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C2 contributions to back-angle inelastic electron scattering from Er and 'Ta
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We present results of distorted-wave Born approximation calculations of longitudinal contributions to

180 inelastic electron scattering, in the limit of zero electron mass and pure Coulomb distortion. A rough

estimate of said contributions is given for the transitions 0+ 2+ in Er, and 2+ 2+ and 2
+ in

Ta. Results are compared to plane-wave Born approximation calculations of transverse form factors.

In a previous paper, ' one of us pointed out that, in dis-
torted wave Born approximation (DWBA), the differential
cross section at 180' for inelastic electron scattering from
nuclei contains charge multipole contributions that are dif-
ferent from zero even for ultrarelativistic electron
(m, ~, 0). In this Brief Report we give a rough estimate

of these contributions in the limit of zero electron mass. As
is well known, in this limit the differential cross section at
180' in plane wave Born approximation (FWBA) is propor-
tional to the transverse form factor,
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with e;=E;, ef =Kf, the initial and final electron energies
and- momenta, q =E;+Ef, and I'T is the transverse form
factor involving only transverse multipoles of the nuclear
transition vector current. The PWBA result expressed in
Eq. (1) has motivated3 many experiments of electron
scattering at 180' to get information on current distributions
in nuclei, since electron scattering at lower angles is, in gen-
eral, dominated by longitudinal form factors. This is partic-
ularly so for transitions within ground-state rotational bands
in axially symmetric deformed nuclei. In particular, for
0+ X+ (A. = even ~ 2) transitions within the ground-state
band of even-even rotational nuclei, the cross section at
back-angle measures, according to Eq. (1), the transverse
EA. multipole of the collective rotational current in the
band, and thus, experiments at 180' offer a way to obtain
direct and unique information on the nature of the nuclear
collective rotational motion. However, as said before, if we
take into account distortion effects, the longitudinal CP
multipole also contributes. It is then very important, for the
correct interpretation of experimental data, to know the or-
der of magnitude of the longitudinal contribution and, in
particular, to know whether the latter is comparable or not
to the transverse form factor in Eq. (1). If the CX contri-
butions in DWBA turn out to be much smaller -than FT, we
may expect Eq. (1) to hold, but otherwise a complete

I

DWBA analysis of the experimental data at 180' will be re-
quired.

In DWBA, the CA. contribution to the differential cross
section at 180' is given by'
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with x = E; r, x' = Kf r, and

where A „~(=—4 &~„=~)is the individual reduced amplitude
corresponding to the total contribution of the Ck multipole

(p„)of the nuclear transition charge. The notation and
conventions are as in Ref. 1. To compare with the
transverse form factor in Eq. (1), we computed the C2
"form factor"
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For the transition 0+ 2+ in ' Er, this is the whole

longitudinal contribution; for the transitions 2
+

2
+

and 2
+

2
+ in ' 'Ta, higher longitudinal multipoles

(C4, C6, C8) also contribute, but since these peak at higher

q values and the transition energies involved are small, we
may forget them in a first estimate. ' Note that P ~~~ [see
Eqs. (2) and (4) in Ref. 1] changes sign under the inter-
change of e; and ef, then for small cu( = e; —e~) we may ex-
pand 4 „~in powers of ~/2K [with K = (e; + ef)/2] and get
to second order P „t~co/q. We have taken this expansion
for the evaluation of A q~.

Following Ref. 1, we write the C2 amplitude as
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where we, have rearranged the sum over partial waves I so that in the plane wave limit each term is identically zero. The
notation and conventions for phase shifts (Sl) and radial solutions (fI,gI) of the Dirac equation for the electron in the
electrostatic field V(r) are as in Ref. 5. To evaluate Eqs. (4) and (5), we used the well-known expressions ' of phase
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shifts and radial functions corresponding to a pure Coulomb
potential [V(r ) = —ecZ/r], in the limit of zero electron
mass. Consistently with the point charge approximation
[ V(r ) = —nZ/r ] we took r( and r & in Eq. (4) to be the
nuclear and electronic coordinates, respectively, and
evaluated the electronic integrals

(6)

I

These are somewhat different from the radial integrals of
Dirac-Coulomb functions usually discussed in the litera-
ture, for if we neglect the energy difference II is automati-
cally zero.

The easiest way to evaluate these integrals is to make an
expansion in aZ/I. Using the recurrence relations for the
confluent hypergeometric functions, one can show, after a
straightforward but tedious algebra, that the integrand in
Eq. (6) can be written to lowest order in ccZ/I as
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with z =2ix, z'=2ix', y =nZ. Then, the integrals invollved
in Eq. (6) reduce to integrals of products of spherical Bessel
functions and powers having simple anaiytical solutions (for
more details see Ref. 7), and after the expansion in c0/K we
get
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pansion in uZ/I is not well justified for partial waves
I ( 10. Therefore, for Q. Z ) 0.5, we used an alternative
method to compute the integrals Ic (see results within
parenthesis in Table I). This method is based on the work
of Gargaro and Onley. We first made a second order ex-
pansion in cu/K of the integrand using the relation'e

iFi(a, b;Xz) = h.
' X, (1 —&
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with c(c(n) = 1"(n )/I (n ). Then P 21 in Eq. (4) takes the
form

with (c = 1 + cu/2K, z = 2(Kr, Then the integrals involved in

Eq. (6) are of the form

I = J drr" 'e '"'|Fi(a,b;2(Kr ) iFc(a, b;2IKr ), (11)

with

m~2 =— I( Zc)cJI r'p2—(r )dr
K

with K real, R, (b) & R, (a ) & 0,
(9)

R, (b —a +a —v) & 0, v —b+1% 0, —1, —2, . . . , (12)

I(ccZ) = $ ( —I)'ac86coi (10)

To sum the infinite series in Eq. (10) we used the reduction
method based on the recurrence relations of the Legendre
polynomials [note that ( —1)'= Pc(cos0) for I(= 7r ]
described in Sec. Il, Pt. 4 of Ref. 8. Since ac goes like 1/I,
the series converges quite rapidly after just one reduction.

Results for II (ccZ ) I are given in Table I for dilTerenl Z
values. For the cases of interest here (0Z =O.S) the ex-

whose solution is given in Eq. (14) of Ref. 9 (see also Ref.
7). In our case, that solution has to be handled with care.
For some of the integrals (11) involved in Eq. (6), the con-
ditions (12) are only satisfied to order (uZ/I ), leading to
great numerical instabilities when that solution is used for
large I values. The values of II (ccZ ) I given within
parenthesis in Table I were obtained using this last method
for I ( 10 and the result of Eq. (8) for I ) 10. We should
mention, however, that since in the approach taken here we
have neglected the effect of the finite nuclear size which is

TABLE 1. Calcul ccect II («Z) I vs «Z values.

0.3 0.5

II(«Z)I 1.18x10 3.61x10 - 1.00x10 2.09x10 ' 3.89x10 ~ 6,80x10 2 1.15x10
(2.65 x 10 ' ) (3.07 x 10 ' )
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=5 24 fm. For ' 'Ta, we took c =633 fm, t=25 frn,
u2=0. 168, adjusted to the experimental values (Refs. 13
and 14), Qo= 738 fm', (r')'~' = S.48 fm.

The results obtained with these approximations for ~F~2~'
are shown in Figs. 1 and 2 for the transition 0+ —2+ in

Er and for the transitions —, + —, +,—, + in ' 'Ta, respec-
tively. To be conservative, we took the smaller value of
)l(nZ) ( in Table I corresponding to nZ =0.5. In Fig. I we
show, for comparison, the theoretical results" of PWBA cal-
culations of the transverse form factor, using the rigid rotor
(RR) model and the projected Hartree-Fock (PHF) ap-
proach to describe the nuclear collective current. It can be
seen that the first peak of ~Fr 2~ and (Fr~ PHF are located
at the same q value and of the same order of magnitude.
Similarly, in Fig. 2 we show the results' of P%'BA calcula-
tions of the transverse form factors in the PHF approach,
also shown in this figure are the experimental data" plotted
versus q, ff. Again, for the transition —,

+ —, +, the first

peak of the transverse form factor (which is due to the E2
multipole) is roughly located at the same q value and of' the
same order of magnitude as ~iF~2~'. For the transition

2+, the first peak of the transverse form factor is

dominated by the M 1 multipole (see Ref. 16) and it is
larger than the ~F~q~' peak. It should also be mentioned

that, for the small transition energies involved in the cases
considered here, taking into account the electron mass, as
well as the finite nuclear size, in the DWBA calculations
enhances the C2 contribution. This is especially so for the
transition 2

+
—, + in "'Ta (Ref. 11), and presumably, for

the transition 0+ —2+ in ' Er, where cu ((m, . However,
as rough as the evaluation of ~Fcq~' presented here is, the
results clearly indicate that, at least for inelastic scattering
on heavy nuclei, Eq. (I) is a very poor approximation and
complete DWBA calculations have to be made to compare
with experimental data at 180, taking into account all per-
mitted charge and current multipoles. This, we feel, is rath-
er unfortunate for it makes the extraction of information on
transverse nuclear currents much harder, especially so since
longitudinal and transverse electric multipoles interfere in
DW'BA. A review of some of the approaches and methods
currently used in D%'BA codes for the extraction of transi-
tion densities from experimental data can be found in Ref.
18.
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