be as large as three and the required additional functions are the follow-
1ng:

sm Od3o(8) =
1/2

(J+3)(J+2)(J+1) J(J—1)(J—2) 3J(J—1)(J—2)
J(J—1)(J—2) (2J + 1 )(2J +3)(2J +5) + (2J + 1)(2J—1)(2J+5) +

3J(J—1)(J—2) p J(J—l)(J —2)
(2J +1)(2J+3)(2J—3) (2J + 1)(2J—1)(2J—3)

1/2
(J+3)(J+2) J(J—1)(J—2)
(J—1)(J—2) (2J + 1)(2J+3)(2J+ 5) +

(J—1)(J—2) (J—1)(J—2)(J —5)
(2&+1)(2J+3) + (2J+5)(2J+1)(2J—1) +

2(J —1)(J—2) p (J—1)(J—2)(J+6) p
(2J —1)(2J + 3 } (2J +3)(2J+ 1)(2J—3)

(J—1)(J—2) p (J+1)(J—1)(J—2)
(2J + 1)(2J—1) (2J + 1)(2J—1)(2J—3)

1/2
(J+3)(J+2) J(J —1)(J—2)
(J—1)(J—2) (2J +1()2J+3)(2J+5) +

(J —1)(J—2) (J —1)(J—2)(J —5)
(2J+ 1)(2J+3) + (2J+5)(2J + 1)(2J—1) +

2(J —1)(J—2) (J—1)(J—2)(J+6)
(2J —l)(2J +3 } (2J +3)(2J+ l)(2J —3)

(J—1)(J—2) p (J+1)(J—1)(J—2)
(2J + 1)(2J—1) (2J + 1)(2J—1)(2J—3)

d 3 +2 and d 3 +3 are absent from our algebra since we do not include ~4~%4 or 4~+-+46 amplitudes.

APPENDIX 8: THE 5 PROPAGATOR

%'riting the Feynman rules for the coupled Nh problem, Wi.ck's theorem would lead to the standard expression for the
free 5 propagator in x space:

P""(x,y)=(0
I
Tg"(x)P (y)

I
0) .

The Fourier transform of this time ordered operator is

(Bl)
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P""(qo,q ) = - g bF(q, o)b. "(q,o)—
qo —Eq +l'17

g w"( —q, o)8'"(—q, o),—qo —Eq +l'g
(82)

where o.=+—,', + —', , E~ =(]Lta+q )'~ and b, and W are positive and negative energy Rarita-Schwinger wave functions,

depending on q and 0. only. Denoting the on-shell four-vector by q—:(E~, q ), the spin sums can be evaluated explicitly

X~"(q ~)~ "(q ~)= g—""+ 1-") "+ - (1 "q' rV—")+,4 "e'0'+Pa „] „1,, 2

2pg 3pg 3p~
(83)

g w"(+q, o)w"(+q, cr)=
Pa-

2pg
g—""+

3 x"1 — (r "e ' )—V")+
3pg 3p~

&""(q]]q)~ g 5"(q,o)E, '(q, o) . (85)
qo —Eq +i q o.

The definition (81) of a Green's function, however, does
not lead to a covariant expression for spins higher than

Instead of (Bl) the correct covariant propagator
would be

p ( )
0+Pa
q —p~

e""+
3
—r"X"+

3pg

(86)

Comparison of (86) and (85) shows that the residues at
the positive energy pole are identical. We therefore basi-
cally recognize two approximations leading from (86) to
our effective propagator (85).

(1) Restriction of the denominator in (86) to its on-shell
value: q —+q.

(2) Removal of the contribution from the negative ener-

gy 6 pole by the prescription:

1 1 1 1

—pg+EG 2E q E +I'g qo+E
1 1

(87)
2Eq qo —Eq+le

This propagator is truncated to its positive energy contri-
bution only, leaving us with the effective propagator used
in the BSE:

PPV gPV+ qI q
V1 v 2

3m

where the b. mass m is identical to the nucleon mass for
simplicity. The b, can be excited fmm the nucleon by a
derivative coupling as in the physical case. We choose
c.m. kinematics as in Fig. 7, where

p] ——(E,p ), q] (E+ko, k )——,

p', =(E,p'), k, =( —ko, p —k ),

p2 (E~ p )t e2 (E ko

(89)

pz (E,—p'), kz ————(ko, k —p') .

The NA box is proportional to the (dimensionless) integral

In order to get an idea of the severity of these approxima-
tions we consider an extremely simplified model of the
NA box diagram including all necessary ingredients: Con-
sider the low energy scattering limit of the process
NN —+NA —+NN, where the nucleons are treated as scalar
particles, coupling to a scalar meson of mass p. The
model 6 propagator is taken to be

2+m' I d'k
(2m) (q& —m +is)(q] —m +is)(co& k —ko ie)(co& k

—ko ——ie)4 2 2 2 2 2 ~ 2 (810)

where' k=p, +(p —k ) .

2
g = —k]kg+ (k]q])(q]kp) .

302
(811)

Approximation 1 amounts to the substitution q&~q&
in the second term of this equation. The box integra1 is
regularized by a monopole cutoff factor at each vertex
with cutoff masses AN and A~ at NNp and Nhp vertices,
respectively:

FIG. 7. Kinematics for model NA box diagram of Appendix
B. The double line denotes the virtual 6 particle with the prop-
agator of Eq. (88).
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cutoff= z 2 z 2 2 2 2 2 . (812)
AN —k ] Ag —k ] AN —k2 Ag —k2

Disregarding the cutoff for a moment, the ko integration
involves the following poles:

b, poles: Ek E~ ——&e, Ek —E~+—i e,
N poles: Ez —Ek+i F Ep+Ek i e,

(1) Positive energy 5 pole:

d k 1Ig= — R Ek —m
4~ SmEk (m Ek—)

(2) Negative energy N pole:

dk 1Iz ——— R (Ek+m)
4m. SmEk(m +Ek )

(814)

(815)

meson poles' cop k I E' Mp k+i&,

COp k
—lE, —

COp k +lE' .

{813) (3) Meson poles:

d k
I~ ——f Q(k,p,p ) +a Q (k, ANAN)

4m'

The integration path can be closed in the lower as well as
the upper ko half plane at will. Choosing the lower half
plane, however, will separate out the positive energy 6
pole we are interested in. Consider the low energy limit

p ~0. The various pole contributions then are
( I =Ia+ IN +Iq ).

+P Q(k, Aa, Aa) —2aQ(k, p AN)

+ 2PQ(k, p, Aa) 2a13Q—(k, AN, Aa),

where we defined

(816)

2
m g(kook) AN —p Ag —pR {kook)=
(cok —ko) AN+k —kp Aa+k —kp

dko m g(kok) 1 1
Q{k pi p2) =

r 2vri [(m+Ek) —kp][(m —Ek) ko] {pi+k ko) (p2+k ko)2 2 2 2 2 2 2 2 2

(817)

(81S)

Ag —p
2 2

2
Ag —AN

AN —p
z .

A~ —Ax
(819)

Here y is a contour encircling only the meson poles in the
lower half plane [the poles at ko ——+(m+Ek) have been
included already in either Ia or IN]. We furthermore in-
troduced

dko m g{ko,k)
Q'{k pip2) =-

r 2m'i 4Ek[(m Ek) —ko]

1

(p i+ k —ko )(p2+ k —ko )

(81S')

d k 1I~ ——— R Ek —m
4m SEk(m Ek )

IN ——0,
Ip ——Ip

with a different definition of Q:

(814')

(815')

(816')

The sum over Q in the meson term (816) is due to the re-
peated splitting off of the cutoff factors. In the low ener-

gy scattering region considered here, we expect I~ to be
dominant. This assures us of the validity of approxima-
tion 1. The second approximation (i.e., omission of the
negative energy N and b, poles) would modify Eqs.
(814)—(81S) to

The integrals (814)—(816) essentially involve 1-D in-
tegrals and were evaluated using a standard integration
routine. The algebra sketched above was checked for the
special case of g(ko, k)=1 by comparison with results
from the computer program FORMF. The latter delivers
numerical values of four-point functions which were seen
to agree to within 10 % with Ia+IN+Iz.

Table V shows the magnitude of the various terms for
representative values of meson and cutoff masses. Keep-
ing in mind that we consider the low energy limit, we ob-
serve that I~ is dominant as expected. This makes ap-
proximation 1 sensible. For higher meson masses the
meson pole contribution is unreliable and non-negligible,
however, resulting in an error in the box diagram of about
15%. For the parameters considered the contribution

TABLE V. Effects of approximations to the 6 propagator for various representative meson and cutoff masses:
(p /m, AN/m, A~/m )=(0.02, 1.5, 1.2)=case 3; (0.02, 1.9, 1.5)= case B; (0.70, 1.5, 1.2)= case C; Iq, IN, and I„are the contri-
butions to the Nh box from b„N, and meson poles, respectively. For approximation 2 [see text after Eq. {B6)]there is no N pole con-
tribution.

Full result
Approx. 1

Approx. 1+ 2

—0.814
—0.814
—0.778

0.002
2 2X10

0.095
0.105
0.093

—0.871
—0.871
—0.828

B
IN

0.007
1.1X10-4

0.101
0.118
0.102

—0.001 32
—0.001 32
—0.001 08

C
Ix

0.000 12
1.8X10 6

0.000 15
0.000 34
0.000 22
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from the negative energy N pole IN is negligible. This
corroborates the validity of the second approximation.
The influence of this approximation on the remaining It,
and I& is seen to be cancelling partially, keeping the devi-
ation from the full result down to S%%uo for p =0.02.
Again the quality of this estimate deteriorates for higher
meson masses. We thus can conclude: Using the on-shell
form of the model propagator instead of Eq. (B8) we tend
to underestimate the "Nh"-box diagram. The magnitude

of this effect does hardly depend on the value of reason-
able cutoff masses, but is seriously aggravated for higher
meson masses, i.e., for the very short range part of the in-
teraction. For reasonable values of the parameters, ap-
proximation 1 is considerably better than approximation 2
in our model. Approximation 2 has been studied before,
however, for the full NN problem, and turned out to be
reliable in the low energy region.
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