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In considering spherically symmetric three-dimensional systems, inverse methods are applied to
the nuclear bound-state problem. While retaining only the self-interactions of the (occupied)
bound-state levels, an analytical solution is obtained for the potential. The simplest possible approx-
imation to it corresponding to a single fictitious bound state is used to evaluate (root mean square)
radii. Combining this formula with the well-known A ' dependence of the nuclear radii, a new for-
mula is obtained containing the collective binding energy effect and the one of the saturation of nu-

clear forces. For absolute and relative radii (of isotopes of Sn, Xe, Nd, Dy, Yb, Os, Hg, Pb, and Pu),
the results compare favorably with experiment. In spite of the crude approximations made, this ap-
proach yields the typical curvature of the plot of the experimental relative radii as a function of the
mass number. The extreme simplicity of the formula recommends its use for global discussions or
predictions. Yet, for a correct description of the finer details it is necessary to account explicitly for
shell effects and deformations.

I. MOTIVATION

Recent years have seen an increased interest in inverse
methods' as apphed to nuclear physics (see Refs. 2 and 3
and references therein). The gist of such inversion pro-
cedures is to extract from scattering data, e.g. , differential
cross sections and/or phase shifts, the respective scatter-
ing potentials. Generally, such investigations do not
touch questions related to the bound states contained in
the scattering potential (except for the case of the deute-
ron). Yet, there is strong evidence that, in particular for
nucleon-nucleus scattering, the self-interaction of the tar-
get nucleus should provide the dominant contribution to
the scattering potential. This self-interaction or self-
energy is essentially the shell model potential of the target
nucleus.

Hence, it appears reasonable to expect the discrete part
of the energy spectrum of the Schrodinger operator to
contain at least as much useful information as its continu-
um. This leads to the notion of applying inverse methods
to the nuclear bound state problem to evaluate the shell
model potential, U, and charge and mass densities of the
respective nuclei. We do not intend to elaborate on the
formalism as such, but we would like to use its simplest
possible approximation in a semiphenomenological discus-
sion of nuclear (charge rms) radii.

In a preliminary paper it has been indicated that the
most primitive approximation to the approach leads to

1 1=0.777M —,M =A /'2m
8(A) 8(A0)

to the discussion of relative radii is concerned. Equation
(2) arises due to rather general considerations based on the
saturation of nuclear forces. It leads directly to

ER (A)= , ro[A —A ]=0.864[A——Ao ] . (3)

This relation is also very useful and it works reasonably
well for a variety of isotope sequences, but it too fails for
quite a large number for nuclei.

A common feature of (1} and (3} is that they both ig-
nore deformations and shell effects. Without any limita-
tions this statement is true for (3). In the case of (1), a
faint trace of these effects is evidenced through the

for the rms radii of nuclei with mass numbers A and Ao
and with binding energies per nucleon 8 =8(A) and
80 8(A——0 ), respectively. Writing the term in square
brackets in the form

[8(A)——8(Ao)]/B(A)8 (Ao)

and noting that the denominator is almost constant for
different isotopes of a nucleus, it is recognized that (1)
corresponds to a relation which Gerstenkorn proposed 15
years ago—but on purely phenomenological grounds. In
spite of its simplicity, (1) turned out to be highly use-
ful' '" and even provided the basis for predictions that
were later confirmed by experiment. ' But, alas, there are
also many cases in which it fails.

A similar statement is appropriate as far as the applica-
tion of the famous global relation

R (A)= (r2(A) ) 2=V'3/5R(A)=v 3/5roA

ro = 1.2 fm (2)

30 2042 1984 The American Physical Society



INVERSE METHODS AND NUCLEAR RADII 2043

minute changes in the binding energies per nucleon as
functions of A, yet this dependence is by far too crude to
explain the experimental data correctly. It is not doubted
that a formally correct and consistent description has to
include these effects explicitly as, e.g., done with remark-
able success in some work relying on the Hartree-Fock'
and droplet models. ' Within the inverse approach, we
hope to be soon in the pasition af treating at least shell ef-
fects adequately. However, in this paper we would like to
address a different question. Equation (1) contains only
the collective binding energy effect and (3) only the effect
of the saturation of nuclear forces. Both of them are un-
doubtedly very important. Is it possible to obtain from an
appropriate combination of (1) and (3) useful information
which is not accessible when applying these relations

separately'
Ta give some indications for the way in which inverse

methods yield relation (1), we recall in Sec. II the gist of
the method, indicate how it may be related to the

Hartree-Fock approach, and show how it yields (1). Then
we combine (1) and (3). In Sec. III we try first to find out
whether the emerging formula is consistent with the
prominent features of absolute radii as functions of the
mass number A. Then we plunge into a detailed discus-
sion of experimental data related to relative (charge rms)
radii. The final section contains a short summary.

II. BASIC FORMULAS

%e cannot solve the appropriate many-body
Schrodinger equation. Hence, we consider as a suitable
starting point for the discussion of a stationary system the
N single parti-cle Schrodinger equations with the N
bound-state wave functions, g„,and energy eigenvalues,
E„.For spherically symmetric systems, the correspond-
ing radial equations may be cast into the form of one-
dimensional (1D) equations (with x & 0) which for s waves
become

P„(x)+U(x)Q„=E„Q„,B~ =—8 /Bx, M=f2/2m, n =1,2, . . . , N . (4)

(Further details on the method used and additional back-

ground information may be taken froni Refs. 1, 7, and
14—17. In particular, that concerns the case with l&0
which has been discussed for some specific situation by
Ablowitz and Cornille. ' From their work it may be in-

ferred that the characteristics of these cases are, in the
simple approximation to be considered in the following,
the same ones as for s waves. Hence, we discuss here only
the justified s-wave approximation. )

To solve (4) with the aid of inverse methods, the re-

quired input data are the N bound-state energy eigen-

values and additional data related to the continuum. The
emerging solution, U(x), may symbolically be written as
the sum of two terms, i.e., U(x) = U, (x)+ UN(x), where

the indices c and N refer to the continuum and to the N
bound states, respectively. U(x) cannot be given in a
closed form. However, if we include only the self-
interactions of the N occupied (ground-state) levels in our
considerations, then the analytical solution U(x) = Uz(x)
is obtained. 1 7 1

N

U~(x)= g [ 4Q EM/ (x—)]-
j=l

N —4Q —EzM pj(x) =2MB [ln(detF)],
j=1

+ig =& J. +2m'f;fj /(v' E;+v' E, )—, —

fj(x)=+ Ejexp(Q E—/Mx) . —

(In the 1D case with —oo &x & oo this solution UN corre-
sponds to N reflectionless potentials for which an incident
wave packet is for all energies transmitted without any re
flection. ) From (5} it is readily appreciated that the N en-

ergy eigenvalues Z~ uniquely determine the total potential
U~(x}, wave functions [QJ(x) ~ j=1,2, . . . , N j, densities

p~, and total density p=—g pj.

The approximation U—= U~, i.e., the restriction to the
self-energy of the respective system, has been shown to be
a good approximation to finite' (e.g., a Gaussian, the
clipped harmonic oscillator) and infinite'6 (e.g., the har-
monic oscillator) potentials. In addition, it has been
proved that the self-interactions (in 1D, reflectionless po-
tentials) UN ——g. U~z provide a rapidly converging se-

quence of approximands to infinite potentials that
diverge, far large x, like the harmonic oscillator or fas-
ter."

Insertion of the solution (5) into the original
Schrodinger equations (4) yields the nonlinear Schrodinger
equation

—Ma y„(x)—4 g Q —E,My,'.y„=E„y„,

It is well known that (6) corresponds exactly to the
Hartree-Fock (HF) equations with two-body Skyrme
forces. However, within the HF the implied restriction
to contact interactions between pairs of particles is obvi-

ously a rather drastic one. On the other hand, the UN of
(5) has been shown to be a fairly accurate approximation
to the complete potential ' ' hence, we may nourish

the hope that this approach possibly has a richer dynami-

cal content.
To come closer to our goal, the derivation of (1) from

inverse methods, i.e., from (4}and (S},let us recall that the
characteristic feature of all the individual contributions pj
to the total density is that the amplitude, po, appears again
in the respective form factor. This is best illustrated for
the case %=1 with

p(x) =pi(x) =V E/4M sech2(& E—/Mx)—
=posech (2pox) i po:& E/4M— —
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where we suppressed for the sake of simplicity the index
"1." Note that the sech form factor is asymptotically re-
lated to the Gaussian, fo, and Saxon-Woods, fsrr, form
factors since

sech (x)~l —x + =exp(x )=fo(x) x &&1

4/[I+exp(2x)]=4fsw(x) x » I

holds where nuclear physicists commonly use
x =-(r ro—)/a He. nce, it is apparently not unreasonable
to attempt to approximate in a crude way the density dis-
tributions of nuclei by (7). But in view of the fact that (7)
cannot really be expected to come close enough to a
Saxon-Woods form factor to be realistic for the density
distributions of heavy nuclei like lead, it appears more
sensible to concentrate on the respective relative radii.

Identifying in such a sense a single contribution to the
total density in an approximate way with a whole nucleus
implies, of course, that we should in (7) no longer use a
single energy eigenvalue for E, but instead the corre-
sponding averaged quantity. Recently ' the we11-known
single-particle sum rule

X
8(A)=- g n;(t;+E;)

2A,

due to the Hartree-Pock approach has been shown to lead
to

035 "
8(A)= gnE;.

A

(The n;, t;, and E; are the degeneracy, average kinetic en-
ergy, and energy eigenvalue of the ith state, respectively. )
The summation is to be performed over all occupied pro-
ton and neutron levels separately. ) From the mathemati-
cal structure and the physical content of these relations it
appears most appropriate to identify the binding energy
per nucleon, 8(A) &0, with the energy E required in (7).
To avoid confusion we henceforth use 8(A} in place of
this energy.

The half-width at half-maximum radius and rms radius
of (7) yield almost exactly the same expression, namely,

R(B)=R(B(A))=—,'po 'cosh 'v 2

=0.4406/po 0.88k'M/8 (A——)
=4.04/v'8(A) .

Taking the square of this R (8) and then the difference
between R (8}and R (80)=R (8(AD)), we immediately
arrive at (1), i.e., the desired expression.

Equations (1) and (9) are only expected to give informa-
tion in respect to relative radii. As stated in the Introduc-
tion, we would like to combine (2) and (9) to account
simultaneously for the geometry effects arising from the
saturation of the nuclear forces and for the collective
binding energy effect. For that purpose we define with
the aid of (9) the relative radius

=7.34
8(A) 8(AO)

(12)

Equation (11) may now be used to obtain global informa-
tion on the absolute radii as functions of A, combined
with some local deviations due to (collective) binding ener-
gy effects. Since the total binding energies B,=AB(A)
are very well known, this Ineans that the resulting pre-
dictions or estimates will contain no adjustable parame-
ters, provided ro and the average binding energy per nu-
cleon B(av) are given. We shall use the standard values
ro ——1.2 fm and 8(av) = —8.S MeV.

Before discussing the numerical work designed to test
the use of (12) in respect to the simpler relations (1) and
(3), it should be recalled that, because of the way in which
these relations have been derived, and in view of the aver-
aged input to be used, there are some obvious limitations
on their range of applicability, namely:

(i) Shell effects (which are well known to manifest
themselves in the experimental data } and pairing correla-
tions are not accounted for.

(ii) The existence of deformed nuclei is ignored.
(iii) No distinction is made between mass and charge

distributions.

III. NUMERICAL DISCUSSION

Computing with the aid of (11) the absolute radii
R (A,B) for nuclei throughout the periodic table leads, for
medium and heavy nuclei, to rather small deviations from
the A ' dependence of (2). But the changes go in the
right direction, bringing about a slightly improved
correspondence of calculated radii with experiment. This
is due to the collective binding energy effects. Yet, from
rather general considerations and from a closer look at the
resulting numbers, it is inferred that B(av) should take on
different values for different regions of the periodic table.
In this spirit the choices B(av) = —8 MeV for A &90 and
8(av)= —9.75 MeV for A &90 would lead to an even
closer agreement of computations with experiment. Yet,
due to the absence of a formal justification for specific
values of B(av), we believe it to be more honest to retain
the textbook value of —8.5 MeV and to introduce an
empirical renormalization constant N„einto (11), i.e.,

where "av"="average" refers to a suitable reference nu-
cleus (which may be taken to be a specific one or a ficti-
tious average one) and B(av) to its binding energy per nu-
cleon. The obvious cotnbination of (10) with (2) then
yields

R (A,B)=R (A }R,(8)=v'3/SroA V B(av)/8 (A)

g 1/3
=&—38(av)/Sro (11)

8(A —)
and [with 8(av) = —8.5 MeV as given in textbooks and
ro ——1.2 fm]

Q/3 g 2/3
2( )

38(av) 2 A 0

5 B(A) 8(AO)

R„(8):—R(8 (A ) )/R (8(av) ) =v'8(av)/8 (A), (10) R (A,B):—y 1V„e2.71A 'i~/v' B(A) . —
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The deviations of (11) from (2) should be' most pro-
nounced in regions of the mass table in which the binding
energy per nucleon varies more rapidly with the mass
number, say, for lp-shell nuclei with 5&A &16. The
respective experimental data taken from (Ref. 24) are
given by the crossed open circles in Fig. 1. The full
curves at the top, R =rod ', and at the bottom,
(r }'/2= v'3/SR, both fail 'to reproduce the fine structure
of the data, though they do give the correct global trend.
The results of an older rather detailed analysis (based on
proton binding energies and Coulomb energies) do much
better (full points with error bars). The numbers based on
(11) as multiplied by QN~~ ——1.033 are depicted by the
dotted open circles. In view of the simplicity of (11), the
nice agreement with the experimental trend is certainly of
note. Yet, the minor discrepancies observed in Fig. 1 are
already a clear indication that neglect of deformations and
shell effects in (11) must necessarily make this relation
fail in some cases.

Summarizing the results of this discussion of absolute
radii we have seen that (2) (containing the geometry effect
due to the saturation of nuclear forces) yields essentially
the correct global trend of the nuclear radii as functions
of the mass numbers (i.e., a well-known result); however,
supplementing it by the collective effect of the binding en-
ergy, (11), gives rise to a definite improvement in the oth-
erwise too monotonous local behavior of the radii. This is
rather obvious for light nuclei where 8(A) varies rapidly
with A.

From the above we infer that (11) brings us in general
closer to experiment than (2), while (9) is apparently com-
pletely unable to make any predictions in respect to abso-
lute nuclear radii. Turning to a diseussiort of relative radii,
we would therefore expect in a similar way varying de-
grees of success for relations (12), (3), and (1). Starting
with (12) this expectati'on seems to be confirmed by rather

R

( frn)

2.4

general arguments: As a rule the differences in the mass
numbers are expected to be larger than the ones in the
respective binding energies; hence, the latter should pro-
vide only a second order effect. This reasoning is not in-
validated by the knowledge that there are many real nuclei
which prefer to follow the trend predicted by the latter,
i.e., by (1) (Refs. 9—11). After all, shell effects and defor-
mations which are not accounted for by any of these rela-
tions are in some cases quite important and they should
be expected to give rise to rather drastic deviations from
these simple formulas. A further point which should be
borne in mind is that experiment yields the differences be-
tween nuclear radii, i.e., the AR, to a much higher accu-
racy than the absolute radii.

Let us first apply (1) and (12) to a discussion of the
measured isotope shifts related to different isotopes of Sn,
Hg, and Pb; later we shall also have a look at other cases.
In Fig. 2 the relative (charge) radii hR for the tin iso-
topes are plotted versus the mass number A. VA'th the ex-
ception of two data points, the agreement between experi-
ment (dots) and the calculations (full curves) based on (12)
is good. On the other hand, the dashed curve correspond-
ing to (1) yields by far more structure than observed in the
experimental data. The odd-even staggering in this curve
is very pronounced and does not correspond to the specific
one observed in experiment. The effect of the additional
AJ appearing in (12) has obviously smoothed out the
structure, thus improving the agreement to experiment.

The behavior of the mercury isotopes as a function of
A (Fig. 3) requires greater effort to accomplish a theoreti-
cal explanation. 4 " Moreover, this case appears to be of
increased interest, since a comparison is possible with re-
sults based on the interacting boson model (IBM). In
that work by Barfield et al. it is said that: "The four
Hamiltonian parameters which were allowed to vary free-
ly from isotope to isotope were found to be consistent
with the corresponding IBM parameters for platinum and
osmium. Overall, the calculated energy spectra and elec-
tromagnetic properties are in reasonable agreement with
experiment. " The isotope shift data treated in Ref. 27 are

h, R

( fm2)

0.4

0.0

I

12

FIG. &. The dots with error bars representing R =(ri)'~~
are taken from the analysis of Ref. 25. More recent experimen-
tal points (Ref. 24) are given by open circles with crosses. The
two full curves illustrate the global trends predicted by the sim-
ple A ' dependences: R =rpA ' (upper curve) and
R =V 3/5roA'~ (lower curve) with ra=1.2 fm. The dotted
open circles are (11)multiplied by 1.033.

—04

FIG. 2. Referring to the nucleus "Sn, the experimental
points adopted from Ref. 26 (dots) are put in relation to the re-
sults of (1) multiplied by X~——3.16 (dashed curve) and of (12)
multiplied by +zz ——0.678 (full curve); rp = 1.2 fGl and
B(av) = —8.5 MeV.
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(f m2)
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Hg

h, R2

(fm j

0.0 i

0
~80

0.01 -0.&

0.02

0.03

Il~+ p /

-0.8

FIG. 3. Experimental data for Hg isotopes from Ref. 28 are
shown as dots and IBM calculations (Ref. 27) as a dot-dashed

curve. The full curve is (12) multiplied by N&q ——0.149 and the
dashed one is (1) multiplied by N& ——1.054; ro ——1.2 fm and

B(av) = —8.5 MeV.

taken from the work of Bonn et al. and shown in Fig. 3
as dots with error bars. The dot-dashed curve corre-
sponds to the IBM results. The full curve is (12} multi-
plied by Xzz ——0.149. It would appear that a chi-squared
analysis might show that both IBM and Eq. (12) do equal-
ly well or poorly. As in the case of the Sn isotopes (Fig.
2), we note in Fig. 3 that for mercury the simple binding
energy relation (1) (dashed curve) yields a richer structure
than the full curve. But again the odd-even staggering is
not of the type observed experimentally. As before, we
note that the smoothening of the curve due to the effect of
the geometric constants Aj leads globally to a definite
improvement. This holds in spite of the fact that most of
the structure is lost.

Since (12} should be most reasonable for spherically
symmetric nuclei, it is convenient that we can refer to a
recent study of the relative radii of the lead isotopes,
where new experimental data are presented together with
a discussion in terms of the liquid drop model and
Hartree-Fock calculations. For a more detailed compar-
ison the data are given in the form of a figure (Fig. 4) and
tabulated (Table I). The dots in Fig. 4 represent the ex-
perimental data, while the dashed and dot-dashed
curves, respectively, are calculations within the liquid
drop model and the Hartree-Fock (with Skyrme III
forces). From the figure it is seen that to a first approxi-
rnation the overall trend is reproduced by either of the
theoretical approaches. However, a qualitative difference
between the HF and droplet approaches and the present
one, i.e., (12}, is that the former apparently predict a glo-
bal dependence of ~ on A which is close to a straight
line, while the inverse method yields a curve which is
slightly concave upwards, thus much better reflecting the
trend followed by experiment. A look at Table I confirms
this: In all cases relation (12) with its combined A and 8
dependences yields a closer (or in some cases just equally
good} agreement with experiment than the liquid drop
model. Only for three points do the Hartree-Fock calcu-
lations do better than (12). The last column, containing

FIG. 4. Since part of the data have also been given in Table
I, see the caption there. The dots refer to experiment (Ref. 29),
while dashed, dot-dashed, and full curves correspond, respec-
tively, to calculations within the liquid drop model, HF with

Skyrme III forces (Ref. 29), and (12) times N&~ ——0.711; ro ——1.2
frn and B(av) = —8.5 MeV.

numbers based on (1), shows that this simple formula
(with the appropriate choice for Nz) yields a fair agree-
ment with experiment for A & 208, but fails for A & 208.

To arrive at a more complete and better understanding

zR
( fm2)—

—0.4

\

I

140 A

0.4
I

160 A

—1.2
Dy

—0.4
170 A

—0.8

—1.2

FIG. 5. Referring to the isotopes ' Xe, ' Nd, and ' Dy, the
respective experimental data (points) taken from Ref. 26 are put
in relation to the hR (A, B) of (12) (multiplied by Nqq ——0.2,
0.55, and 1.0, respectively; see full curves), to the A,R (A) of (3)
(N& ——1; dot-dashed lines), and to the hR (B) of (1) (multiplied
by N~ ——10, 52, and 13, respectively; see broken curves); ro ——1.2
fm and B(av) = —8.5 MeV.
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of the working of relations (1), (3), and (12), let us now
consider a few more cases as displayed in Figs. 5 and 6.
Charge and mass numbers of the nuclei considered in
these two figures range from Z=54 to 94 and from
2=114 to 246, respectively. The only criterion for their
selection was the desire to cover a wide range of charge
and mass numbers, thus allowing us to bridge the gap be-
tween the data discussed so far. Some of the experiments
as, e.g., the ones for Nd, show a steep slope, while there
are also cases exhibiting rather smooth and small changes
of ~ as a function of the mass number. In line with
the preceding discussion it is observed that the ~ (A) of
relation (3), which contain only the geometry effect due to
the saturation of nuclear forces, yield a straight line. Of
course, in most cases these lines would reproduce the glo-
bal trend of the experimental data, provided they are ap-
propriately normalized (i.e., rotated around the origin; but
we used for all of them Nz ——1). However, this relation
certainly does not make the slightest attempt to reproduce
the fine structure of the data.~ (B) [see (1)],on the other hand, yields in most cases
by far too much structure and curves that are in general
too concave. The hmited amount of experimental data
contained in the figures does not allow us to decide
uniquely against the strong "bending" of ~z(B) as a real
physical effect, But in particular the cases of Dy (see the
bottom of Fig. 5) and of Yb (the top of Fig. 6) do indicate
that these effects are grossly overestimated by relation (1).

zR
(frn )

j80 A

Os

235

FICi. 6. Essentially the same as Fig. 5, but this time for the
nuclei Yb, Gs, and Pu with the reference isotopes ' Yb, ' Os,
and SPu. The respective normalization constants for
hR (A,S) are X~~ ——0.475, 0.31, and 0.56; for LR (A) they are
in all cases unity, and for AR (8) they are given by N& ——27, 28,
and 15.5; ro ——1.2 fm and 8(av) =—8.5 MeV.

TABLE I. For several lead isotopes (Z=82) the squared relative radii are given with Pb as the
reference nucleus. Except for the last two columns these data have been taken from Ref. 29. SIII,
droplet model, and experimental data refer, respectively, to calculations within the Hartree-Fock
method, the droplet model, and the experiment. The next to last column contains the ER2(A, B)
predicted by (12) times Nqs 0 711 [r0——=1..2 fm; B(av) = —8.5 MeV]. The last column relies on (1) as
multiplied by N~ ——2.133 with ro and 8(av) as before.

gR2 R2(g) R2(208) (fm2)
Pb
A

192
193
194
195
196
197
198
199
200
201
202
203

20S
206
207
208
209
210
211
212
213
214

HF
(SIII)

—0.606
—0.548
—0.489
—0.430
—0.370
—0.310
—0.249
—0.187
—0.125
—0.063

0
0.060
0.138
0.207
0.276

Droplet
model

—0.54
—0.48
—0.¹2
—0.37
—0.32
—0.27

0.21
—0.16
—0.11
—0.0S

0
0.05
0.11
0.16
0.21

Experiment

—0.528(11)
—0.518(6)
—0.432(8)
—0,409(4)
—0.330(4)
—0.303(4)
—0.224(3)
—0.195(4)
—0.118(1)
—0.072g)

0
0.091(S)
0.202(14)

0.398(27)

hRg(A)

—0.7999
—0.7474
—0.7146
—0.6618
—0.6277
—O.S725
—0.5352
—0.4792
—0.4381
—0.3802
—0.3366
—0.2759
—0.2296
—0.1671
—0.1180
—0.0559

0
0.0893
0.1664
0.2566
0.3340
0A259
0.5030

AR (8(A))

15.0
15.4
4.8
4.8

—4.6
—3.6

—11.2
—8.8

—14.1
—10.9
—15.1
—10.4
—13.0
—6.7
—8.3
—2.5

0
19.9
33.3
S3.7
67.0
87.7

101.4
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This tentative suggestion is seemingly supported by stud-
ies of the 4R (8) dependence as given in the litera-
ture. " However, it should be borne in mind that the
number of data considered here is too small to provide
conclusive evidence for this notion.

A comparison between the slopes of the bR (A) lines
and the hR (A. ,B) curves shows clearly that most of the
latter (except for the one related to Dy) have been renor-
malized by multiplication with the numbers given in the
figure captions. The predictions of hR (A, B), (12), agree
nicely with experiment. Except for the normalizati. on
constant Nq~ added "by hand, " there is no adjustable pa-
rameter in this relation. Obviously the good correspon-
dence to experiment is due to the fact that the binding en-
ergies contained in (12) add some structure to the t5,R (A)
curves, (3), and bend them a bit so that they follow the
global trend of the experimental data. In such a way (12)
provides a vivid illustration for the real significance of the
simple relation b,R (8) originally proposed by Gersten-
korn. The most obvious cases supporting this remark are
possibly the ones of Nd, Dy, Qs, and Pu. But except for
the nuclei Nd and Gs, a different normalization of the
bR (8) curves would help very much to show that more
directly (we refrained from doing so since that would also
have the side effect of making it rather difficult for the
reader to distinguish the different curves). Yet, the case
of Nd, Fig. 5, illustrates this point quite nicely. The iso-
topes of Sn, Fig. 2, and of Os, Fig. 6, reveal another —this
time unpleasant —feature, i.e., all the curves produced do
predict an odd-even staggering, but in most cases it goes
in the wrong direction. This failure of the otherwise rath-
er convincing predictions of (12) is a bit disappointing.
Yet, it has to be borne in mind that (12) is extremely sim-
ple and that it does not contain any adjustable parameter,
except for the renormalization constant Nztt which has
been added "by hand. " To determine Xzz we need in
principle only a single experimental value hR for a
specific nucleus. All the other bR (A,B) are then predic
tions Hence, (12).already gives us quite a lot. In view of
its simplicity and of the averaged input used, it is no
surprise that it fails in the finer details. E.g. , within the
context of the above average relations, nuclei with almost
identical average binding energies per nucleon —which
may have rather different shell structures —are to yield

exactly the same results. Hence, we are automatically led
to the need to incorporate shell effects in more accurate
calculations, e.g. , in the complete formula (5) with the ap-
propriate single-particle energies. Eventually deforma-
tions will also have to be included.

IV. SUMMARY

It has been recalled that application of inverse methods
to the solution of the nuclear mean field Schrodinger
eigenvalue problem yields for the self-interactions of the
bound states an analytical solution for the mean field U.
Exploiting the characteristics of this solution, the one-
level approximation to it has been shown to lead to useful
information related to absolute and relative nuclear
(charge) radii; see in particular (11) and (12). The predict-
ed (relative) radii for nuclei ranging from A =110 to 245
have been compared to experimental data as determined,
e.g. , via optical methods. '2 ' ' ' At least for Pb
and Hg the quality of the results is no worse than that of
the liquid drop model, the Hartree-Fock, and the interact-
ing boson model calculations. The typical bending of the
plots of experimental data versus the mass number is (in
contrast to quite a few other approaches) nicely predicted.
The major advantage of the relation given, (12), is that it
is an extremely simple analytical formula containing no
free parameter, yet, in most cases it has to be renormal-
ized by multiplication with the constant Nz~.

The results of this simple approximation to (5) give rise
to the hope that application of inverse methods to the nu-
clear bound-state problem may indeed prove useful in pro-
viding additional insight into the rather complicated
quantum mechanical many-body problem posed by the
atomic nucleus. Further work attempting to account ap-
propriately for the shell structure of the respective nuclei
is sti11 in progress.
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