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Contributions of quasifree and nonquasifree reaction processes to (m, ~N) reactions have been in-

vestigated across the (3,3) resonance region. %'e demonstrate that the quantum mechanical interfer-

ence between these two types of reaction processes significantly affects the calculated m. - and n.+-

induced cross sections, as well as their ratio. In the case of incident m, the contributions from the
interference term even exceed those from the pure nonquasifree term. This investigation of the

(m, m.N) reaction thus indicates that the interpretations given to the parameter introduced into vari-

ous published semiclassical models, in which interference effects were ignored, are incorrect.

I. INTRODUCTION

Pion-induced single-nucleon removal (SNR), the (m, irN)
reaction, represents a valuable tool to probe nuclear struc-
ture and to investigate pion-nucleus dynamics. In particu-
lar, since both decay products of the (3,3) resonance, the
pion and the nucleon, can be simultaneously measured,
the (m, mN) reaction can be used to study more directly the
propagation of the b, (1232) in a nuclear medium. To take
full advantage of these features of the (m.,irN) reaction, it
is essential to have a complete understanding of the reac-
tion mechanisms.

Experimental investigations of (m, AN) reactions can be
divided into two complementary groups. In one group of
experiments the outgoing pion and nucleon are detected
by coincidence techniques. These experiments have usual-

ly been carried out under specifically selected geoinetries
optimal for studying the quasifree aspects of the reac-
tion. ' In the other group of experiments, the outgoing
pion and nucleon are not measured. Instead, the reaction
was studied via the identification of the residual nucleus,
either by using activation techniques, ' or by detecting

prompt gamma rays emitted by the residual nucleus. In
these latter approaches, all aspects of the SNR, quasifree
as well as nonquasifree, are reflected in the measured in-
tegrated (n.,m.N) cross sections. We show in this work that
contributions to (n.,n.N) activation cross sections arising
from both quasifree and nonquasifree processes are im-
portant and that a careful quantum mechanical treatment
of these processes is crucial to the correct interpretation of
the data.

The first accurate experimental measurements that re-
veal the important nonquasifree characteristics of (m.,m.N)
reactions were due to Dropesky et al. and Batist et al.
These authors noted that throughout the entire resonance
region, the activation cross section ratio R of
' C(m. ,mN) "C to ' C(~+,m.N) "C differ considerably
from theoretical predictions based only on the quasifree
knockout mechanism. In a pure quasifree model the
theoretical ratio can be schematically expressed as
Rth ——N/D with

N=c7[' C(~,m. n)"C]

and

8=cr[' C(n+, n+n) "C]+o[' C(m+, m p)"C] .

Here, 0. stands for the cross sections. At the pion energy
of 180 MeV, one obtains R,h-2. 9, when the plane-wave
impulse approximation (PWIA) is used, and R,h-2.5,
when the distorted-wave impulse approximation (DWIA)
is used. The experimental value is 1.59+0.07 (Ref. 3).
Deviations from theoretical predictions based on the
quasifree model have also been noted, but less dramatic, in
coincidence experiments.

In 1969, Hewson proposed a mechanism for nonquasi-
free knockout processes by considering R'=N'/D' with

X =
~

A[' C(m. , m n)"C]+8[' C(m, m p~n)"C]
~

D'=
~

2[' C(sr+, n.+n) "C]+8[' C(ir+, ~+p~n)" C]
~

+ i
3[' C(ir+, ~ p)"C]

i
(1.2)

Here, 3[' C(m, aN) "C] denotes quasifree knockout am-
plitudes and 8[' C(m, ~~n)"C] denotes amplitudes for
the sequential processes m+ ' C~m+p + "8
—+m. +n+ "C. In sequential processes, quasifree
knockout is followed by final-state charge exchange (CX)
between the outgoing nucleon and the residual nucleus.
Hewson estimated the contributions of the final-state nu-
cleon charge exchange (NCX) processes using plane waves
for pions and only the P33 wave in the pion-nucleon
scattering amplitude. By postulating various ad hoc
nucleon-nucleus charge-exchange potentials, he found that
the inclusion of NCX can give a value for R' between
1.50 and 1.97. Owing to the omission of distortions of
pion wave functions, Hewson was, however, unable to
predict the absolute magnitude of the cross sections for
' CHr+, mN)"C and ' C(m, AN)"C Furthermore, . as a
result of using only the ~N F33 wave in his calculations
Hewson could not predict the correct energy dependence
of R. Other researchers ' have since simplified Hewson's
NCX model to obtain the energy dependence of the cross
sections and of the cross-section ratio. In Ref. 7, for ex-
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= (1 Pc—x )cr(m+n~m+n)+Pcxo(n+p~n+p)

+(1—Pcx)0(n.+n~~ p} . (1.4)

Here, the quantity Pcx is assumed to represent the proba-
bility of having NCX in the final state. The o's are free
mN scattering cross sections. The Pcx was estimated
from a rough calculation with one parameter, which was
fit to the data at one energy. A formalism similar to Eqs.
(1.3) and (1.4) has been employed in Ref. 9 to estimate
pion charge exchange contributions to (m, m.N) reactions.

We note the crucial difference between Eqs. (1.1) and
(1.2) and Eqs. (1.3) and (1.4). In the former equations, the
amplitudes are added. In Eqs. (1.3) and (1.4), the cross
sections are added. Consequently, the interference be-
tween the amplitudes 2 and 8 is left out in the calcula-
tion of R". Clearly, the use of Eqs. (1.3) and (1.4) to cal-
culate ' C(~+,wN) "C and ' C(m. ,m.N) "C cross sections
and their ratio is incorrect. This is because when more
than one amplitude contributes to the same final state, ac-
cording to the basic principle of quantum mechanics, it is
the amplitudes, not the cross sections, that should be add-
ed. Using Eqs. (1.3) and (1.4} might be acceptable only if
the interference between A and 8 is unimportant. How-
ever, as we shall show, this is not the case with (m.,mN) re-
actions on ' C.

ample, the ratio is defined as R"=N" /D" with

& =(1—Pcx)o(n n —+m. n)+Pcxo'(~ pair p)

(1.3)

In Sec. II, we present the formalism for the
'2C(m+-, mN) "C reactions. The formalism can be readily
generalized to deal with (m.,mN) reactions on nuclei other
than ' C. In addition to direct knockout and NCX, we
have also included in our calculations pion charge ex-
change (m CX) in the final states, and have fully taken into
account interferences among all those processes which
contribute coherently to the reaction. We have also exam-
ined m.CX in the initial state. In the case of ' C, it corre-
sponds to charge exchange leading to nonanalog nuclear
states. We have found that contributions by initial-state
m.CX are negligible in the present case, and thus we will
leave them out in the present work. In calculating the dis-
tortions and final-state charge exchange processes, we
have used the published pion-nucleus and nucleon-nucleus
optical potentials. These basic interactions are not treated
as adjustable quantities. Results and discussion are given
in Sec. III. In brief, we find that: (a) both NCX and its
interference with the quasifree process contribute signifi-
cantly to (m.,mN} cross sections; and (b) the inclusion of
the interference (i.e., the coherent aspect of the reaction) is
essential for reaching a true understanding of experimen-
tal data. Finally, the formalism developed in this work
represents an extension of existing quantum-mechanical
direct reaction theories used for (p,2p) and (ir, mN) reac-
tions. '

II. FORMALISM

With the normalization & p
'

~ p ) =5( p
' —p), the total

cross section of the (n, mN) reaction in the c.m. frame of
the pion-nucleus system is given by

4E (k)E~(k~)o.=(2~) ~f dKdQdP&[W —E (E) E~(Q) E~(P)]5(K+Q+P)

X X X &Kr ~gp r ~PJoMs TMTPo (
~

~

kr k~O)
IaIJOPp

(2.1)

kz(= —k), K, Q, and P denote, respectively,
the momentum of the incoming pion, the target nucleus,
the outgoing pion, the nucleon, and the residual nucleus.
The total energy of the system is denoted by 8'with

8'=E (k)+Eg(k)

(k2+m 2 )1/2+(k2+~ 2 )1/2

In Eq. (2.1), IaI =(t', r', MT)S(p', M,') with the first and
second sets of the quantum numbers denoting, respective-
ly, the isospin and spin projections of the particles. The
quantum numbers Jo and po refer to the spins and the en-
ergy eigenvalues of different final states of the residual
nucleus. Furthermore, ~ is an antisymmetrization coef-
ficient arising from the indistinguishability of the 2 nu-

I

cleons. It reflects the fact that there are ~ equivalent
ways of grouping A nucleons in a final state with one nu-
cleon in the continuum and (A —1) nucleons in a bound
state. For the study of the ' C(m

+—
,irN) "C reactions that

leave "C in its particle-stable states (E*& 12 MeV), we
only need to consider j= —, nucleons. Consequently,
~=2(2j+ 1)=8.

A. Reaction model

For the purpose of examining various direct SNR reac-
tion processes which originate on a 1p-shell nucleon, we
can express the nuclear part of the final state in Eq. (2.1)
according to

& Qp'2'PJO™' 2MTPO I

=—&QP'r'
I

&PJOM' 2'Mzp'ol(J = 2' } Je =Tc =o] & (2.2)

Here, J, and T, stand, respectively, for the spin and the isospin of the is-shell core. We decompose the initial ' C state
into
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i

' C(J =T„=O)&=
Pp JpwMTM

«&o Jo)C" Vs,'oc '~, ~, o l~o —~s,' z&& l~o~s 2~TPo[(J= ~ )'&. =Tc=o]& (2.3)

where

c(Po~o)= (I& T& I I
~oTo( = Y~)~»J = To &

is the coefficient of fractional parentage. "
We emphasize that several amplitudes can contribute to

a given (n., m.N) reaction. In this work, we take into ac-
count the following seven amplitudes.

(a) Quasifree (QF) amplitudes: Ai[n. ' C~(~ n)"C];
Az[m. + ' C—+(vr+n) "C];and A3[m+ ' C~(~ p) "C].

(b) Final-state nucleon charge exchange (NCX) ampli-
tudes: Aq[m

' C~m p"B~(m. n)"C] and A5[m+' C
p "8 (n.+n) "C].

(c) Final-state pion charge exchange (m CX) ampli-
tudes: 36[m. ' Contr "B~(nn. )"C] and A7[n+ ' C
~per+ "8 ~(pm )"C]. The reaction processes associat-
ed with the QF, NCX, and n CX amplitudes are illustrat-

cr =o[' C(m, mN)"C] ~
~
A, +A~+A6

~
(2.4)

o+=o.[' C(n.+,~N)"C] ~
~
A~+A5

~
+

~
A3+A7

~

We define the cross-section ratio as

R =o. /o. + .

(2.5)

(2.6)

In momentum space, the quasifree amplitude associated
with Fig. 1(a) is given by

I

ed in Figs. 1(a)—(c), where the pions, nucleons, and nuclei
are represented by dashed, thin, and multiple lines, respec-
tively. The Q is the wave operator which distorts the pion
or nucleon wave functions. The cross sections of vr an-d
m+-induced SNR and their ratio are then given by

AQF ——g J dk 'dk "dq '(k "t', q 'p'r'
~

t N(Ws)
~

k 't;qpr&

c(P' J' )0 0 Jp +M&+(1/2) — 1/2 1/2 p
I

V' 2(ufo+1) p p M —M—~~—M'Nnlm('q+ k ~A ) ~nm (2.7)

Il
P

k" K

where q=k" —k'+q ' and vs is the invariant mass of
the mN system. The ~ ' and ~" are the relative momenta
between the pion and the residual nucleus. Similarly, the
momentum variables of N(N)' and 4'(+)' refer to nucleon-
residual nucleus and pion-target nucleus relative momen-
ta, respectively. Furthermore, P is the Fourier transform
of the bound nucleon wave function. We use the harmon-
ic oscillator wave function'

(b)

(c)

NCX

P'

q'

+
k"

~CX

pll

P,t (r ) =&„t(r)X I't (r )

with n =I= 1, m = —M, —p, and an oscillator parameter
a=1.64 fm for ' C (Ref. 13). The ~II and 4 represent,
respectively, the distorted wave functions of the pion and
the nucleon. In obtaining Eq. (2.7), from Fig. 1(a), we
have used the following identities which relate the matrix
elements of the wave operators to the distorted wave func-
tions:

k' P' p II

FIG. 1. Diagrams for (m.,~N) reactions: (a) quasifree
knockout; (b) direct knockout followed by final-state nucleon

charge exchange; and (c) quasifree knockout f'ollowed by final-

state pion charge exchange. The filled and open circles denote,

respectively, the pion-nucleon scattering amplitude and the one-

nucleon form factor. The 0 are the wave operators. The pions,
the nucleons, and the nuclei are represented by the dashed, solid,
and multiple lines, respectively.

Tcx

p n

"cx)

FIG. 2. The diagram for Eq. (2.16), which replaces the final-
state charge-exchange parts of Figs. 1(b) and (c) in our
distorted-wave calculations.
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q'( ),,M . ,(a ")=
& Kt';PMT

i

0' '
i
k "t';P "Mr );

(2.8)

and

-(k')=&I't; —k'OiA+'i kt; —k0) . (2.10)
(~)~0; k

(N)&Mr; Q + k "/A q +

= &Q7'iP "MT
~

QN
~ q 'O';P'M7. ); (2.9)

Since m (&m~ ~, we have ~ '= K and a "-g " in Fqs
(2.7) and (2.8). To make the discussion transparent, we
shall use the eikonal distorted wave functions. Conse-
quently, we write

(k")=(2~) i/2 f dr exp[ —i(K—k") F]exp i(m~/—&) f &U (r+Iks' )),.M ds' (2.11)

(q '+k "//1)=(2a) '"f dr exp[ —i(Q —q ') r]exp —&(2)mN/Q) & UN(r+QsN))&M, dsN
[N)&M&, q + k "/a 0 T

(2.12)
and

)I((+) (k')=(2ir) i/2 f dr exp —i(k' —k) r i(—m /Ik) f & V~(b, kz')), Odz'
)

(2.13)

where q=(A —I)/A. (Refer to the Appendix for the geometry used for the eikonal distortion. ) In Eqs. (2.11)—(2.13),
the & V ), & U ), and & UN) stand, respectively, for the optical potentials for n-' C, m.-"C, and N-"C systems in the
elastic channels specified by the isospin projections t, t', r', and Mr. We assume that the distorted waves peak around
their respective asymptotic momenta so that we can take the pion-nucleon scattering amplitude t N out of the integra-
tion at the asymptotic momentum of each particle. To improve this factorization approximation, we use a medium-
modified n N amplitude t'

N (see Sec. II B). We obtain, after straightforward but tedious algebra,

AQp = g & Kt'Qp'r'
~

t~N(w')
~

kt'(K+Q —k )pr )c(poJO )[2(WO + 1 )]

I I I

S S

Here, the distorted-wave nuclear form factor is given by

(2.14)

GQ„(K,Q, k;t'MTr', M,'p)=(2m)/8 f .dr exp[ —i(K+Q —ilk). ~]exp i(m /—K) &U (r+Iks' )), ds~
0 T

&(exp —i(rimN/Q) f & UN(r+QsN))&, dsN

&&exp i(m /—k) f & V (b,kz')), Odz' p, M, (r) . (2.15)

In Eq. (2.14), the variable it)' indicates the total c.m. energy (or the invariant mass) of the m.N system at which the t'
N

will be evaluated. The determination of w will be discussed in Sec. II B. The quantity 8 is defined by
8=8(E,',i E„) E, ). H—ere, E—„i——( —P —

haik
') /2i)mN and E,',i

——( —P —iIK) /2ilmN represent, respectively, the nu-
cleon kinetic energies in the nucleus before and after the irN collision. The step function 8 has been introduced to ensure
that SNR will occur only when the energy transfer to the nucleon is greater than the separation energy E, of the nucleon
(E, =18 MeV for the neutron and 16 MeV for the proton in ' C). The use of this phenomenological 8 has been shown
necessary to suppress spurious SNR events in the kinematical region characterized by small pion scattering angles. '"

It is useful to express the charge-exchange T matrices TNcx and T~x in Figs. 1(b) and (c) in terms of the matrix ele-
ments of corresponding charge-exchange potentials between distorted-wave states. More specifically, we have'

& 4'f I
Tcx I

4' & = & @f I Vcx
I

@ (2.16)

where P and @(+—' denote, respectively, plane-wave and distorted-wave states (see Fig. 2). With the aid of Eq. (2.16), we
obtain from Figs. 1(b) and 2 the following expression for the NCX amplitude:

POJOMT mr"pp "M
1k 'd k "d q '4 ', , - ( k ")(I/'+' ( k ')

(~)t'MT; K (m)t0; k

( —) (+)
(N)r'p', (I/2)MTJQM P(). Q + k /A I I (N)v p .(I/2)MTJOM Po, q '+ k "/A

X(Q /2mN q' /2mN+—ie) '&k "t';q'r")((," ~t N(vs)
~

k't;qrp)

Jo k'

(2.17)
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where q = k "+q
' —k '. We note the presence of a nucleon propagator in Eq. (2.17). The eikonal representation of this

propagator can be written as

(Q /2mN —q' /2mN+ie) '= f dbe 'q'' G, (Q;r', r)

= f dhe 'q ( i)—f dte 5(Z —tQ/mN), (2.18)

where Z = r ' —r. In obtaining Eq. (2.18), we have used for the Green's function G, (Q; r ', r ) the parametric form ofq'
Sugar and Blankenbecler. ' Using Eq. (2.18) and the same approximations leading to Eq. (2.14), we obtain

~NCX
ZpPp&»-M,

(Kt', Qp"r"
I

t' N(w')
I
kt;(K+Q —k)pr)c(PoJo)[2(2Jo+ I)]

M, —Gxcx(K~Q& k'PoJot'tMz &'r™s™p"p'p) (2.19)

with

GNcx(K, Q, k;PoJot'tMTr'r ,M,'M', p"p'p)

=(2m) 3~ 8 f dr exp[ i(K— rik—) r] exp i f— (U (r+ICs' )), ds'

oo 'gm N oo

dsNexp i f — (UN(r+ QsN)), ~, dsN
0 sN —sN &MT

X &r'O'
I & 2MTJoM'Po

I
e ' 'VNcx(r+QsN)

I 2 rJoM Po& I

r"p" &( imN/Q)

II
gmN Pl~

Xexp i —f (UN(r+QsN))~, dsN exp i — f —(V~(b, kz')), dzo'

Xp) „M(r) . (2.20)

Here, r "=b "+z"and r"=t+r t'=r'+M—T+r The phys. ical picture associated with Eq. (2.20) is as follows: The
incoming pion knocks out a proton at position r=(b, z); the proton propagates from r to r" where the NCX reaction
p+ "B~n+ "C takes place. The momentum-space ~CX amplitude [cf. Figs. 1(c) and 2] has a structure similar to Eq.
(2.17) and is given by the following:

(Kt";Qr'p'
I

t' (Nt)oI kt;(K+Q —k) r)p(fci Jo)[o(22Jo+1)]
Pgprt"pM

p+Ms+(1/2) —w )/t2 ]. ~p
X( —)

'
Cq q ~ ~ G~x(K, Q, k;13oJot"t'tMrr'r;M, 'M, p'p), (2.21)

with

G~x(K, Q, k;13oJot l tMT1 7"M M p p)

=(2m. )
~ 9 f dr exp[ —i(Q —rik). r]

( U (r+Ks' ) ), , ds'YJm N oo oo m ~ oo

Xexp i f (—UN(r+Qsw) ),M, dsN f ds "exp i—
Q o wM~

X(t'I & MTJoM Po I

e ' 'V~x(r+Xs")
I

—,
' rJ M, p ) I

t")( —im /E)—
It

m s —s

Xexp i f— (U (r+Es' )),-,ds' exp i 'f —(V (1 kz'))~odz' p) ~ ~(r),

(2.22)

where t"=t+r r'=t'+Mr+ad. It is—worth noting that in the plane-wave limit, GOF reduces to P„l (Qz) with

Qe =K+Q —g k equal to the initial momentum of the nucleon in the target nucleus. However, GNcx and G~x do not



30 INTERFERENCE EFFECTS IN (m, mN) REACTIONS 259

reduce to the Fourier transform of the bound-state nucleon wave function even in the plane-wave limit. These form fac-
tors are absent in standard reaction theories for SNR and are the result of the explicit introduction of charge-exchange
scatterings in the final state.

B. Theoretical input

The mN amplitude is parametrized according to'

E„(k,' )EN(k,
' )E (k, )EN(k, )

E (K)EN( Q)E ( k)EN(p) k,' k,

3
(t';p'r'

~ g 0 f;(v s;k,', k, )
i
t;pr)

3=
& t';I 'r'

~ g O, F,(~s;k,', k, )
~
t;pr),

i=0
(2.23)

V (r)= ——[Zp~(r)+Np„(r)]F0(0)
P~

(2.24)

where Op=1 O) = —Eo k~ Qk ~, 02= t 'T and

03 ——0&02 are operators in the spin-isospin space with t
and ~ denoting the isospins of the pion and the nucleon.
The F; (i=0,1,2,3) depend on the ~N phase shifts and
off-shell form factors. They are functions of three in-

dependent variables which have been chosen as the invari-

ant mass V s, the initial c.m. momentum k„and the final

c.m. momentum k,' of the AN system. (Refer to Sec. IV
of Ref. 18 for details. )

The pion-nucleus optical potentials used for calculating
the distortions of pion wave functions by

' C and "C (or
"8) are defined by

-AFO(0)=(2m) (k
~

V
~

k) .
P

(2.27)

Equation (2.27) defines the effective forward amplitude
Fo(0) in terms of the forward-direction momentum-space
m.-' C optical potential. This latter quantity can be exact-
ly evaluated according to'

I dQ Fo(u;k,';k, )

where V (r ', r)=5(r ' —r)V (r) for a local potental.

Since (k'
~

V„~ k) can be nonlocal in momentum space,
it follows that V ( r ) has the meaning of an effective local
potential in coordinate space. Combining Eqs. (2.24) and

(2.26), we obtain for k '= k (the forward scattering):

U (r)= — I[Zp~(r)+Np„(r)]Fo(0)
Pm

&& (Zpp+ Np„) (2.28)

(k'i V„i k)=(2m) J e'" '' V (r', r)
Xe-'" 'dr dr ' (2.26)

I

+ [Zpp(r) —Np„( r ) ]F2 (0)}, (2.25)

with P being the reduced pion mass. The pp and p„are
normalized proton and neutron densities. In Eq. (2.25),
the plus sign is for the m+ interaction and the minus sign
for the ~ interaction. The Fo and F2 are effective for-
ward m.N scattering amplitudes in the sense that V (r)
[and, similarly, U (r)] are effective local potentials. To
see this, we consider the Fourier transform

for k '= k (which corresponds to k,'= k, ). In Eq. (2.28),
the P N, 8, k„and k,' are, respectively, the reduced pion
mass, the invariant mass (or the total c.m. energy) of the
mN system, the initial c.m. mN relative momentum, and
the final c.m. mN relative momentum. The pz and p„are
the momentum-space proton and neutron density distribu-

tions. The quantities w, k„k,', p~, and p„are functions
of the momentum Qz, which in turn is related to the Fer-
mi motion of the struck nucleon. ' Using an algebra simi-
lar to the one leading to Eq. (2.27), we obtain from Eq.
(2.25) the relation

(+)(Z—N)F,'(0)=—(2~)'(k;tMT
~

(V
P~N

= ———I d Qg (+ )F2(w; k„k, )(Zp~ Np„) . —
P~N

(2.29)

From the second line of Eq. (2.29), we obtain the effective
coordinate-space potential operator V~x of Eq. (2.22):

(2.30)V~x(r )= — F2(0) t g &( p()(r ')
P~N

Here, t is the isospin operator for the pion and ~~;~ and

I

p~;~ ale, lespectlvely, the {Pallll) lsosplll opelatol' and the
density distribution associated with the nucelon i.

An inspection of the systematics of ( k
~

V
~

k ) of
several nuclei has shown that it has a higher resonance en-

ergy and a broader resonance width than those of the free
(3,3) resonance. ' It has also been noted' that this modi-
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fication is a consequence of a detailed treatment of
nuclear binding, off-shell effects, and the integration
over the Fermi motion of the struck nucleon in Eq.
(2.28). A similar feature has been noted for
(k;tMT

~

(V —U )
~
k;tMr) defined m Eq. (2.29). We

have found that it is possible to numerically reproduce the
Fp(0) and Fz(0) of Eqs. (2.28) and (2.29) by, respectively,
evaluating Fp(0) and F3(0) in the fixed scatterer approxi-
mation (FSA) defined in Ref. 14, but with a modification
of the P33 interaction. This latter observation forms the
basis of the approach that we have used to simplify the
numerical computations of the amplitude t'

N appearing
in Eqs. (2.14), (2.19), and (2.21). In the following, we
describe in detail this approach.

We parametrized the P33 phase shifts according to'

0.99I gmo
tan533/q =b+cq +dq + 3 3

gp(COp —i'0 )

where b, c, and d are constants given in Ref. 19, and

~p=(gp +m ) +(gp +m N)

(2.31)

We kept b, c, and d unchanged and varied I 0 and mo such
that with the modified 533 and unmodified other mN
partial-wave phase shifts, the evaluation of the product
—AFp(2ir) p

' in the FSA reproduces the exactly cal-

culated (k
~

V
~
k) of the m.-' C system. ' A solution

was obtained with I 0
——180 MeV and coo ——1280 MeV

denoted henceforth I o and ~o. It remains to specify the
energy variable ip' which enters into the calculation of the
I,", i=0,1,2,3, and hence the calculation of t'N. Before
introducing the factorization approximation, the energy
variable v s of t N in Eqs. (2.7) and (2.17) is completely
determined, and can be evaluated from the four-momenta
of the off-mass-shell pion and nucleon. After the factori-
zation, the energy variable of t' z, denoted ur', is no longer
defined by first principles. A reasonable choice is

ip'=ip —(ReV ),„. (2.32)

Here, 8 is the energy that enters into the t, N for the exact
calculation of the pion-nucleus optical potential [Eq.
(2.28)), and (Re V ),„represents the average pion poten-
tial energy in the nucleus. It is useful to express the w in

terms of the incoming pion momentum k and the
momentum of the recoil nucleus P. The result is

k I' I'
w=E„(k )+ — -+mN E,——

2ppl g 2m' i 2(m„+mN)

(2.33)

where E, is the separation energy of the nucleon. Equa-
tion (2.33) represents the relevant AN collision energy in
the absence of pion self-energy. This is correct since in
the evaluation of the optical potential, the pions are by
definition in the free state. (Medium effects on the pion
will be generated self-consistently when the pion-nucleus
scattering amplitude is calculated with the Lippmann-
Schwinger equation which iterates the optical potential. )

However, Eq. (2.7) indicates that in the (vr, m.N) reaction,
the mN amplitude t„N appears between the distorted pion
wave functions 4 and @. Consequently, the relevant local

pion energy will be changed from the free pion energy by
an amount equal to —Re V . This justifies Eq. (2.32).
We have approximated (Re V ),„by calculating the
Re V [Eq. (2.24)] at the pion asymptotic energy E„(k)
and at the half-density radius.

Equation (2.33) can be rewritten in the form

ku)=E (k)+ —— +mN —5p)p
2rng

with

(2.34)

p2 p2
5cop ——E, + +

2m' i 2(m~+mN)
(2.35)

Here, f is the usual Woods-Saxon form factor

f(r, rp, ap) =
I 1+exp[(r rpA ' ')/ap] j— (2.37)

The Coulomb potential is that of a uniformly charged
sphere, namely,

Vc,„i (zZe 3/2R, )(3———r /R, ), for r &R, =r, A '~3;

=zZe /r, for r&R, , (2.38)

z and Z being the charges of the incident nucleon and the
target. From a systematic fit to nucleon scattering on
1p-shell nuclei at energies between 10 and SO MeV, they
determined that

Vg ——60+0.4Z/A '~ +27(N —Z)/A —0.3E,

Ws ——8'g(F., )+10(X—Z)/A,

Wi ——Wy(E, ),

(2.39)

(2.40)

(2.41)

rz ——rI ——r, = 1.1S—0.001E, , az ——O.S7, and al ——O.S.
We refer to Ref. 21 for the functions Ws(E, ) and
Wi (F., ). In Eqs. (2.39)—(2.41), E, is the nucleon en-

representing the decrease of the energy available to the
mN collision. The three terms in Eq. (2.35) represent,
respectively, the binding correction, the recoil correction,
and the c.m. motion correction due to the propagation of
the m N system. Using the most probable value of P in the
(n, mN) r.eaction (which is largely controlled by the argu-
ment of the bound-state nucleon wave function P+rik),
we have found that 5cop is about 45 MeV, in agreement
with the previous finding, cop —cop = 1280—1232=48
MeV. Indeed, microscopically, it is precisely the same
three terms of Eq. (2.35) that have caused, via Eq. (2.28),
the apparent shift of the resonance position. We recall
that the shift Boo has already been taken into account in
generating the modified P33 phase shift. Consequently, to
calculate t'

N based on the use of cop and I p, the relevant
energy variable is

u ' =E ( k) +k /2m ~ +m N
—( Re V k ),„.

For the nucleon-nucleus interaction, we have used the
optical potential of Watson, Singh, and Segel. ' The
spin-nonflip part of the potential is given by

UN, i„———Vzf(r, rz, az ) i Wi f(r, rt —aI)

+4tat Ws f(r, rt~ar)+ Vco &(r,r, ) . (2.36)
dr
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ergy in the c.m. frame of the nucleon-nucleus system.
Furthermore, the energies are in MeV units and the
lengths in fm. The plus sign is for incident protons and
the minus sign for incident neutrons. From the
[(N Z—)/A] part of the V~ and Wz, we obtain

27&Ncx(r)=+ f(r, re, a~)

10 . d
4ias f(r, ri, ai) r.g r(;)dr

+

2—
I

b

~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ ~ ~
~ ~

(2.42)
where 7 and r(;) stand for the (Pauli) isospin operators of
the propagating nucleon and the ith nucleon of the residu-
al nucleus.

III. RESULTS AND DISCUSSIGN

%'e compare our calculated cross sections with the ex-
perimental data of Dropesky et al. for ' C(n, irN)"C
and ' C(w+, mN)"C reactions in Fig. 3. As we can see,
our calculations are able to reproduce, reasonably well, the
energy dependence and the absolute magnitude of the
cross sections.

In Fig. 4, we show the cross-section ratios for the
' C(ir-+,irN)" C reactions. The dotted curve is the ratio of
free irN cross sections

o(ir n~m n)/[o(ir+n~~+n)+o(m+n~irop)] .

The dashed curve corresponds to the ratio obtained with
conventional quasifree models which do not have final
state charge exchanges. Results due to our full theory are
shown as the solid curve. As we can see the theory is able
to account for the energy dependence of the ratio, al-
though the calculated ratios are slightly higher than the
experimental data (the shaded area). We have found that
the irCX has very small effects on the calculated cross
sections. This agrees with an earlier observation by Sil-

IOO 200 300
T (MGV)

FIG. 4. Cross-section ratios for the ' C(m —,mN) "C reaction.
The dotted curve represents the ratio of free m.-N cross sections,

o(m n ~sr n)/[o(rr+n~rr+n)+o(vr+n~vr p)] .

The dashed curve is due to the calculations based on pure quasi-
free scattering. The solid curve and the shaded area have the
same meanings as for Fig. 3.

bar. The contributions from mCX and its interference
with the quasifree process are at most l mb at all the en-
ergies studied. Consequently, the difference between the
solid and dashed curves is mainly caused by NCX and its
interference with the quasifree direct knockout process. It
is noteworthy that the cross-section ratios given by our
detailed quasifree calculations differ already from the free
~N scattering cross-section ratios, even when NCX is ab-
sent (compare dashed and dotted curves). We have noted
that this modification of free ratios is mainly caused by
the difference of n-"C and p-"C optical potentials used
for the distortion calculations.

To exhibit the relative importance of the interference
effects between NCX and QF processes, we show in Fig. 5
the percent contributions to the calculated o(m-). The

+
illll//ii~li

I i [ i i )i Vl

0)

~~
20—

O

200

T~ (MBV)

FIG. 3. Cross sections for the ' C(n- —+,mN) "C reaction.
Shaded areas are the experimental data of Dropesky et al. (Ref.
3). The solid curves are calculated results based on the full
theory which includes quasifree, NCX, mCX, and the interfer-
ence between these processes.

IO—

p I

IOG
I I

200
T (MBV)

I

300

FIG. 5. Percent of NCX and interference contributions to
cr(~+—). Solid curves: interference; dashed curves: NCX.
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solid curves represent contributions to o. and o.+ from
the interference terms 2 Re(A

& 34) and 2 Re(A2 A 5),
respectively. Qn the other hand, the dashed curves
represent contributions from pure NCX:

~
3&

~

in the
case of o. and

~
A5

~
in the case of o.+. It is interesting

to note that in the NCX theories of Refs. 7 and 8, the in-
terference terms are not present. In those theoretical
treatments, the competition between quasifree and non-
quasifree processes were taken into account via the pa-
rameter Pcx which was given the meaning of the percent
contribution from pure NCX. It is clear from this work
that the Pcx, introduced in Refs. 7 and 8, simulates the
summed effects of interferences and NCX, but not the
pure NCX. Indeed, the interpretation of Pcx in those
analyses could be very misleading. As we can see from
Fig. 5, in the case of incident ~, the contributions from
the interference term greatly exceed those from the pure
NCX. If the methods of Refs. 7 and 8 were used, these
interference effects would be incorrectly identified as a
part of pure NCX effects.

For ' C, we have found that the interference is con-
structive at all energies. Since the potential for NCX is
proportional to A ', we can expect that the importance
of NCX and its interference with the quasifree knockout
process will be smaller in nuclei heavier than ' C. This
agrees with the observations by Kaufman et al. and
Ohkubo et al. who have found that there is no evidence
for NCX contributions in ' Au(m, mN) and ' I(n, mN) re-
actions, respectively. Although in the case of ' C, the in-
clusion of interference happened to have little effect on
the calculated cross-section ratios, we have no reason to
assume this insensitivity to be true in general.

The calculations presented in this work can be im-
proved in many respects. For example, one might forgo
the use of the factorization approximation and the use of
elkonal distortions. This would require the performance
of a nine-dimensional integration for each of the (~,nN)
amplitudes in Eqs. (2.7) and (2.17). Also, it demands a
tedious partial-wave decomposition of each of the distort-
ed waves. On the other hand, such calculations would
allow a treatment of the medium effect from first princi-
ples. They also would enable the use of momentum-space
pion-nucleus and moxnentum-space nucleon-nucleus opti-
cal potentials which can be more directly related to the
elementary mN and NN scattering amplitudes. However,
we believe that the basic features brought out by the
present calculations, namely, the importance of the in-
terference between different processes of the (m, mN) reac-
tion, will not be changed.

As noted at the end of Sec. II A, the presence of GNcx
and 6~x is a novel feature and is a direct result of treat-
ing explicitly the coupling between elastic scattering (the
usual distortion) and charge exchange scattering in the fi-
nal state. Since the distorted-wave approximation is valid
only when the coupling between different reaction chan-
nels is weak, the need for introducing explicitly the NCX
and/or n.CX processes is a strong indication of the limita-
tion of conventional distorted wave (DW) theories for
SNR. In this respect, the formalism developed in this
work represents a natural extension of simpler direct-
reaction theories for (e,e'p), (p,2p), and (m, mN) reactions. '

APPENDIX

%e show in this section the method used in calculating
the eikonal distortion factors contained in the nuclear
form factors G&„[Eq. (2.15)], GNcx [Eq. (2.20)], and
G~x [Eq. (2.22)]. We will first give the derivation and

00

calculation of the quantity (U (r+Es'))ds' corre-
sponding to the distortion of the outgoing pion having the
momentum K. Here, s„ is the distance traveled by the
pion in the direction of K. The ( U ) is the pion-nucleus
optical potential which depends on the nuclear density
p(

~
r ~), with r„=(I'+z'')' ' being the distance be-

tween the moving pion and the nuclear center. (Discus-
sion of the distortions of the incoming pion and outgoing
nucleon is formally identical. ) Then, we will examine the
analytical structure and the physical content of the G's,
taking G~r, as a specific example.

The geometry associated with the distortion of the out-
going pion is illustrated in Fig. 6, where r =b+z is the
position of the m.N collision site, and b the impact param-
eter of the incoming pion. The direction of the outgoing
pion momentum K is defined by the polar and azimuthal
angles of the momentum K, denoted Ox and gx. From
Fig. 6, we have

= [b'+a'+2ba cos(m. —P —fx )]' ', (Al)

A
y

A A
K=Z

FIG. 6. The geometry associated with the outgoing pion of
momentum K.
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with

a =(z' —z)tanOx . (A2)

2 2&ahL.=—(o+b%
7T a+& '2 (A3)

Equations (Al) and (A2) imply that L =L (r,Ok, gk, z' ),
which depends on six variables. To simplify the calcula-
tions, we eliminated the fir dependence by averaging L
with respect to Px. The average distance L„ is then given

Here, E is the second-kind elliptical integral. As a result
of the axial symmetry of the whole system, L is also in-
dependent of P. The distortion is then calculated as fol-
lows:

exp i— ( U (r+Ks' ) )ds' =exp i — ( U~(L,z+s' cosOx) )ds':D~~~—'(K, O&, b,z)E o E (A4)

which possesses axial symmetry. %'e recall that L„ is not a constant, and it varies as the pion moves along its trajectory.
However, we have found that it is a good numerical approximation to set L =b, for b)a, and L =a, for b&a. The
distortion factors of the outgoing nucleon and the incoming pion can be written in a form similar to Eq. (A4):

gKN 00 'g 172 N oo
r r ( —)exp —i

0
( UN(r+QsN))ds' =exp i—

0
( UN(LN, z+sNcosOg ) )dsN =—D~N) (Q, O&, b,z);

exp i(m—/k) f ( V (b,kz'))dz' =DI+~'(k, b,z) . (A6)

(A7)

The geometry used to obtain Eq. (A3) becomes ambiguous only when Ox or 8& ——90' exactly. However, we have found
that the D's defined by Eqs. (A4) and (A5) are smooth functions of 8 (even when 8 approaches 90') and that Gaussian
quadratures can be used for the numerical integration to avoid the extreme situation corresponding to 8=90'. The nu-

clear form factor GoF becomes

G&F ——(2~) 8 f b db dgdzexP[iz(PcosOz+rlk)+iPb sinO~cos(gp —P)]D( ~'(E, Ox, bz)DI N)( Q, 8&,b,z) DI+')( k, bz)
' 1/2 ' 1/2

XR„,[(b'+z') '"] 2l+ 1 (l —m)!
4n (l+m)! Pi [z/(b +z )'~ ]exp(imP) .

If we let A, =f Pr, and int—egrate with respect to A, , we obtain

G&F ——(2~) ' 8 f b db dz exp[iz(P cosOz+qk)]J (Pb sinOp)DI ~'(E, Ox, b,z)DIN)'(Q, O~, b,z)DI+~'(k, b,z)
' 1/2 ]./2

&&R„,[(b +z )
~ ]

2l +1 (l —m )!
4~ (l +m)!

PP[z/(b +z )' ]exp(imm/2+immi ), (A8)

where J~ is the Bessel function of integer order m. Equation (A8) requires only a two-dimensional integration. The
presence of exp(im f~) in Eq. (AS) will further simplify the calculation of o with Eq. (2.1), since

fdgrexp(imPp)exp( —im'itjz) =(2m )5 . Thus, Bessel functions with different m orders contribute incoherently to o.
However, since ANcx and 3~x also contain J, Bessel functions of the same order but associated with different reac-
tion processes contribute coherently to o.
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