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D. M. Brink
Theoretical Physics Department, University of Oxford, Oxford OXl 31VP, United Kingdom

Fl. Stancu
Institut de Physique, Universite de Liege, 8-4000 Liege 1, Belgium

(Received 30 July 1984j

In an earlier work it was assumed that the imaginary part of the optical potential due to nucleon
transfer could be described by a proximity-type formula. Here we derive such a formula starting
from the transfer probabilities between specific quantum states and assuming leptodermous nuclei.

I. INTRODUCTION

In recent years some more progress has been made in
understanding the imaginary part of the nucleus-nucleus
optical potential from a microscopic point of view. Ac-
cording to Ref. 1 one can distinguish two major contribu-
tions to the imaginary potential: a volume part 8, due to
the mean free path, and a surface part

~s ~ineI + ~trans

due to the additional contribution of inelastic and transfer
channels. The volume part has the shortest range and has
been studied by solving the Bethe-Goldstone equation for
two nuclear matter systems in relative motion. Approxi-
mate methods based on complex energy functionals have
also been investigated. Quantitative studies of W;„,&

and
8'„,„, based on the formalism of Ref. 1 have recently

been performed for ' 0 colliding on various targets such
as Si, Ca, Sr, and - Pb. These studies involve rather
elaborate numerical calculations depending on the details
of nuclear structure.

In Ref. 5 we adopted a much simpler model for calcu-
lating the nucleon transfer contribution to the imaginary
part of the optical potential. The nuclei were treated by
the Fermi gas model, and the flux of nucleons from one
nucleus to the other was calculated by taking into account
the Pauli-allowed region in momentum space and the tun-
neling through the barrier formed between the single par-
ticle wells. As in Refs. 1 and 4, the resulting potential has
a long range, reflecting the peripheral aspect of the pro-
cess of depopulation of the entrance channel through sin-
gle particle transfer.

The present work is entirely devoted to the derivation
of 8't„,„, and is intended to be a link between microscopic
calculations ' based on transition amplitudes between
specific states and barrier penetrability models. In other
words, taking the sum of transition probabilities between
various available states as a starting point we try to find
out under which conditions a proximity-type formula
based on nuclear current across the barrier can be derived

~trans
In Sec. II we define 8't„,„, in a semiclassical approxi-

mation. In Sec. III we derive a general analytic form for
the total transfer probability for peripheral collisions be-
tween large leptodermous nuclei. In Sec. IV we obtain a
formula for 8 „,„, which is compared to the proximity
approximation of Ref. 5.

II. DEFINITION OF 8'

In the following we shall assume that nucleus 1 has a
straight line trajectory and a uniform velocity v, with
respect to nucleus 2 which is fixed. The geometry is
shown in Fig. 1. The origin of coordinates is positioned
at the center of nucleus 2 and nucleus 1 moves along the y
axis, the distance of closest approach being z =d. The
transition amplitude 3 (2f, li) of a nucleon from nucleus
1 to nucleus 2 can be written perturbatively as'

ao

A (2f, lt ) J ($2f, Vi f„)dt (2.1)

where ttt~; and $2f are the wave functions of a bound state
nucleon in nuclei 1 and 2, respectively. A similar expres-
sion can be written for transfer from 2 to 1.
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FIG. l. The geometry of two colliding nuclei. The origin of
coordinates is at the center of nucleus 2. Nucleus 1 moves uni-

formly on a straight line parallel to the y axis with velocity v.

The distance of closest approach d is reached at t =0. The sur-
face X is explained in the text.
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Assuming that the depopulation of the entrance chan-
nel due to particle transfer between the colliding nuclei
contributes to the imaginary potential 8'„,„„such a po-
tential can be related to the total transfer probability

Pb, ——g ~
A(bf, ai)

~
(a,b =1,2)

i,f
through the relation'

00

W„,„,[R (t)]dt =P»+P»,

(2.2)

(2.3)

s =sl(X, Y)+s2(X, Y'); Y'= Y—ut, (2.4)

where s I and sz are the distances between the surface ele-
ments of nuclei 1 and 2, respectively, and a surface X.
This is arbitrarily chosen in the region where the poten-
tials V~ and V2 describing each nucleus separately vanish.
Accordingly, 4& becomes a function of X, Y, Y', or, alterna-
tively, X, Y, t. We want to express the total transition
probability

where R is a point on the straight trajectory followed by
the projectile.

The main purpose of the present work is to relate the
quantal approach for calculating Wt„„, from Eqs.
(2.1)—(2.3) to the proximity approximation used in Ref. 5.
As in the proximity method we start from Eq. (2.3) and
derive an expression for W„,„, in terms of the flux of nu-
cleons 4 through an element of unit area of one nucleus
separated by the distance s from the corresponding ele-
ment of unit area of the other nucleus. According to Fig.
1 this distance can be written as

In the following we aim at finding an expression for @
by assuming that the nuclei are leptodermous. We note
that the surface X in Fig. 1 does not normally appear in
the proximity method, but it plays an important role in
the quantal treatment. This point mill be discussed in
Sec. III.

III. THE TRANSITION AMPLITUDE

For deriving W(R) from (2.3) we need to evaluate
A(2f, li) of (2.1). We rely on the assumption that the
transfer is a peripheral process so that between the nuclei
there is a region where the potentials VI and V2 both van-
ish. The plane X is situated at z =zo (see Fig. 1) in this
region. Then the transition amplitude takes the form

A(2f, li)= f dt f dxdy P;(1)

&P;(1)—Py(2)
BZ0

i/A(m v r —[e;+(1/2)mU )t) (3.2)

y~(2) =y~( r )e (3.3)

(3.1)

where P;(1) and f~(2) are the initial and final wave func-
tions of the nucleon which is transferred from the orbit i
in nucleus 1 to the orbit f in nucleus 2. The single parti-
cle wave functions are

~=~2I+~~2

in the form

P= f 4(X, Y, t)dXdYdt

= —f 4[sl(X, Y)+s2(X, Y')]dXdYdY',

where

@=C'2I+ +]2

(2.5)

(2.6)

(2.7)

where y;, grj are the eigenstates of each nucleus at rest.
Equation (3.2) expresses the fact that nucleus 1 is moving
uniformly on a straight line with respect to 2, i.e.,
R(t) =d+ v t.

By using the notation

1 2k I —— ( eg —E; —, Pl )'u-,

Av
(3.4)

1 1

k2 —— (eI—e;+ , mu ), —
fiU

If we consider a point

R(t) =d+ vt

on the trajectory of the projectile, Eqs. (2.3) and (2.6) give

and making the change of variable

t =—(y —y'),1

U

W„,.„,[R (t) ]=—f @(X,Y, r)dX d Y .
2

(2.8)
the transition amplitude takes the following form:

(3.5)

iA —ik Iy' C ik2y 8
A (2f, li) = dx dy'e '

dy e '
p&(x,y,zo) p;(x,y', zo —d) — qy(x, y,zo)p;(x,y', zo —d)

2NlU 00 00 az 0 BZ0

By introducing the Fourier transform

y (x,y,z)= z f e " ' f (k„,k~,z)dk„dk»
(2~)

for a =i,f, we can rewrite

(3.6)

(3.7)
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ih 1
A (2f li)=

3 dx dk& fI(k& k2 zp) f&(k& k~, zp —d) — fI(k„,k2, zp)f;(k„,k), zp —d)
2mU (2~) —~ —~ Bzo Bzo

(3.8)
Using the Wentzel-Kramers-Bril]ouin (%'KB) expression of the wave function y at distances z beyond the turning

point, one can show that (see Ref. 6 for details)

fI ——CI e '
Y( (kp),f y f f

where CI are normalization constants and
a

r =& +k~+rO-=& +&2+XOI2 2 2 2 2 2

(3.9)

(3.10}

k& ——— (k„,k~, ry); k2 ——-- (k, kz, i~~),
VOi l Of

with

2m
3'Oa= —

~ &a

(3.11)

(3.12)

The z components of k~ and k2 are imaginary because they represent momentum components under the barrier. With
the help of expressions (3.9) one can reduce the transition amplitude to a simpler form,

iA
A (2f, li)= dk„)~(k„)fI(k„k2,zp)f;(k„k ),zp —d),

PlV 277
(3.13)

where y of Eq. (3.10) has been written as a function of k„.
Taking as quantum numbers i =(e;, l;, m;), f=(eI, lj, mI), and assuming that the single particle energy e varies

continuously, the total transfer probability from nucleus 1 to nucleus 2 becomes

Here,

EF

I def I '

de, I dk )~(k„) I dk„' y(k„' )F~z, (k, k„',zp )F~, (k„,k„',zp —d)
2

(3.14)

F„,(k„,k„',z)=g f (k„,k„,z)f*(k„',k„,z)6(e —e„) (n =),2) (3.15)

takes into account the summation over all states o. =(l,m} of energy e. Note that in Eq. (3.14) the integration limits for
e; and e~ are consistent with the Pauli principle. On the left-hand side (lhs) of (3.1S) we have omitted the argument k„
for simplicity.

At this stage we want to derive an approximate expression for I'„, which is valid for leptodermous nuclei. If we use
the inverse of the Fourier transform (3.7), the function F„,becomes

F„,(k„,k„',z) =I dx dx'dy dy'e " " e " "
p,(r, r '), (3.16)

where p,(r, r '} is the density matrix at fixed energy e,

p,(r, r ')=+5(e e~)p (r—)rp (r ') . (3.17)

Q Jo(k J OR„ )

In Appendix A we derive an analytic expression for p,
which is valid for points r and r just outside the surface
of a large leptodermous nucleus. The essential ingredients
of the derivation are the WKB approximation and the use
of phase space coordinates directly related to the angular
momentum. For finite nuclei this expression reads

A1
rt kJ —~ Ip) —~ (p' )

(2~)2 g2 0

k, =(k +k )' (3.19)

represents the component of the nucleon momentum per-
pendicular to the z axis as can be seen from Eq. (3.11).
The upper limit of integration on kj can be found from
the energy balance in a region in the nucleus where the ki-
netic energy reaches a maximum, i.e., where V„(n =1,2)
reaches the maximum depth Vo„. There we have

(ki +k') = Vpn —
I
e

2P2

Hence,

where O is the angle between r and r ' and R„(n = 1,2) is
the nuclear radius. In Eq. (3.18)
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Q2, (Vo„—fe i) (3.20)
X=—,(x +x'), Y= —,(y+y'),

P& =X —X, Py =P —P (3.23)

By analogy with the derivation made in Appendix A
for finite nuclei, one can obtain a density matrix for
semi-infinite nuclear matter described by the wave func-
tion

i(k„x+k y)
9 k, k (x y z)

K„=—,
' (k +k„' ), ll„=k„—k„';

we obtain at the surface X

F„,(k, k„',d„)=f F„,(K„,X, Y,d„)

~e " dxdY,
where

(3.24)

where L is the quantization box size along the x and y
axis and y, (z) is defined by the semiclassical expressions
(A2) with r replaced by z. The result is very similar to
(3.18),

kJ. —tO {Z)—M~{Z')

(3.21)

where the x,y dependence comes only through the vector

p =(x —x',y —y'). One can pass from (3.18) to (3.21) and
vice versa by the replacements

T~z, R„O~p . (3.22)

The physical content of the similarity of the density ma-
trices (3.18) and (3.21) is that the surface properties of a
large finite nucleus are essentially the same as those of nu-
clear matter.

Substituting Eq. (3.18) into (3.16) and making the
change of variables

F„,(K„,X, Y;d„)= 8(K~ K„—k„)—
2m' $2

—2m {d„) $ —y/R„(X +F )
Qe '" —e

y
(3.25)

w, (r)=w, (d„)+ (x +y )
2R„

(3.26)

obtained for w, (r) in Appendix A. The X and Y depen-
dence reflects the geometry of a spherical leptodermous
nucleus.

Now we can express the total probability Pz& of Eq.
(3.14) in a convenient form by using Eq. (3.24) and intro-
ducing the approximation

y(k„)=y(k„')=y(K, )=y .

The result is

(3.27)

The step function 0 results from the integration over kz.
The exponential dependence on X and Y follows from the
approximation

1
P2i =

(2m ) mv

2 EF

f de~ f de; f dK„y (K„)f dXdYd1"F2, (K„,X', Y,d2)F„(K„,X, Y', d, ) .
2

(3.28)

This formula will be used in Sec. IV for deriving W„,„,.

IV FORMULA FOR

At present, we have all the ingredients for deriving an expression for 8;„„,. There are two steps in the arguments.
Starting from Eqs. (2.6) and (3.28) for P2l, we obtain an equation for the flux lxlzl and compare it with the one-sided flux
of Ref. 5. Then-we calculate W„,„, and discuss its relation to the proximity result of Ref. 5. Substituting (3.25) in (3.28)
and using (2.6),

EF

C&,(X, Y, Y')= f de~ f de; f dK„M, (e~,e;,K,s)e
2

(4.1)

where Y(s)=w, (d2)+w, , (dl) .
Ey (4.5)

I

M2, (e~,e;,K„,s)=, , 9(l '—K')e ' " (4.2)
1

(2m) A' v

with

The quantity Y(s) can be easily recognized a«he penetra-
bility integral (812) if one uses the definition (A3) for

(d2) and w, , (dl) and replaces r by z. In agreement

wj.th Fj.g. 2, one has

and

I 2 =max(KM —k„),
R)R2R=

R)+R2

(4.3)

(4.4)

s=d)+d2 —R) —R2 . (4.6)

We note that in writing (4.1) we have made use of the ap-
proximations (3.27) and (A14) which imply y(d)=y(K„).

Of particular interest is the quantity
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42] ——+2)(0,0,0) . (4.7)

This is just the flux between two semi-infinite slabs of »u-
clear matter separated by the distance s between surfaces.

FIG. 2. The nuclear barrier along the z axis. The distance
between the centers of the nuclei is d l +d. =s + R l + R -, ~v)~ere

d; (i =1,2) is the distance to the surface X explained i» the text,
R; the nuclear radii, and s the distance between surfaces. b; are
the turning points of the single particle level.

It can be obtai ned from (3.21) in a similar way to
Ng](X, Y, Y').

For two identical nuclei the fluxes from both sides are
equal,

0 0+.[=+]2 ~ (4.8)

Iii Ref. 5 we calculated W, „,„, by assuming a
proximity-type formula for the nucleon current. This re-
duced the calculation of the potential to the knowledge of
the one-sided current between two semi-infinite slabs. In
Appendix 8 we rewrote the one-sided flux of Ref. 5 in the
form of (B15). This is identical to N2~ if the penetrability
P(I', s) defined in (82) is approximated by the WKB for-

mulaa

P (l x,s)=e (4.9)

with Y(s) given by (B12)—(814).
The last step towards obtaining an expression for the

imaginary potential from the definition (2.8) is fo change
the variable Y'= Y —vt and integrate 4q&++]& over X
and Y. At the distance of closest approach whe» t =0
and R =d, onehas

oo oo
1

W, „,„,(d) =7rAR de de; dK„[M., (eI,e;,K„,s)+M, .(eI,e;,K„,s)] .
0 —oo 2)&( K

(4.10)

dF(s) ~ )/
ds

which leads to the identity

(4.11)

—2)'(s) —2 5'(s')d
s

(4. 12)

By permuting integrals in (4. 10) a»d using Eq. (4. 12),
we obtain

with

8'l„„,——vARI (s) (4. 13)

For values of s beyond which (2m/A ) ( V]+ V2) =0 on
the surface X, and for fixed energies e;,eI, the dista»ce
b

~

—b2 varies linearly with s. Hence,

cept of Swiatecki and Randrup. ' An essential step is the
similarity of the density matrices (3.18) and (3.21). The
physical content of this similarity is that a large finite nu-
cleus has the same surface properties as nuclear matter.
This is a generalization of the assumption about densities
made in derivi»g proximity potentials. Off-diagonal ma-

trixx

elements are requi red for calculating proximity
currents.

Pollarolo et al. obtained 8', „„.„, by directly evaluating
(2.2). The method involves extensive computation but it
includes shell and curvature effects. In our method such
effects are averaged out by Eq. (3.18), which is an approx-
imation of the exact density matrix. It would therefore be
interesting to make some quantitative comparisons of
these two methods.

I (s) =I ds'[N~z, (s')+4, ~(s')] . (4.14)

Equation (4.13) for W, „,„, is essentially the same as Eq.
(4) of Ref. 5. When the separation between the nuclei is
large enough, the fluxes Nq~ and +[2 derived here are the
same as the one-sided fluxes between two semi-infinite
slabs as introduced in Ref. 5. For smaller separations
there is a difference because the present approach leads to
a penetration factor P=e, which is the WKB limit of
Eq. (82).

The original aspect of the present work is that we have
proved the validity of the proximity method for deriving

from the one-sided currents between interacting
nuclei. Our evaluation is based on a quantum mechanical
expression of the transition amplitude and we obtain the
same result as in Ref. 5, which relied on the classical con-
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APPENDIX A

In this appendix we use a semiclassical approach to
derive a formula for the density matrix of a nucleus

p,(r, r ') =+ 6(E—e )y (r )y"(r ')

at a given e»ergy e. We assume that the nuclei are spheri-
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cal and first concentrate on the radial part f~(r) of y (r).
%'e recall that the WKB approximation" gives

and from (3.10) and (3.19) we obtain

y(d)=y, (A14)
rf,i(r) — sin kr(r)dr+ — a «&b

ki 4

—m (r)
e ' r&b,

Vl

where ki ——EyI, a and b are the turning points, and
T

w, (r}= y, (r)dr
b

with
I /2

2m (1+ i)
yi(r) = yo+, &(r)+

2 2m'Vo=-
+2

(A2)

i.e., independent of d. Throughout this paper we use ex-
pression (A9) for w, (r) where w, (d) is given by (A3) and
y(d) by (A14).

Let us now discuss the angular part of the density ma-
trix. In Eq. (Al) the index a runs over all occupied de-
generate states lm of energy e. Summing over m gives

g I'i (A) Y'i* (0') = Pi(cos8),(21+ 1)
4m.

where 8 is the angle between r and r '. We replace
Pi(cos&) by the asymptotic form' (large 1)

P&(cos&)-Jo[(l + —,
' )8],

where Jo(x) is the zeroth order Bessel function, and take
the continuous limit

The normalization constant CI can be related to the
period 2ri of the specific orbit e, l. If we assume that the
main contribution to the norm comes from the interval
( a, b) and average over the periodical function, we have

g~ I din(e, l),

where n (e, 1) is the density of states. Then we have

(A16)

dr ]
—2A1= fidr=TCi = —,Ci bi .—

o ' ~ki m

Hence,

(A6)
p,(r, r ')=, Jdl 1 n(e, l)f,i(r)f,i(r')2mrr'

XJo[(l+ —,)8] . (A17)
2Pl 1

Cl = (A7)

In our discussion we are interested in points r, r situat-
ed just outside the nuclear surface. If the nuclei are lepto-
dermous this region is narrow and we can approximate
(A4) by

1/2
2m (1+-)

yi(r)= yo+, &(r)+
R

(A8)

where R is the nuclear radius.
The points of interest r or r' are located on the surface

X perpendicular to the z axis at z=d. Due to the sphe-
ricity of the nuclei, only points close to d bring important
contributions. In such a region, w, (r) of Eq. (A3) can be

approximated by

a@=iri(1+ —,
'

) & 0, (A18)

u+ ——Am; —u@(a+ & a@, (A19)

which are related to the momentum components p„, p@,
and p& through the relations

P

1 2 1 2 1
Pr+ 2pe+ 2 . 2@pg2%i r r sin@

(A20)

To be consistent with the semiclassical form (A2) for f,i,
we shall derive in the following an expression for n (e, 1) in
the classical limit.

We follow the approach used by Horiuchi (see, e.g. ,
Ref. 9) and write the volume element of the momentum
space in terms of the variables E, cx@, and a+, where

w, (r)=w, (d)+(r —d)y(d),
R

r —d = (x'+y')

2
PqPe+

sin 6

1/2

(A21)

(A22)

and
]./2(1+—, )

y(d)= yo+
R

because the surface X is defined such as

V(d) =0 .

(A 1 1) dn = dr d@dydp„dp@dp
1

(2m')
1

(2irh)
J dr d@dgd6 dA@do!

where J is the Jacobian

(A23)

This amounts to writing the volume element in the phase
space as

In the classical limit we can take

I+ —,
' =k~R, (A13)

B(e,a@,a~)J=
~(p, pa,p, )

Prie
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4~ m dr
deda@da~ .

(2M)3 p,
(A25}

Integrating over 8 and y gives 2m . An extra factor of 2
appears from taking into account both the positive and
negative values of p„at a fixed energy e. The result is

P(k„s)= 1

1+exp [2Y'(s ) ]
where Y is the penetrability integral

' 1/2
2m1'(s)= f [ V(z, s) —k, ] dz

(82)

(83}

The integration over a& gives 2a~. By introducing the ra-
dial velocity U„=

~ p„ /m and recalling that

b drf0

where the period 7. depends on / through a& ——1+- —, , one
obtains for the density of states n (e, l)

n (e, l) =
mfz

By using (A2), (A7), and (A27), we obtain for the density
matrix (Al) outside the outer turning point

1 m
p,(r, r ')=

(2n)rr' R.
-'

between the turning points of the barrier

V(z s):Vp+ V~ (z,s)+ Vq(z, s) (84)

with Woods-Saxon forms for V] and V2 having surfaces
separated by a distance s. The formula (82) reduces to
the standard WKB expression when Y is large. The flux
4, ~ is obtained from (Bl) by interchanging 1 and 2 and by
integrating over k, &0. A factor of 2 X 2 is necessary if
the spin and isospin degrees of freedom are included.

In order to make contact with the present work we wish
to make a change of variables in Eq. (Bl). The new vari-
ables e; and eI are the binding energies of a nucleon in
slabs 1 and 2, respectively. If Vo&0 is the potential

depth of both Vt and V2, e; and eI can be related to k
through the energy balance in each slab. If slab 1 moves
parallel to slab 2 with the momentum fiq along the y axis,
this reads

(A28)

For points r, r ' situated near the nuclear surface we can
take

e;+ V, = [k„'+(k,—q)'+k,']
2Pl

(85)

and using (A13) we obtain

(2n)

(A29)

This expression is used in Sec. III for deriving the Aux
@(X,Y, t}. The upper limit K,„ is defined by Eq. (3.20).
The index I of y can be removed if one bears in mind that

y depends on k~ through (A13).

B(e;,eI)
B(ky, k, )

A' k, q

Pl

which allows us to write

dk dkydk, = „de;degdk„.
k,qA"

of+ V, = (k„'+k,'+k,'),
2P7

which indicates that e; &0 and eI &0.
For changing variables, we need the Jacobian

(86)

(Bg)

APPENDIX 8

In this appendix we bring the formula for the one-sided
flux used in Ref. 5 to a form comparable to the one de-
rived in the present paper.

In Ref. 5 the one-sided flux from slab 1 to sl"b 2 was
defined as

On the other hand, by substracting Eqs. (BS) and (86) and
introducing the relative velocity

(89)

one obtains

Ak,e„=,f, ,d'I-P(k„s) n, (
~

k
~

)
(2&)3 k, &P f1'

k = (eI —e;+ —,mv ) .1 I (810)

&&[1—np(
i

k
i )], (8 I)

where z is the axis perpendicular to the nuclear surfaces,
n& and nz are the occupation probabilities of a state of
momentum Ak in 1 and 2, respectively, and P (k„s) is the
transmission coefficient for a nucleon with momentum
component Ak, in slab 1. The following semiclassical ap-
proximation was chosen to describe P:

This expression is identical to k~ of (3.4) and one can also
see that k

&

——k~ —q, which gives a physical significance to
k

~
and kq through conservation laws. Using (86), we

rewrite in the integrand of (83)

(B11)

In writing the second equality, we have made use of (3.10)
and (3.12). Hence,
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' 1/2
2mY(s)= y + [V&(z,s)+ V2(z, s)] dz .

Replacing (810) in (811),we obtain

(812) 1 2(Et —ef )e= 2 (e; +EJ ) — ~ + 2 rltV
4 mv

(814)

2m A'r=
2m

The energy

i 1/2

(813)
is negative because e; ~ 0, ef (O.

Equation (813) shows that Y and hence P of (81) can
be expressed in terms of the integration variable k„only.
By using (88) one can finally write

ez, = f 'de; f"
deaf

f" dk„e (Vo+r) k„P(—k„,s),
2

where the occupation probabilities n, and nq have imposed the above limits for e; and ef, and the step function 8 fixes
the limits of k„at fixed K The arguments of the step functions in Eq~. (4.2) and (815) are the same. This can be proved
by using Eqs. (3.4), (3.20), and (4.3).
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