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A time-dependent mean-field theory is developed for fast nucleon emission in nuclear heavy-ion
reactions. The essence of the model is to treat the relative motion of the ions classically while treat-
ing the internal excitations quantum mechanically. General properties of the model are calculated

by assuming a phenornenological external field. The model is applied to study fast neutron emission
from the reaction ' 0+ 'Nb.

I. INTRODUCTION

One of the more interesting facets of nuclear heavy-ion
reactions, at energies above the Coulomb barrier, is the
character of light particle emission such as nucleons, d, t,
'He, and o. particles. A large portion of these particles
can be interpreted as statistical evaporation from the com-
pound system or emission from excited fragments in

deep-inelastic collisions. However, there is also a corn-
ponent of the light particle spectra which is believed to be
nonstatistical in nature. Several models have been pro-
posed to understand the origin of these nonstatistical, fast,
light particles in the hope that the source of these parti-
cles would enhance our understanding of the evolution of
the ion-ion reactions. A variety of models based on dif-
ferent underlying physical assumptions are apparently
successful in describing the data and are briefly discussed
in the following.

The rotating hot spot model' is based on the assump-
tion that a large frictional force converts the energy of the
relative motion into a locally excited region. This local
region is assumed to develop early in the reaction. The
energy distribution in this local region is assumed to cor-
respond to an equilibrium Maxwell Boltzmann distribu-
tion with a specific temperature. Typically, a temperature
of 6—7 MeV is assumed, while the evaporation spectra
yield temperatures of 1 —2 MeV. A classical, equilibrium,
statistical treatment of the emission process is used to
deduce the energy spectrum. One is inclined to question
this model in view of the fact that it assumes a time scale
of approx&mately 10 sec for equilibration. Considering
the relatively long mean-free path for nucleon-nucleon
collisions at these energies, the assumption of equilibra-
tion is difficult to understand.

Reactions induced by light particles have also been in-
terpreted in terms of precompound models in which the
projecti le is assumed to exci te a limited number of
particle-hole states ("excitons") with the subsequent etnis-

sion of light particles via two-body collisions. These pro-
cesses are calculated from the classical Boltzmann master
equation. This approach has been generalized to in-
clude ion-induced reactions. The results which are in fair
agreement with the data, however, are sensitive to the
number and the character of the excitons employed in the
calculation. An interesting feature of this model is that
the relaxation time which emerges from the solution of
the master equation with a finite number of excitons is
about 10 sec.

It has also been proposed that the emission of fast, light
particles may result directly from hard, two-nucleon col-
lisions. This direct knockout model has been applied at
low energies and high energies. ' ' ' ' The low-energy
model assumes a zero-range force and quasifree scattering
of a projectile nucleon with a target nucleon. The agree-
ment with data depends on the choice of the force and
particularly the choice of the form factors for finding nu-
cleons in their respective nuclei.

Unlike these two models, the Fermi jets' or prompt
emission of fast particles (PEP's) model" "assumes that
the particles are emitted by coupling the internal Fermi
motion of the nucleons to the relative motion of the ions.
This model assumes that during the early stages of the re-
action, a large mean-free path allows nucleons from the
projectile (or target) to pass through the target (or projec-
tile). The coupling to the relative motion gives the nu-
cleons sufficient energy to overcome the potential energy
and be emitted. The emission time is simply the transit
time for a fast nucleon to traverse a nucleus, about 10
sec. The transit of the projectile (target) nucleon across
the target (projectile) is treated classically, and the emitted
particle is assumed to travel freely with modifications
only for the refraction at the edge of the nucleus.

The energy of the emitted particle relative to the nu-
cleus from which it is emitted is large on the scale of the
thermal energies found in these reactions, but it is not
large on the scale of typical nuclear kinetic energies, bind-
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ing energies, or potential energies. This sheds doubt on
the validity of the classical treatment of the motion of the
emitted particles. This concern is alleviated by using a
time-dependent Hartree-Fock (TDHF) approach' ' to
the problem and fast nucleons are seen to be emitted in
TDHF calculations. The technical difficulty of extracting
cross sections from TDHF calculations prevents one from
using this approach as a systematic data analysis tool.
Even if this technical difficulty could be surmounted,
there would still remain a need for a simpler, quantum-
mechanical model since it is difficult to extract from
TDHF calculations the physical mechanism or combina-
tion of mechanisms which produce the emission.

This collection of models clearly assumes different
underlying physics. The ability of the system to equili-
brate is viewed differently in each model. The hot spot
model assumes that local equilibrium is reached in a very
short time scale. The exciton model solves numerically a
master equation to follow the approach to equilibrium,
while the PEP's and knockout models assume an underly-
ing direct process as the cause for the emission. The role
that the two-body collisions play is also different in each
model. In the hot spot model, two-body collisions are im-
plicitly assumed to dominate the interaction, as they must
produce a short mean-free path and a short relaxation
time. In the exciton model, two-body collisions produce
both the equilibration of energy and the emission of fast
particles. The knockout model assumes a single two-body
collision as the underlying mechanism, while the PEP s
model incorporates the two-body interaction only through
its role as the source of a mean field. All the models, ex-
cept TDHF, assume to some degree a classical treatment
of the emitted particle.

A systematic study of the promptly emitted, fast parti-
cles thus holds great promise at discerning between these
models. A study of these particles could thus serve to i1-

lucidate the dynamics of the early phases of the heavy-ion
reactions and help us to understand the evolution and en-

ergy loss mechanisms during this stage. A systematic
theoretical study would first require a large body of sys-
tematic experimental data. Experimentally, the emission
of light, fast particles has been seen in coincidence with
deep-inelastic, ' fusion, ' and fusion-fission '

fragments. Present data, however, are insufficient to tell
us quantitatively how the spectrum of these particles de-
pends on the mass and energy of the ions. In addition,
one would like to know how this dependence is modified
when the particles are detected in coincidence with other
fragments.

In this work we develop a model for the emission of
fast, light particles which is based on the following obser-
vations seen in TDHF calculations. In TDHF calcula-
tions we see a very short time scale (on the order of 10
sec) for particle emission to occur. Since TDHF calcula-
tions are done by initially setting up a many-body wave
function, which is the product of target and projectile
wave functions, and then evolving this wave function in
time to complete a full nuclear reaction (nuclear reaction
times of 10 ' sec or greater), the short time scale implies
that these particles are emitted before the entrance chan-
nel values for heavy-ion masses and energies are changed

by dynamical rearrangements and exchange processes.
Therefore, if we consider particle emission from a reac-
tion of the type,

where X denotes a single emitted nucleon and X stands
for everything else, then during this short time scale for
particle emission, one can approximate A and 8 to retain
their identity while being perturbed by the fields generated
by each other. However, since the wavelength of the par-
ticles is not small compared to the nuclear sizes, we treat
the motion of the emitted particles quantum mechanical-
ly. This distinguishes our approach from the other
models (except the TDHF calculations). The relative
motion of the centers of the two ions is characterized by a
short wavelength, and we thus take a classical limit to
describe this motion. This decoupling of the relative
motion and intrinsic degrees of freedom has also been
studied in atomic physics. ' ' In our present work we
treat the interactions of particles in one nucleus with those
in the other as a time-dependent mean field. Within this
context, nucleons from one of the ions are excited into the
continuum via the mean field produced by the other. For
mass asymmetric collisions, nucleons are preferentially
emitted from the light fragment. This behavior is ob-
served in TDHF work, ' ' as well as in the Fermi jet'
and PEP's (Refs. 13 and 15) models which employ a mean
field. On elementary terms, the interaction potential
which excites nucleons out of the light fragment is pro-
portional to the mass of the heavy fragment, while the in-
teraction potential which excites nucleons out of the
heavy fragment is proportional to the mass of the light
fragment. These assumptions lead to a model that is suf-
ficiently tractable so as to allow for a systematic survey of
a large body of nucleon emission data.

In the next section we derive the model starting with a
many-body Hamiltonian describing the dynamics of the
two ions. We then take the classical limit for the relative
motion of the ions and obtain equations which govern the
intrinsic dynamics of the ions. In Sec. III we calculate the
exclusive and inclusive one- and two-particle cross sec-
tions for fast nucleon emission. In Sec. IV we derive ap-
proximations to the model which enable us to investigate
its general features. In particular, we study neutron emis-
sion from the asymmetric ' 0+ Nb reaction at
E~,b ——204 MeV in both fusion and deep-inelastic reac-
tions. We also investigate the dependence of our results
on the laboratory energy. Results are then compared to
experimental observations. Some of these calculations
have been published previously. Section V looks at
two-body cross sections and two-particle correlations with
and without final-state interactions.

II. EQUATIONS OF MOTION

In this section we develop a model for the emission of
nucleons during the collision of two ions. The reaction we
will consider will be the one discussed in the previous sec-
tion. The ' O+ Nb collision was px'eviously studied in
TDHF calculations where prompt fast neutrons were
emitted from the light heavy-ion fragment. Here, for sim-
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1

Hp g t( + 'r g U(Ji' =1

(2.2)

U(R, [r;()= g u(r; —R),
i =1

where U is a one-body potential which specifies the in-
teraction of the particles in 3 with particle 8. The one-
body nature of U is an assumption of our model.

Let + denote the state of the system at some time t
Then the equations governing the evolution of the system
can be obtained through the variational principle as

AS=5 f dt('I((t) ~(H —ih'0, ) ~%(t))=0, (2.3)

where 6 denotes the variation with respect to 4*. We seek
an approximate solution for 4' in the form of a product of
two terms,

4( I r, )1, R, t) = G(R, t)4( j r, ), t ),
where N is a Slater determinant of single-particle wave
functions Pq,

+( {r; I, t) = det~ ~yg{ r;, t)~ ~,
1

g!
which describes the motion of the particles in A. The
function 6 describes the motion of 8. With this form of
the wave function, the variational principle (2.3) becomes

55 5S
6G" 5Pg

(2.S)

Using Eqs. (2.1) and {2.4) in (2.3), Eq. {2.S) yields dynami-
cal equations for Pq,

plicity, we will consider emission from fragment 3 whi1e
we freeze the intrinsic degrees of freedom of 8. The ex-
tension of the model to include incoherent emission of nu-
cleons from both the light and heavy ions is, in principle,
possible but not considered. We study the particle emis-
sion from fragment 3 which is perturbed by an external
time-dependent field. This field is produced by a struc-
tureless particle of mass 8 located at a distance R from
the center of A. The equations, as presented here, are
Galilean invariant; thus, we work in a coordinate system
which is fixed at the center of fragment A. With these as-
sumptions, the Hamileonian which governs our system is

H((r, ),R)=Hp(I r, ),)+T, +U(R, ( r, I),
where Hp is the intrinsic Hartree-Fock Hamiltonian for
A, depending on the intrinsic coordinates of the nucleus

[ r; I. The spin and isospin quantum numbers have been
left out for notational simplicity. T- is the relative ki-

R
netic energy of A and 8, and U is the external potential
which induces the coupling between the internal degrees
of freedom of 3 and the relative motion of 8. Explicitly,

$2 V' +V(R, t) —i'(}( G(R, t)=0, (2.7)

with

In these equations F. and V are time-dependent potentials
which are given by

E( r, t}=f d R
~

G(R, t)
~

u(r —R)

V(R, t}=f d r p(r, t) u(r —R),
where p is the single-particle density of nucleus A,

(2.8)

p( r, t }= g ~
Pt„( r, t)

~

and h is the single-particle Hartree-Fock Hamiltonian.
These Eqs. (2.6)—(2.8) describe the motion of our system.

In solving Eq. (2.7) for the motion of fragment B, we
will utilize a wave packet formalism to generate a classi-
cal approximation. The previous TDHF work treats the
motion of the heavy ions classically using the sharp cutoff
approximation. ' First, we construct a general wave pack-
et G and derive dynamical conditions under which G will
propagate without appreciable dispersion or spreading. A
wave packet satisfying these conditions we call a "classi-
cal wave packet. " We begin by considering the case in
which the two ions are initially far apart so that we have
V~O and {G~Gp as t~ —ao. We solve this case in a
form that can be easily generalized to include the time-
dependent potential V(R, t}. Ignoring for the moment
long-range Coulomb forces, Eq. (2.7) becomes

g2

2M R
i'(3( Gp(R, t) =—0 . (2.9)

Equation (2.9) may be solved as follows. At time t =0,
Gp is chosen to be a wave packet centered about R=O

with I p given by

where g is a function which is sharply peaked about
R=O. For simplicity, we choose

g( x)=(v mo) ' e

with 0. =1.318 ~ determined from the size of nucleus 8.
This choice of o. will minimize the dispersion in Gp. At
an arbitrary time Gp is given by

i /AI o( R, t)
Gp(R, t)=e ' ' g(R —ap),

[h ( r, t)+E( r, t) i R()(]gg{r, t) =0— (2.6)
I p(R, t)=Map'R —f dt'

2 Ma p

and for G, and g ( x) given by
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2

2M
g(x)= —,'M(ao) g(x) .

This last result follows if we neglect terms which cause
the spreading of the wave packet. In these equations, ap

and ap are the mean position and mean velocity of the
wave packet

ao= f"~ R
I
Go(R, r) ',

(v r)'
+ V(R, t)

+B,I +i' a—
V-I

M R
V- g(R —a)=0 .

(2.10)

ap ——— d RGp R, t 'P Gp R, t

The condition that the wave packet behave completely
classically over the time scale of the collision requires

tcollision

+classical
+classical

Since at t =0 the wave packet is lo'calized in a region
which is character'ized by the size of the actual nucleus,
we have r,~„„„~ 19.6——8 fm/c. The heavy-ion collision
times which we will consider are less than 10 fm/c. Us-
ing this value for t„ll;„,„we show in Fig. 1 the depen-
dence of the ratio t„»;„,„/r,~„„„~on the heavy-ion mass.
Note that collision times for ions with masses less than
about 40 are about a factor of 4 shorter than that assumed
in Fig. 1. Thus, we see that the noninteracting heavy ions
can reasonably be treated as localized, nonspreading wave
packets.

Following the above argument, we write the solution
for the interacting system as

In obtaining Eq. (2.10), we have used the relation

i'a, g[R—a(~)]= —a V'-g[R —a(~)],

and have ignored terms which correspond to the zero-
point energy of the packet, namely

$0
——f d Rg[R —a(t)] — V - g[R—a(t)]

3 A 3
24 O 4 +classica]

In Fig. 2 we plot go as a function of nuclear mass M. We
see that go is generally small and can be neglected. In Eq.
(2.10) V'r plays the role of the classical momentum of the
heavy-ion 8. The phase factor I will be of the form

r(R, t) =Ma R—f '
dt'W(t')

with

lim W(t) ~—,
' M( ao)

G ( R t) e l I'sI ( R t)g ( R a )

with the initial condition

The function W(t) can be found by taking the expectation
value of Eq. (2.10). Requiring that terms in lowest order
of an expansion of R about a satisfy Eq. (2.10) gives W(t)
in terms of a(t)

I (R t) ~ lo(Rr)t~ —oo W(t)= —,'Ma(t)'+Ma(t) a(r)+ V[a(r), t], (2.11)

and

a.(t) .

where we have used an expansion in ( r —a ) for the expec-
tation of V,

f d R
~
g[R—a(t)]

~

V(R, t)

In terms of I and g, Eq. (2.7) becomes = V[a(t), r]+ —,a'
~

V', V[a(r), t]
~

'+ .

&0'
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FIG. 1. The ratio t„]&;„,„/~,]„„.„~ as a function of nuclear

mass number 8, ~„~];„,„is assumed to be 10' fm/c.
FICi. 2. Zero-point energy go (MeV} of the wave packet as a

function of nuclear mass number B.
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Keeping only the first term in the series requires

V[a(t), t] ~~ —,o-
~

V', V[a(t), t]
~

- .

Equation (2.11) has a simple interpretation in terms of
classical mechanics. The first term is the kinetic energy
of the mass as it moves in the presence of a time-
dependent potential V(a, t). The second term is the work
done by the mass M as it moves along the trajectory a(t).
Since the potential is time dependent, the energy e( t ) de-
fined by

We also have that h (t) approaches ho for both initial and
final asymptotic times.

III. INVARIANT EXCLUSIVE
AND INCLUSIVE CROSS SECTIONS

The initial and final channel Hamiltonian consists in
part of Hp the many-body Hamiltonian of A as given in
Eq. (2.2), which can be written in the second quantized
representation as

«(t)= —,M[a(t)]'+ V[a(t), t] (2.12)
Ho = &o+ g «), b~b~:

A.

Ma(t)+ V' V[a(t), t]=0, (2.13)

is not a constant of motion.
If we require the terms linear in the expansion of R

about a to vanish when taking the expectation value of
Eq. (2.10), we find

+ g (Ap
~

u
~
po)t:bt, b„. b b„:, (3.1)

where ":"denotes the normal ordering with respect to the
reference state

~
Xo), b~(b~) are the fermion creation (an-

nihilation) operators in the Hartree-Fock basis of Eq.
(2. 15) which satisfy the usual anticommutation relations

and the rate of change of the energy «(t) becomes

()
[

",
)

— [, )
[,] In this representation the many-body state

~
Xo), defined

by

a V[a(t), t]
Bt

These are precisely Newton's equations for the motion of
a particle in a time-dependent potential. We are thus in a
region where the center of the wave packet follows a clas-
sical trajectory, and we can neglect the spreading of the
packet as it traverses the nucleus.

The reduction of the field Eqs. (2.6) and (2.8) follows in

a similar manner

Z(r, t)= f dR~ G(R., t) ~'u(r —R)

=u[r —a(t)]+ —,o'
~

V' u[r —a(t)]
~

-'+

~X )= Qb ~0),
A, =l

minimizes the energy Fp,

Fo = &Xo
I
Ho

~
Xo &

(3.2)

(3.3)

Ho =Fo+ g «~:b~b~:
A,

(3.4)

then Hp has a complete set of eigenstates, each of which
is uniquely specified by a set of occupation numbers N,

If the Hamiltonian in this representation is truncated to
contain only one-body terms,

=u[r —a(t)] .

With this approximation, the equation for bt„ the basic
equation of our model, becomes Ho

i
Xv ) =F.,v i

Xx
(3.5)

[ho(r)+u[r —a(t)]]gq(r, t)=ifiB, Q&(r, t) . (2 ~ 14)
~X, )= gb,' ~0) .

In the absence of long-range Coulomb forces, u is a
finite-range interaction. Because nucleons in nucleus A

are localized near the origin, we have

E(0,t)=u[a(t)]
and E goes to zero as

~

t
~

oo. Thus the initial solution
for P~ satisfies the equation,

Thus a complete set of orthonormal states which span the
Hilbert space of Hp are single Slater determinants, having
a set of single-particle quantum numbers, denoted by N,
in which each single-particle state may assume any of the
allowed val ues. In this representation the projection
operator onto the state

~

Xq ) is

[ho( r ) —ikey, ]P~( r„t)=0,
where hp is the static Hartree-Fock Hamiltonian for the
nucleons in A. These solutions are

(2.15)

P, =iX, )(X

which is normalized so that

~PJv
——1 .

~=p ~' (3.6)

with

~o&) =&a&z

In Fq. (3.6) the summation is overcomplete and exactly
cancels the factor A!. We chose to work in this basis of
many-body Slater determinants.
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We next must derive expressions for the differential
cross sections that would result from the solution of our
model. The general principles of elastic and inelastic
scattering in a wave packet formalism have been given by
I.ow. Our formulation is similar to that of Low's with
modifications so that we may treat the relative motion of
the ions classically. We are considering the coHision of
two heavy ions 3 and B in which nucleus B is assumed to
be a structureless probe, and A can undergo inelastic exci-
tations

3 +B~A'+B . (3.7)

(3.9)

J '~'(R, t) = & %(t) J' '(R)
I
%(t) &

=
I
&4(t) IX~& I

' ImIG*(R, t)V' 6(R,r)I,

(3.10)

Processes corresponding to more complex reaction chan-
nels are beyond the framework of this model. The excited
states of A in Eq. (3.7) are either bound or continuum
particle-hole excitations produced by the time-dependent
field of Eq. (2.2). The geometry of the scattering event is
shown in Fig. 3.

The cross sections can be written in terms of an initial
current density J (R;, t) of ions 8 incident on the nucleus

in its ground state, and in terms of the outgoing
currents of ions B which leave the nucleus 3 in a state S,
J ' '(Rf, t). Following Low, the number of incident and
scattered particles, X; and Xf, respectively, which pass
through a surface element dS; and dSf are

X;= f dtdS; J (R;,t),
(3.8)

Ny= f dtdSf J (Rf t) .

The currents in Eq. (3.8) are obtained from the state %(t)
and the exclusive current operator,

X;=ho.; dt 4t Xo aot g R; —aot

(3.11)

where, as in Fig. 3, we have chosen the incident beam
direction along the z axis, and

lim ao(t)~b+Vot .t~ —oo

The initial trajectory is specified in terms of the impact
parameter b and an initial velocity Vo. Since g(R; —ao)
is nonzero only when ao- R;, we have ao ——e,ao and

I
&C(r) IX, & I'=1, so that

X;=ho.; dp g p (3.12)

Similarly, the number of scattered particles is

&f =~of f dt
I

&@(t) IXs& I
a(t)nf' IgI:Rf —a(t)]

I

(3.13)

This may be simplified as follows. Particle-hole excita-
tions in 3 occur only when B is in the scattering region.
Since Rf is arbitrarily far from this region and the func-
tion g is appreciable only when a(t)=Rf, so that we have
a(t)=n~a(t), Eq. (3.13) becomes

+f—+Of
I
&@(+~ )

I
X, &

I

' f '
dz

I
g(z)

I

' . (3.14)

The inelastic cross section to the many-body state S is de-
fined by

AA X;

where AA is a small area of the incident beam. Since the
wave packet propagates at all times along a classical tra-
jectory without dispersion, we have Ao.; =Aof. In this
limit, there are no scattered outgoing quantum mechanical
waves. The final state moves as a classical particle. In
the axially symmetric geometry of Fig. 3, AA is just
2~b db, and the solid angle is given by dQ=2m. sinOdO.
The exclusive differential cross section becomes

which follows from Eq. (2.4). Note that in Fig. 3 the sur-

faces dS; and dSf are specified by coordinates R; and

Rf, respectively. Using the form of 6 obtained in Sec. II,
Eq. (3.8) becomes

d~s
dQ

(3.15)

ds" =
I

d

' SCATTERER'

Sf = n~ da~

do bdb
dQ, sinOd8

Equation (3.15) has been obtained by other authors. '

However, our derivation is the only treatment in terms of
a classical wave packet limit and provides insight into the
limits of its applicability.

The matrix element &@(co) IXs & is easily found in the
second quantized representation. The wave function

I
C&(t)& is a Sinter determinant of single-particle states

which are time dependent

FIG. 3. A classical trajectory characterizing a scattering
event in our reference frame.

I
e(t) & = g ag(t)

I
0&, (3.16)
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where the operators a~(t) [a~(t)] define a complete set of
single-particle states P~ which are the solutions of Eq.
(2.14). These states form a complete and orthonorrnal
basis, and we can expand the operators b, in terms of
them,

b, = g C,q(t)aq(t) . (3.17)

do(a)
dA

(3.2l)

The inclusive, one- and two-particle cross sections are
deduced by summing over the allowed states of the A —1

and A —2 nucleons, respectively. We find

The state
I
Xs & is given by Eq. (3.5),

I
&+(+ )

I
&s & I

'=
I detllC. , ~ ( (3.18)

The exclusive inelastic differential and total cross sections
are then given by

Ix, &= g b,'lo&,
c =1

so that the overlap matrix element becomes a determinant
of the coefficients C,~( oo ),

5o(a, P) 1

dA S ij=1
A dos

dni=1
(3.22)

))) y f d~do'(cx)
dQ

The indices a and P denote single-particle states in the fi-
nal channel Hamiltonian. From these, we obtain the one-
particle total inclusive cross section

and

d o.s
dQ

~s =2~ f

(3.19)

(3.20)

002' f bdbg g IC.,(b
a A, = I

and the two-particle total inclusive cross section

=2~ f, dbbg g IC)«»t=~)l'IC, p(b&=~) I' —
I & C*~(»t=~)Cp~(»t=~)l'

a, P A, p=l A, =l
(3.24)

fn Eqs. (3.23) and (3.24) o''' and o'' ' are independent sca-
lar invariants which characterize a particular inclusive re-
action. From these cross sections and the usual definition
of one- and two-particle invariant cross sections,

d-'o-' "o" '= f d-'q"

f

er, the invariance of the total cross section allows one to
easily obtain the corresponding differential cross sections
in either the laboratory or the center-of-mass frames.
Also, in deriving Eqs. (3.25) and (3.27), we have assumed
that the continuum states in our model saturate the
particle-state summation in Eqs. (3.23) and (3.24), P~k,
and

d6 (2)
o-")= d-'k d-'q

d3I-d'q '

we obtain

(3.25) d 'k-
IV. NUMERICAL STUDIES

and

d3 (1)
l

.& b

2 g f b db
I C-„„(oo )

I
(3.26) The general features of the time-dependent equations

discussed in the previous sections are easily computed us-
ing a rank-one separable potential for the external field u

d6 (2)
j, max

d'k d'q (2')' dbb g IC -I'IC -I
A. ,p =1 A, k pq

g C*-C~
A. = 1

(3.27)

These equations, (3.26) and (3.27), are valid in a reference
frame in which nucleus A is at rest at the origin. Howev-

(r' —a(t)lu
I

r —a(t)&

=&OQ(
I

r ' —a(t)
I

)Q(
I

r —a(t)
I

) (4 1)

The theory of replacing a local potential by a separable
one is reasonably well understood. '" We will impose the
symmetry condition that the external field is rotationally
invariant at all times. Thus the rotational symmetries of
the initial nuclear state are unchanged by the time evolu-
tion. The momentum representation of u truncated to
maintain this rotational invariance can be written as
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( q ~

u (t)
~ q ') =417ApyFI[q, a (t) JFt[q', a (t)]

X Yg* (q')YI (q) (4.2)

Ap=t +U

A

(r [U )
r')= g X (r')U pXp(r),

(4 4)

with

F~ [qa (t) l =jt [qa (t)]Q (q)

Solutions to Eq. (2.15) are obtained by expanding pk(t)
in the basis of the static Hartree-Fock Hamiltonian hp of
Eq. (2.15)

pk(r, t)= gC p„(t)X {r)e

where the matrix element is given as

U p=(X
i

U iXp)

From the Lippman-Schwinger equation, we obtain in
momentum space,

aP=i A: —q +
d k+ f C- (t)Xk+( r )e

kA,

with the initial condition that

lim C~k(t) =5~k .

(4.3)

where Da& is an element of the matrix D defined by

D=(1—U Y) 'U .

(4.5)

The states X~ in Eq. (4.3) are the bound state eigenfunc-
tions of it p obtained by solving the self-consistent
Hartree-Fock equations. Whereas the states 7+ are the

k

continuum state solutions with outgoing boundary condi-
tions having an energy e . The scattering states 7+- can

k k

be generated using the separability of the Hartree-Pock
single-particle potential "

v,
I

The elements of the matrix Y are given by

2m d q &a q &p q

(2m ) k q+i—q
With the expansion of Eq. (4.1), the time evolution Eq.
(2.14) becomes a set of coupled linear differential equa-
tions for the expansion coefficients C

—i(e —e )t/A
M3d k —i(~~ —e )t/4

iAC &(t)=+A .(t)C k(t)e +,A (t)C (t)e(2~)3 ~k kA,a'

—i(e .—e )t/A —i(e —e )t/A3

iRC (t)= QA, (t)C .„(t)e +,A (t)C (t)e
kA, , ka' (2&)3 a k k A.a'

(4.6)

with

(t)= f d r X*(r)u[r —a {t)]X (r)

l

Eq. (4.6) to one-dimensional integrations

iRC'k(t)=+A' C'k(t) e

and with a similar definition for the matrix elements in-
volving the scattering states.

We choose Q (q) to be of the Yukawa form

k dk t t —t(e&

okla+-

+
P (2 )3 elk kk

g (q) =(q'+Ic') (4.7) iACk&(t)= QAk (t)C' &(t)e
(4.10)

With this choice, the matrix element A (t) becomesak

f q'dq X".,(q)Ft[qa(t)]

a'

Al ( )C' (t)
~

~(2')

r

X ~ f q2dqX+- (q)Ft[qa(t)]

where X~t(q) [X+- (q)] is the radial part of the wave func-kl
tion X ( q ) [X-(q )]. Similarly, if we substitute

C „k(t)=Ckk(t) Y~~(k) (4.9)

into Eq. (4.6), the resulting equations are uncoupled in the
variable k and reduce the three-dimensional integrals in

The numerical advantages of our choice for the form of u
are several. First, the rotational approximation renders l
a good quantum number, so that Eq. (4.10) does not cou-
ple different values of I. Second, the calculation of matrix
elements in Eq. (4.8) requires one-dimensional integrations
only. Third, the matrix 3 formed from elements of Eq.
(4.8) can be written as a product of two vectors which al-
lows the integration of the time over a step At to be per-
formed exactly as shown in the Appendix.

Computations of Eq. (4.10) have been carried out for
the prompt neutron emission observed in coincidence with
the deep-inelastic branch of the ' 0+ Nb reaction at
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EI,. b ——204 MeV. ' We calculated neutron emission only
from the ' 0 fragment, and we solved Eq. (4.10) in its rest
frame. As previously stated, we ignore the emission from
the Nb-like fragment. For our model of ' 0 we have used
the Hartree-Fock wave functions of Ref. 35. The radial
scale ~ of the external field was adjusted so that the in-
teraction was confined within the strong absorption radius
of the ' 0+ 'Nb system for which I =0.5 fm '. The
classical trajectory equation, Eq. (2.13), was solved using a
modified Coulomb potential of the form

04

1 d o.2

V~ dv~ dV
0.2—

—0.2—

ZqZge 3—

~c ——1.30(~ '&'+a'& ) fm,

V(R) =
ZgZge

R
R)Rc,

7

(4. 1 1)

—04
—0.4

I I

—0.2 0 0.2 0.4
II

FIG. 5. Contours of the invariant cross section for the deep-
inelastic reaction as a function of velocities parallel ( &II/c) and
perpendicular ( V, /c) to the initial beani direction in units of
fm-'c'. The interior contour has a value 1.01& 10' fm-c', each
subsequent contour decreases in magnitude by a factor of 5.

Z ~
—8 g =93, and Z~ —41 For

deep-inelastic branch of the reaction, v e determined the

impact parameter range from the fusion and total neutron
cross sections' using the sharp cutoff model. We ob-
tained

5„„„=6.0 frn,

b,„„.=10.0 fm .

We adjusted the field strength AQ to obtain a neutron mul-

tiplicity of 0.134 in agreement with the corresponding ex-
perimental value. -' Equation (4. 10) was solved on a
discrete momentum time lattice

d 'I.
p(r)= —g f, ~c (t)~- (4. 12)

for various impact parameters as a function of time. Us-

The maximum continuum energy was thus 100 MeV.
The s-wave contribution from ' 0 to the following results
is less than 1%, in agreement with the previous time-
dependent Hart ree-Fock calculation. '

In Fig. 4 we show the time dependence of the total
emission probability

kj ——jAk j=1, . . . , Xg

I

o -14
-24
= 63

and

At =0.4 frn/c, Xz ——1,000

aa- =0.022 fm-', X,. =100.

0.30

O. 20

„- 10'

E

Cg

2

b 10—

0.10

0
—100 0 100 200

FIG. 4. The continuum occupation probability for the deep-
inelastic reaction as a function of time (fm/c). The variable s

labeling the curves is the heavy-ion impact parameter.

10
0 10 20

g (Mev)

FIG. 6. The double-differential cross sections d-o. /dedA
(mb/MeVsrj for the deep-inelastic reaction versus the experi-
mental results of laboratory angles 14, 24, and 63'. The data
are from Ref. 25.
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0.4

0.2

d cr
Vg de dV|I

~ ~0")
g

E

-0.2

-0.4-0.4 -0.2
I

0
II/c

l

0.2 0.4

)00
0 10 20 30

g (Mev)
40 50

FIGo 7. The energy spectrum do/de (mb/Mev) for the
deep-inelastic reaction obtained by angle integration of Fig. 5 as
a function of energy (MeV).

FIG. 9. Same as Fig. 5 except for the fusion reaction. The
interior contour has a value 3.1&10 fm c, and each subse-
quent contour decreases in magnitude by a factor of 5.

we note the following: the contours are centered about
the mean veIocity V; they are isotropic and have a charac-
teristic exponential dependence on the total velocity
V=QVj + V~~.

The energy-angle differential cross section d o./dud 0
ing this definition of p (t), we calculate the mean velocity
of the frame from which the particles are emitted

maxV= 2~ f db bVI(b) 2m. f db b (4.13)
min min

with

Vj= f dtp(t)VT(t)/ f dtp(t),

where VT is the relative velocity of the heavy ions on the
trajectory for a given impact parameter. We found
V/c=0. 124. In Fig. 5 we show the contours of the in-
variant singles cross section as a function of the longitudi-
nal and transverse laboratory velocities. From this figure,

(.0

0.8

0.6

0.4

0.2

h
I, s =, 1 frn

I

I s=5 fm
i I

I I
i

~ o ~ oo ~ o ~ o ~ ~ o ~ oo ~ )~ ~ oooo ~ ~ oooooooos=4 fm
I

I
I

a "f""
~ I

I

)O0
Ol

0
—100 -50 0 50

f (fmtc)
IOO 350 200

FIG. 8. Same as Fig. 4 except for the fusion reaction.

0 $0

g (vev)
FIG. 10. Same as Fig. 6 except for the fusion reaction.



UMAR, STRAYER, ERNST, AND DEVI 30

10 O.40

0.35
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b

101

0.25

t
o. is

0.10 l
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0

O. 20

0 4 8 12 16
(Ec~ —Ec )/A (MeV)

FIG. 13. Multiplicities for the total reaction (fusion plus deep
inelastic) as a function of the available energy per particle above
the Coulomb barrier (MeV).

16

100
10 20 50

g (Mev)

40 50

12
CU

O
x

8

FIG. 11. Same as Fig. 7 except for the fusion reaction.

is shown in Fig. 6 as a function of energy for angles 14',
24', and 63. The experimental results —' are also shown,
and we see fairly good agreement with the data with the
exception of the backward angle of 63'. This disagree-
ment may be due to the neglect of emission from the 'Nb
target in these calculations. In Fig. 7 we show the angle
integrated energy spectrum do. /de. In order to extract a
temperature parameter, we have fitted the calculated ener-

gy spectrum to the functional form of

8 12

(Ec.m. Ec) /A (MeV)

FIG. 14. The velocity, V/c of the frame from which the par-
ticles are emitted for the total reaction (fusion plus deep inelas-
tic) as a function of available energy per particle above the
Coulomb barrier (MeV).

1.2 3.0

0.8 2.0

OJ

1.5
E

0.5

8 12

(E —E )/A (MeV)

16

FIG. 12. Neutron emission cross section (mb) for the total re-
action (fusion plus deep inelastic) as a function of the available

energy per particle above the Coulomb barrier (MeV).

14 162 4 6 8 10 12

(Ec m Ec )/A (MeV)

FIG. 15. The normalization factor N (fm-/MeV) of Eq.
(4. 14) as a function of available energy per particle above the
Coulomb barrier (MeV).
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7.5

7.0
6.5

6.0

~ 55
~ 5.0

4.5
4.0
5.5

5.0
8 30 &2

(E —E )/A (MeV)

cross section contours of Fig. 9 are now centered about a
velocity V/c =0.114. We obtain a multiplicity of 0.334
corresponding to a total cross section of 1048 mb. As be-
fore, a functional fit to the energy spectrum, do/de, of
Fig. 11 yields %=191.1 fm MeV ', T=4.8 MeV, and
a=1.202. Without changing the values of ~ and Ao, we
have also investigated the beam energy dependence of the
particle emission from the combined fusion and deep-
inelastic reactions. Figures 12 and 13 show the depen-
dence of the total cross section and the multiplicity on the
available energy per particle above the Coulomb barrier.
As a function of this energy, we also show the source
velocity V/c in Fig. 14, and the energy spectrum parame-
ters of Eq. (4.14), N, T, and a in Figs. 15—17.

FIG. 16. The temperature parameter {MeV) of Eq. {4.14) as a
function of available energy per particle above the Coulomb bar-
rier (MeV).

de ~ E

T

a

(4.14)

1.6

1.2

0.8

0.4

-0.4

2 4 6 8 IO 32 14 36

(Ec.m. Ec )/A (MeV)

FIG. 17. The power, a, of Eq. (4.14) as a function of avail-
able energy per particle above the Coulomb barrier (MeV).

and found X =69.3 fm MeV ', T =5.2 MeV, and
o.= 1.32.

Although there are no data for neutron emission in a
fusion reaction for this system, we present results for this
reaction in Figs. 8—11. In Fig. 8 we plot the total emis-
sion probability p(t) as a function of time. For this case,
we see interesting oscillations in the emission probabilities
which are absent in the deep-inelastic reaction. This
dramatically demonstrates why simple approximations to
the time evolution such as the Born approximation would
be inadequate. Figures 9—11 again show the observed
characteristics of the emission spectrum. The invariant

V. PAIR CORRELATIONS
IN INCLUSIVE EMISSION

The approximations and assumptions which have been
discussed here, at each stage, satisfied Galilean invariance.
Thus the inclusive two-particle cross sections derived [Eq.
(3.27)] are invariant with respect to Galilean transforma-
tions. Since we have derived a one-body theory for the
emission process, it is important to understand the two-
particle correlations which are included in Eq. (3.27).
First, the wave function of the nucleus is at all times a
Slater determinant. The antisymmetry of the wave func-
tion leads to the second term on the right-hand side of Eq.
(3.27). The second type of correlations are the dynamical
correlations which enter into our equations through the
time-dependent mean field. As in time-dependent
Hartree-Fock theory, the strong short-range correlations
serve to renormalize the interaction and produce, in
lowest order, a time-dependent, one-body potential. In
our work, we ignore the contribution to the mean field
from dynamical particle exchange and polarization and
determine it solely from entrance channel nuclear configu-
rations.

There is another source of correlation between the
detected particles that is not yet in our model and that
does not principally depend on the dynamics of the emis-
sion process. If two nucleons are emitted in nearly the
same direction, then they interact substantially before they
reach the detector. Because of the strong nucleon-nucleon
interaction at low energies, we would expect this interac-
tion to alter the two-particle cross sections for small rela-
tive momenta.

We can approximately account for this effect by includ-
ing a residual nucleon-nucleon potential in our Hamiltoni-
an. If we were to add this interaction at the onset of the
time evolution, we would add a substantial numerical
complexity to our model. Among the effects would be the
emission of two nucleons from correlations which are
present in the initial nuclei, or from correlations which
are dynamically induced during the reaction. Here, in-
stead, we will consider only those final-state interactions
which take place after the completion of the emission pro-
cess. This we can accomplish if we replace the current
operator by a new current operator in which the two-
particle state is replaced by a correlated two-particle state.
The current operator then becomes
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d d g d k d g:&( ), ~, t. f ( )7-+H.c. „ tt- (k'tq')a —,a, tt: (k",q")a „a-„.
2Mi R l'q '

j
'

q kq q k"

The two-body scattering state can be written in relative and center-of-mass coordinates

P=k+q p="
2

( k ', q ') = (2vr)'5(P ' —P )g ': '( p '),
I q

and Eq. (5.1) becomes

V +H c. 5(K —P)(t~" (p)a a 5(K —Q)g':'(q)a a-
2Mi P+ p/2 P —p/2 4 g —q/2 g+q/2

(5.2)

or, by introducing the rescattering function f through the equation

g': ( p) =(2n)'5( k —p)+f ( k, p), (5.3}

we find

V' - +H. c. I 5( K —P ) [( 2 n. ) '5( k —p ) +f"( k, p ) ]R (2m )

a- a — 5(K —Q)[(27r)'5(k —q )+f(k, q)ja -,a (5.4)

Note that for f=0 this current operator will give us back
the two-particle cross section obtained without final-state
interactions. For the calculation of the rescattering terms,
we use the local momentum approximation

!

—1 (2~)-'6(k —p j, (5.5)

where fJ is the N-N Jost function. ' Using this equation
and taking the expectation value of the current, we get
(going back to original coordinates)

(e(~)
I
J Ie(~)&=

dA-. -'dq -'

f( k, p)=
fJ( —

I
k

I
)

1 d 0
2 4

dk

2

(5.6)

Here o'-" denotes the inclusive cross section of Eq. (3.27).
We see that the effect of the final-state interaction is to
enhance the two-particle cross section by a factor
1/I f~ I

. For energies less than 50 MeV the correlated
wave function tt I,

' will be dominated by the contribution
from the deuteron pole. As our residual interaction, we
assume a separable Yukawa potential of the form -'

V{ k, k '}= g(k)g(k )
4~

I

with

1g(k)=. —
k'~P-'

The strength Ao is adjusted to produce the deuteron bind-
ing energy, and we obtain

A,op'=—cos6e 1 ——
f( —k) 2

(k +P ) A. (k —P-'—)'2
We use the effective range expansion for the phase 6,

tan6 =
2

(k" +p )- —ko (k —p )'2
The values of ko and P obtained are P=285 MeV,
A, (-)

———2. 19.
We have computed the inclusive two-particle cross sec-

tion without and with final-state interactions, Eqs. (3.27)
a»d (5.6), respectively. Using the Galilean invariance of
these cross sections, we transform them into the relative
and center-of-mass coordinates of the two emitted parti-
cles and define a cross section o. which is only a function
of the relative momentum by

d' '-"
er(p)= f d'P

dk'dq3
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FIG. 18. Two-particle cross section o.(p) (mb fm') without
final-state interactions (solid curve) is plotted as a function of
the relative momenta (fm '). The dashed curve shows the same
quantity with the inclusion of final-state interaction.
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The functions o., with and without the final-state interac-
tion, are shown in Fig. 18. We observe that the addition
of the final-state interaction enhances the two-particle
cross section by a factor of —100 but leaves the general
form the same. A naive application of the uncertainty
principle to the half-width of the two-particle cross sec-
tion of Fig. 18 gives a space localization of Dr =2.5 fm,
about the radius of a ' 0 nucleus.

VI. CONCLUSIONS

In summary, we have developed a time-dependent
mean-field model for nucleon emission in heavy-ion reac-
tions. In the model the coupling between the nucleons in
the target with the projectile is through a one-body field
having a time dependence arising from the motion of the
ions on classical trajectories. We have found that the time
dependence of the field induced by the motion of the ions
is strong and must be solved exactly. Inclusive cross sec-
tions are obtained by summation over the appropriate fi-
nal states. The model is easily calculable by introducing a
phenomenological form for the mean field. The neutron
emission from the Nb-like fragment is neglected in the
present work but could be treated assuming the emission
from the target and projectile along the same impact pa-
rameter to be independent processes. The results of our
calculation are quite encouraging and successfully repro-
duce the general features of the spectra obtained by
phenomenological and statistical models discussed earlier.
The exponential dependence of the spectra on energy
emerges naturally, and although there are significant
numbers of nucleons which are emit&ed with velocities
greater than the incident beam velocity, the mean velocity
of these particles is found to be related to the change of
the relative velocity of the two centers. It is also possible
to extract a so-called "temperature" parameter by making
a functional fit to the energy spectrum.

Specifically, we have calculated the inclusive neutron
cross sections from the deep-inelastic and fusion branches
of the ' 0+ Nb reaction of El,b ——204 MeV. The results

for energy-angle double-differential cross sections are in
good agreement with the data with the noted exception at
angles greater than 50 in the laboratory. For this system,
we have also calculated the two-particle cross sections as a
function of the relative momentum of the two correlated
nucleons. Although there is no experimental measure-
ment of these correlations for this system, our results
show the general features of the two-particle correlations
obtained for other systems. " A naive use of the uncer-
tainty principle indicates a localized source for the parti-
cle emission which is about the size of the ' 0 nucleus.

There now exists several models for the emission of fast
particles in heavy-ion collisions. Each makes different as-
sumptions concerning the underlying physics. A sys-
tematic set of data which clarifies the systematics of the
emission will be necessary to discern between these
models. The dependence of the cross section on beam en-
ergy, ion masses, and the dependence on projectile-target
mass asymmetry are some of the features that need to be
studied. A further refinement of the models to reduce the
number of free parameters and their application to a large
body of data will clarify the underlying physics which
governs the early stages of ion-ion reactions.
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APPENDIX

Here we will derive a closed form expression for the
time evolution of Eqs. (4.10) over an infinitesimal time
step At. The discretization of the momentum integrals in
Eqs. (4.10), and the choice of evaluating the Ct, 's (for no-
tational simplicity we have dropped the k and I indices)
on the same mesh allows us to write the matrix equa-
tion,

(A 1)

The elements of matrix 2' are the elements of matrix A,
given by Eq. (4.8), multiplied by k;/(2') ~ (dk)'~, where
k; is the ith mesh point of the momentum discretization.
We also make the transformation

C,'. = '„,(dk)'"C, ,
t

(A2)

In this form the matrix A' can be written as a product of
two vectors, with elements

which makes 3' an Hermitian matrix. In terms of these
quantities, vector X(t) is defined as

(A3)
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where

p )jC/JQ)aJ7 (A4)
X;(to+bt)= 'exp 4' Ap A'(t, )ht X,(t, ) .

SJ

I dq q X*((q)Ft[qa (t)] e
By noting the identity

(A' );~. =A'A'J; X= g (a;
~

k;
(dk)]/2

)
3/2

—iek t/fi
&j . I dq q'Xt t(q)Ft[qa (t)]

exp
4'A p 1 4mAp

iA X iA
3 '(tp )ht = 1 +—exp At —1

we can write all of the terms in the expansion of the ex-
ponential as an expression which is linear in matrix 3',

The general solution of Eq. (Al) over a small time step &t
can he written, in component form, as which simplifies our calculations.
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