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Time scale of short time deviations from exponential decay
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It is discussed to what extent nonexponential decay or the so-called zenon effect may lead to a measur-
able slowing down of extremely rare decay processes as double beta decay or proton decay.

In recent papers, ' we presented calculations of the two-
neutrino double beta (pp) decay of '6Ge, s'Se, '"Te, and"Te. Such calculations are needed for the analysis of geo-
chemical PP-decay measurements3 in terms of a 8 L-
(baryon-lepton number) violation allowing for a neutrino-
less decay mode, since it is not possible to distinguish in
such experiments between the two decay modes.

The nuclear structure calculations of this decay, which in-
clude 5-h excitations and collective effects arising from
spin-isospin and quadrupole-quadrupole forces show a per-
sisting discrepancy of a factor of —10 with experiment. Be-
cause of the extraordinary large half-lives (Tti2) 10' yr) as
one among several possible explanations, the question was
raised4 whether here deviations from the simple perturba-
tion treatment of a decay process in the form of nonex-
ponential decay are observed. This question is also of in-
terest and has been recently discussed with respect to proton
decay. '-'

In this Brief Report we discuss critically the question of
whether such quantum mechanically rigorously demanded
deviations from the usual decay formulas may lead to ob-
servable effects and give estimates using the Heisenberg un-
certainty relation.

It is easily seen that the exponential decay law following
from a statistical ansatz is only an approximation in a quan-
tum mechanical description. Consider an unstable state ~W)
being prepared at an instant 1=0. The probability of find-
ing the system at some later time i still in the state ~tlr) is
given by

Expanding this expression for small t up to order t' gives

P,(r) = 1+—'(e~H(e) —,(eifPle)

x 1 ——('P)H)qr) — (V[H')tIr)
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with

=1——,(e)(H —E)'~e) +0(r'),

E= (+(H(W)
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So for very small times, the decay rate is not constant as
characteristic for an exponential decay law, but varies pro-
portional to r. From Eq. (2), already the theorem9

dPO(r)
dh ~=o

follows. From a detailed treatment, it can be seen that the
mean square spread of the energy distribution 5 E2
= (sir~(H —E)'~W) appearing in Eq. (2) is the essential
parameter which determines the onset of exponentiality.
For the characteristic time tp, before which strong nonex-
ponential effects should occur, the following relation can be
deduced

Q E2 (4)

Here ~ means the usual lifetime neglecting any deviations
from exponential decay.

Equations (2) and (3) tell us that for sufficiently short
times, the decay rate is whatever small ~ However, to make
any quantitative estimate is very difficult. Peres' uses the
threshold effect to get a quantitative estimate for the onset
of the exponential decay:

fp
Ethreshold)

Applying this estimate to pp decay yields to=—10 ' sec,
which is much too small to give any measurable effect. On
the other hand, this would require the rest mass distribution
of the pp-decaying state (E~'tlr) to extend over a range of'

10 natural decay widths I in the case of ' Te. The ob-
served decay rates, which are roughly a factor of 10 smaller
than calculated assuming exponential decay, would evolve,
if g E = 104 I for ' Te, Se and 10 I for ' Te, which
means that the energy spectrum of ~sIr) had to be strongly
suppressed' outside the region lE E~ ( hE'/I . —

Now we show, that the Peres estimate already evolves
from a time dependent perturbation treatment, as it is
found in textbooks, if the transition to infinite times is not
performed. As Usual the total Hamiltonian H is divided in
two parts, H= Hp+ V, Hp including all interactions which
do not lead to a decay, and t having nonvanishing matrix
elements between the decaying nucleus and the decay prod-
ucts. The eigenstates of Hp with energy EI will be denoted
by ~W, ). Let us assume that the nucleus has not yet de-
cayed at t=0. Then in the perturbation approximation it is
described by an eigenstate ~sir t) of Ho at i =0. If we look at
some time t for decay products, their state vector is also ap-
proximated by an eigenstate ~'Ir2) of Ho. We define ~tir2& to
also include the radiated particles. By doing this we avoid
the introduction of a time dependent V. In the time inter-
val ~0, t~ we allow &to act on Itlrt). The time evolution for
a first order process is then given by (there is no essential
difference between first and second order effects for the fol-
lowing discussion)

J (tI'q~ Vltlrt& expli(E2 —Et) t'/t ldt'= e ' (tIr21 Vltlrt&
—K&r/e —tE2t/f exp[i (E2 —Et) r/ir] —I

El —E2
(6)
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The decay probability Pi 2(r) into the state I'qi'2) is then

P (r) = I(+ le ~'i~I%" ) I

41(~2I vlq, &
I' . ,

2
sin Ei —E2

P,„,(r) =
I V(E, ) I'p(E, ) r2n/lr for r « T

or in the usual differential form

(9a)

I V(E, )I'p(E, ) . (9b)
I

Now let us look at the various approximations that have
been made. First, V(E)p(E) is by no means constant, but
p(E) varies with some power law for not too large E. The
simplest assumption beyond p(E) =const is a sharp cutoff
at the threshold energy E,&, which is given by the rest mass
of the decay products. 1n this approximation, P;„,(t) is cal-
culated by inserting Eq. (7) into (8), and thus

P;. (r) = 4p(Ei) I V(Ei) I'

+ sin[(Ei —E) t/2/i]
dEX

th
(10)

It is seen that the missing part of the integral from E= —~
up to E,& involves the sin with frequencies higher than
(Ei —E,i,) (4~&) '. Consequently deviations from Eq. (9a)
occur for t & ir/(Ei —E,„) as was found by Peres. The actu-
al form of V(E)p(E) may be quite different. However,
from an evaluation of Eq. (8) for a definite time t, it can be
seen that provided V(E)p(E) is a "smooth'* function (for
example, some approximate power law), contributions from
outside the region IEf E&I &Ii/t can be negle—cted. This
means that for times t orders of magnitude larger than to in
Eq. (5), P;„,(t) is determined by a small energy window
around Ei, for which V(E)p(E) = V(E)p(E) is a good
approximation. So, in perturbation theory, the exponential
decay law is a result of the smoothness of the function
V(E)p(E).

The crucial condition for the application of perturbation
theory is that initial and final states can be described by
cigenstates of the unperturbed Hamiltonian Ho to a good
approximation. Once this assumption is made, thc disper-
sion AE of the parent state is fixed, and no room is left for

This result seems to be rather unphysical for two reasons.
First, Pi 2(t) is a periodic function, which means that the
probability of finding I'li'i) having decayed into I+2) after
having reached a maximum goes back to zero at some later
time. Secondly, there is a finite transition probability for
E2 & E~, which seems to violate the conservation of energy.
The reason for the latter is that in the initial (r' & 0) and fi-
nal (r') t) states the interaction V is assumed to be
switched off. The switching on and off of V results in a
contribution to the energy balance of the order (4'2I VI+i).
The appropriate exponential behavior of the decay process
follows from an integration over final states: The total de-
cay probability into any final state P;„,(t) is given by

P~„,(t) = J p(Ef) Pi f(r) dEf (8)

with the density of final states p(E). Assuming p(Ef)
=const and V(E) =—(nfl Vlqf, & =const leads to Fermi's
golden rule

a quantity as the preparation function introduced by Khal-
fin. 5 An exact treatment of the decay process, . in contrast,
includes the perturbing part Vof H also in the initial and fi-
nal state. But this involves the difficulty that then the ini-
tial state can no longer be described by an eigenstate of H
and, in fact, is not a unique state, but its nature depends
strongly on the process of formation. We want to discuss
now the implications following from the uncertainty princi-
ple without going into details of the general very complicat-
ed quantum mechanical formalism of unstable systems.

As an illustrating example, we take a resonance scattering
process. In a consistent description, without switching on
and off additional fields, energy conservation must hold ex-
actly. This means that the energy distribution of the reso-
nance state is determined by the asymptotic (t —~) dis-
tribution of the forming components and the dynamics of
the reaction mechanism. Therefore in such a process, the
energetic composition of the wave function of the resonance
can be restricted to a small energy window by restricting the
kinematics of the forming components. But an energy
spread AEf„ is connected to a time spread At via the
Heisenberg relation. This means that the state describing
the forming components with energy spread AEf„and
henceforth, also the formation process, cannot be restricted
to a time interval b, r less than/i/AEr„. The resulting delay
of exponcntiality from a cutoff of thc Breit-Wigner reso-
nance shape at IE —El=bEr„e texnds according to Eq.
(4) until ro =h/AEr„(pr—ovided AEr„& E —E,i,). This
means that the nonexponential regime in the decay of the
resonance cannot continue much longer than the formation
process. If one would apply the uncertainty relation to the
energy spread AE of the formed state itself instead of
bEf„, an even sharper restriction evolves. The discussed
situation can be realized in a resonance fluorescence experi-
ment using Laser techniques. The energy spread AEf of the
Laser beam is connected with a minimum time At=I/EEf,
which is needed for switching on and off the Laser.

Generalizing the above considerations, by relating any
suppression of AE in any formation process by the encrgy-
time uncertainty to the minimum time extension ht of the
formation process, we conclude that thc nonexponential
behavior cannot persist longer than At.

This would mean that formation process and nonex-
ponential decay cannot be separated in time. This result, of
course, holds already in classical mechanics. As long- as the
formation process is going on, there is also no exponential
behavior assuming purely statistical decay laws. If the
above generalization holds, the implications for PP decay as
well as for proton decay clearly are, that deviations from ex-
ponentiality are negligible nowadays. To our knowledge,
protons have been formed in the big bang within 10 sec
and PP-decaying nuclei are the products of P-decay chains
in the r process with typical decay constants of the order of
minutes.

There has been given an argument by Fleming, 7 which
seems to contradict this conclusion. According to Fleming a
mass spectrum of the proton, as assumed by Peres, would
lead to a "kinematical fragmentation" within, at maximum,
10 yr. (For PP decay of '3 Te, the corresponding time
would be 10' yr. ) To avoid this fragmentation with its
unacceptable consequences, Fleming concludes that to must
be of thc order of 10 yr. Ho~ever, for this argument to
work he has to assume free propagation of the proton wave
packets. The interactions of the proton with other particles
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should destroy, however, the phase relations and hence mix
the different mass components, and hence no fragmentation
should occur.

Another effect, namely, the so-called zenon effect" has
been discussed' as an amplif'ication mechanism of the
nonexponential behavior. The argument is that if during
the nonexponential stage of the decay a measurement is
performed probing the unstable system, the decay process is
then restarted. If successive measurements are repeated in
time intervals smaller than to, the system will never reach
the exponential decay one would expect from usual pertur-
bation theory. However, the zenon effect is, of'course, au-
tomatically included in a complete quantum mechanical
description of the whole system including also the measur-
ing apparatus and all interactions. So the zenon effect, in
principle, can only arise from the neglection of a part of the
interactions. In this sense Valanju, Sudarshan, and Chiu"
derived sizeable effects for pion production in hadron nu-
cleus collisions, Recently Horwitz and Katznelson suggest-
ed important corrections for the proton decay inside the nu-
cleus from nucleon-nucleon interactions. However, their
interpretation of nucleon-nucleon interactions as a measur-
ing process in the sense of the zenon effect has been criti-
cized. '4 '6 %e do not discuss here the question of how to

define a measurement but give a simple argument using
again the uncertainty principle. To have a significant influ-
ence on the decay process, the measuring process has to
take place with a frequency of at least I/to According to
the Heisenberg principle, this frequency is related to an in-
teraction energy F.;„,=h/ro—between the unstable system and
the part which acts as measuring apparatus. If one accepts
the Peres estimate, Eq. (5), this means the interaction ener-
gy has to be as large as the Q value of the decay. Of
course, if there is such a strong interaction, it is nothing
unexpected, that the decay is influenced. From this point
one could consider the strong interactions of the nucleons
inside a nucleus generating a zenon effect in P decay and
also in PP decay. However, such effects are, of course, au-
tomatically included in nuclear structure calculations. In-
teractions not completely included in such calculations are
the electromagnetic interactions with the electron cloud.
But these are according to the above criterion much too
weak to lead to sizeable effects. In the case of proton decay
already the nucleon-nucleon interaction energy is more
than one order of magnitude smaller than the decay Q
value. Consequently a slowing down of the decay by the
zenon effect can hardly be expected either for PP or proton
decay.
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