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Assessment of approximations made in breakup-fusion descriptions
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Three methods for calculating the breakup-fusion cross sections are compared; ours, and those of
Baur and Trautmann and of Kasano and Ichimura. All three use the two-step and the spectator ap-
proximations. It will be shown first that, while ours does not make any further approximation, the
other two make a few additional approximations. Errors caused by these additional approximations
are assessed numerically. The errors are found rather large in general. A critical assessment of the
formalism by Austern and Vincent, on which the work of Kasano and Ichimura was based, is also
made.

I. INTRODUCTION

The breakup of both light and heavy ion projectiles is
one of the major subjects of current nuclear reaction stud-
ies. In the simplest version, which may be called elastic
breakup (EB), the projectile a is simply broken up into a
pair, b and x, the target A remaining in its ground state.
It often happens, however, that x is fused with A. This
process, which may be called the breakup-fusion (BF) pro-
cess, is known to contribute significantly (often dominant-
ly) to the singles cross section of b. See Ref. 1 for a re-
view of the BF reaction.

Baur and Trautmann (BT) were the first to study the
BF reaction. BT and their collaborators in fact
analyzed a variety of BF-type processes. In doing these
analyses, they used a formula which we shall henceforth
call the BT formula. This formula was obtained by first
writing the elastic breakup (one-step) DWBA amplitude
in the post form, and then by replacing, in a somewhat
ad hoc manner, the elastic breakup channel wave function
by a more complicated one. An approximation, which
may be called the surface approximation, was then intro-
duced in making the resultant formula calculable.

Subsequently, more elaborate formulation of the BF
process was done by Kerman and McVoy (KM) (Ref. 6),
by Austern and Vincent (AV) (Ref. 7), and by Udagawa
and Tamura (UT) (Ref. 8). All these formulations, as well
as that of BT, use the two-step description of the BF pro-
cess. All four formalisms further treat the particle b as a
spectator, in that the motion of b is described in terms of
the standard distorted wave. In other words, all four for-
malisms are characterized by the use of two approxima-
tions; the two-step and the spectator approximations. For
simplicity, we shall henceforth call them together the
two-step approximation.

Both KM and UT used the prior form (interaction) in
describing the first step, i.e., the elastic breakup process,
and arrived at the saine BF formula, although somewhat
different methods were used for its derivation. In the fol-
lowing, we shall call the KM and the UT formula ottr for-
mula, for simplicity. Our formula has been used rather
extensively and successfully in the past, in analyzing both

massive9 " and light-particle' transfer-type BF process-
es, induced by both light and heavy ions.

Our BF formula is given as (a constant times) the ex-
pectation value of the imaginary part of the optical poten-
tial of the x+A system (which we shall call the x chan-
nel), with respect to the state function for the x channel.
This x-channel wave function is given as a projection
(onto the distorted wave state of b) of the one-step
DWBA breakup wave function.

The formula obtained by AV has the same form as
ours, but differs in one important regard. In place of the
prior form for the interaction, the post form for the in-
teraction appears. It is well known' ' that, while the
post-prior equivalence holds for the one-step DWBA tran-
sition amplitudes, it does not hold for wave functions in
general (like the x-channel wave function), unless the
evaluation of the function is limited to the asymptotic re-
gion. It is also well known' ' that the nonorthogonality
correction term must be present when the post interaction
is used. This is because the (x-channel) wave function,
with the post interaction, inevitably includes the projec-
tion of the incident wave function, which is unphysical.
The nonorthogonality correction term serves to remove
this unphysical component. The post form x-channel
wave function is used in the BF formula of AV, without
being corrected by the nonorthogonality term. Therefore,
AV has to be regarded as an approximate theory in the
sense that it simply neglects the nonorthogonality term
correction (or accepts the unphysical contributions).

Recently, Kasano and Ichimura (KI) (Ref. 15) per-
formed numerical calculations based on the AV formal-
ism. They were thus done under the same AV approxi-
mation. [KI further made the zero-range (ZR) approxi-
mation. ] In the present paper, we intend to assess numeri-
cally the KI approximations. As we shall also show, the
BT is a theory which contains one more approximation to
add to the KI approximations. %e intend to assess the
BT approximations as well. Since, as we noted above, a11

the theories (KM, UT, AV, KI, and BT) use the two-step
approximation, and since our theory ' does not make any
further approximation, we inay sometimes call our theory
"exact" in what follows, for the sake of simplicity. By the
same token, AV, KI, and BT theories will be called "ap-
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proximate" theories.
In See. II A, we shall present our BF formula, which, as

stressed above, is in the prior form. In Sec. II 8, we show
how to transform our BF formula exactly into the post
form. It will be seen that a nonorthogonality correction
term does appear. It will also be seen that, if this correc-
tion term is neglected, the BF formula of AV results. In
Sec. IIC, we shall then show how to obtain the approxi-
rnate formulas of KI and BT. In Sec. III, we present re-
sults of a few typical numerical calculations, and assess
the KI and BT approximations. Concluding remarks will
be given in Sec. IV. In the Appendix, we review briefly
the AV formalism. We do this because AV is not an
ad ho@, but a rather carefully formulated theory. It is
thus desirable to show explicitly where in AV the neglect
of the nonorthogonality term was indeed committed.

II. CROSS SECTION FORMULAS

Here, the symbol (
~ ~

& means that integrations are to be
taken over all coordinates, excepting the x-channel coor-
dinate r. Also, 6„'+ (r, r ') in Eq. (4a) is the optical
model Green's function in the x channel, while 7,' ' and
Xb in Eq. (4b) are the distorted waves in the a ( =a+A )

and the b ( =b +8*) channels, respecti vely. Further-
more, (t); {i=a, x, 6, and 3) denotes the intrinsic wave
function of the particle i

The p"'(r) defined by Eq. (4b) is often referred to as a
source function. The superscript a was attached to signi-
fy that this source function was defined by using the prior
form of the interaction, i.e., V, . Later, we shall introduce
another source function p' '(r), which is constructed by
using the post form of the interaction, i.e., V&. (A precise
definition of V, and V~ will be given in the following. )

For later convenience, we shall give here also the
partial-wave expanded forms of the formulas given above.
If we expand )Ii„'+,'(r) as

A. BF formula in the prior form

The BF reaction that we consider here may be written
q'„'+, (r)=(1/r) g u( (r)Y( (Q),

l„m„

Equation (1) means that, in the first step, the projectile a
breaks up into particles b and x. The particle x is then
fused into the target nucleus A to form a compound nu-
cleus 8*, while b is emitted and observed. We shall call
the system that consists of x and A the x channel, and of
b and 8* ( =x+2 ) the b channel.

The formula for the b singles cross section (via the BF
process) is given ' as

d 2o /dEbd Qb —(2rr/irrU, )d(Eb )

Here, U, is the incident velocity, W„ is the (negative of
the) imaginary part of the optical potential in the x chan-
nel, and 4„'+,' is the wave function of the x channel.
d(Eb ) is the phase space volume of the emitted particle b,
and 1s given as

d(Eb)=(pbkb)/(Srr ))i ),

the radial function, ur (r), is found to satisfy an inho-

mogeneous differential equation written as

I{Pi /2IJ, „)[d /dr l„(1„+—I)/r ]j+E„—U„ Iu( (r)

=p(" (r) . (6a)

E =E Eb+Q, — (6b)

where Q is the breakup reaction Q value. Also, p(" (r) is
A' X

the (1„m„)component of p"', and is given by

pi" (r)=r f p"'(r)Fr (Q)dQ .

Here, E, p„, and U„are, respectively, the energy, re-
duced mass, and optical potential in the x channel. Note
that E„ is related to the energies E, and Eb of the in-
cident and outgoing particles as

p~ and k~ being the reduced mass and the wave number
associated with the b channel. The expectation value of
8'„with respect to ip„'+' in Eq. (2) describes the absorp-
tion in the x channe1.

Within the two-step approximation we employ here, in
which the first-step breakup is treated in the prior form
DWBA, the x-channel wave function 4„'+, ' is obtained
as"

@(+)(—) f Gl+)( i) (a)( r)d —I
')

Inserting Eq. (5) into (2), the latter can be rewritten as

r /dEbdQb = g d ~l„ /dEbdQb

d crt /dEbd Qb ——(2rr/A'u, )d(Eb )

(7a)

(7b)

with

{4b)

B. BF formula in the post form

We shall now transform the BF formula of Sec. IIA,
which was given in the prior form, into that in the post
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form. This is achieved by utilizing a relation, which is
valid if used in the matrix element in Eq. (4b). The rela-
tion is that

V, =H, + V~ —E~ =Hb +H~ + Vb —E,

where H„Hb, and H„are defined, respectively, as

H, =h, +h~+ T,g+ U,g,
Hb ——hb+ Tbg+ Ubg,

H„=h +hg+T„g+U„g,
while

(&a)

Va = Va~ —&u~

Vb = Vb~+ ~a~ —Uba —&~~ .
(Sc)

In the above equations, h; (i =a, h, A, and x) is the in-
trinsic Hamiltonian of the particle i, while T,J, VJ, and

UJ are, respectively, the (relative motion) kinetic energy,
the interaction potential, and the optical potential in the
i +j channel. (It will thus be clear that H„Hb, and H„
are the optical model Hamiltonians for the a, b, and x
channels, respectively. )

The Green's function 6„'+' involved in (4a) is nothing
but the inverse of (E„H„). Insertin—g (8a) into (4b), we
thus see that (4a) is rewritten as

)II„'+~ (r) =4'„'+b'(r) —n(r),
qg(+)(r) I G(+)(r r ) (b)(r )dr

with

(9a)

(9b)

p'"(r)=(&'b '4b4 N~ I Vb IN. P~&'+ &

«r)=(&'b 'lb'. 4" 14"0'~&.+ & . (10b)

We emphasize here that )P„'+b'(r) of (9b) involves the x-
channel wave function components that are projected out
both from the EB wave function and the incident
wave. ' ' The former is physical and is precisely what is
given by )P„'+,'(r) of (4a). The latter is, however, unphysi-
cal, and thus xnust be subtracted. Actua11y, this unphysi-
cal term is nothing but the nonorthogonality term n(r),
and the presence of the n(r) term on the right-hand side
(rhs) of (9a) does achieve the required subtraction. The
presence of the n( r ) term in (9a) is thus crucial in making
the calculated BF cross section free from unphysical con-
tributions. (The situation is exactly the same as that ap-
pearing in the general formalism of two-step process cal-
culations given in Refs. 13 and 14.)

To use )p„'+b'(r ) only is thus physically unacceptable, or
at best considered to result in an approximate theory, in
which an unphysical contribution is accepted. Note that,
if )p„+b'( r ) of (9b) is inserted into Eq. (2), we obtain the BF
formula of AV [given by the second term on the left-hand
side (lhs) of Eq. (17) of AV]. It is thus quite legitimate to
understand that the AV (and KI) formula contains an ap-

proximation of neglecting the nonorthogonality term
correction.

We may note at this stage that both p( '(r) and n(r)
behave as O(1/r ) for r —moo, i.e., that both are long
ranged. It thus makes the construction of )Il„'+,'(r) via the
use of (9) rather involved, offsetting the (seeming) advan-
tage of being able to use the zero range approximation,
when the post form is used in the light-ion induced BF re-
actions.

We may also note that, because of the 0( 1lr ) nature,
the n(r) term does not contribute to the asymptotic am-
plitude of (p„'+,'(r). The asymptotic form of 4„'+,'(r) is
given, if (9a) is used, as

T~ 00

(I('+'(r) ~ r 'exp(ik„r)(X„' 'Ip(")), (10c)

where X„' ' is the distorted wave in the x channel. If we
use (4a), on the other hand, we will have

%'„'+'(r) ~ r 'exp(ik„r)(X„' 'Ip") . (10d)

The EB cross section can be obtained as the absolute
square of the asymptotic amplitude, that appears either in
(10c) or (10d). However, since we have

I

(y' 'Ip'")) I'=
I
(x' 'Ip") I'

because of the equivalence of (4a) and (9a), we see that the
celebrated post-prior equivalence is prevailing for the EB
cross section. This does not mean, however, that the
post-prior equivalence also holds for the BF cross section
[if one sets n(r)=0 in (9a)], because nonasymptotic
values of )Il„'+,'(r) are used in Eq. (2). This difference is
the well-known difference, regarding the post-prior
equivalence or nonequivalence between the one- and two-
step processes '" one- and two-step processes are
represented here by the EB and BF processes, respectively.

C. Introduction of approximations

Having obtained Eq. (9a), which is equivalent to (4a)
(and thus is still exact after making the two-step approxi-
mation), we shall now begin to introduce three (additional)
approximations one by one. It wi11 be seen that the KI
and BT formulas emerge in the course. The approxima-
tions are (1) to use the zero-range (ZR) approximation, (2)
to suppress the nonorthogonality term n(r ), and (3) to in-
troduce the so-called surface approximation. Pf only ap-
proximations (1) and (2) are made, the KI formula
emerges. ]

Once (9a) has been obtained, the introduction of the ZR
approximation (1) can be done fairly safely, at least in
(10a) which has a short range interaction. [We see, e.g., in
a (d,p) reaction, that Vb=V~„.] On the other hand, there
is no way to justify the use of the ZR approximation for
n(r), but this problem did not bother either BT or KI.
The n(r) term did not appear in their formula from the
beginning, a fact which shows that approximation (2) was
made (implicitly) in both BT and KI. In BT, this was
done in a somewhat ad hoc way, being included in their
making of the surface approximation. The way this was
done in the AV (and hence in the KI) formalism is, how-
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ever, a little more subtle, and we shall discuss this in some
detail in the Appendix. (See also the discussions given in
Sec. II B.)

The use of approximation (1), i.e., of the ZR approxi-
mation [which we have to apply to the n(r } term as well],
is to replace (10a) and (10b) by

p' '(r)=D X' '(Br/A)X,'+ (r),
n ( r ).=XpYb '(8 r /2 }7,'+ '( r ),

where Dp and Xp are given, respectively, by

Do JVb—(—r)P. (r )d r,
No f P—.—(r}dr .

(1 II a)

(12a)

This approximation (2), combined with approximation (1),
gives rise to the approximate formula of KI.

In order to explain approximation (3), it is convenient
to use the integral form of ui ~ . This ul ~ satisfies (6a}

if p'"', rather than p"', appears on the rhs. Thus, we have

ul ~ (r)=ui"~ (r)+u) ~ (r),
—(2p,„/111 k„)Xi (r)

X f y, (r')pP' (r')dr',

—(2p„/111 k„)yi (r)

X f Yi (r')p'1 ' (r')dr',

(14b)

where g~ and yI are the regular and irregular solutions of
X x

the homogeneous part of (6a).
The surface approximation of BT, i.e., our approxima-

tion (3), is to make the following three simplifications: (i)

suppress ui ~, (il) ill ui ~ appl'oxlll1atc yl by

CI (Xl Fi ) [whcl'c Ci —ls defined as Xi ~ Fi +Cl
(GI +i' )], and further (iii) set the lower limit r of the

integral to O. We thus have

(r)= —(2p„/lri'k„)1'1 (r)

X f yi (r )pt ~ (r )dr

yi (r)=C( (1'1 —Fl ) .SA

(SA stands for surface approximation. ) The above simpli-
fications (i)—(iii) may be justified if the major contribu-
tion to the reaction comes from the peripheral region.
This is why approximation (3) is called the "urface ap-
proxirnation.

The constant Do is what is usually referred to as the
zero-range Do factor. Np ls the corresponding factor for
the nonorthogonality term. Note that under the above ap-
proximation, we have

n ( r ) = ( Np /Dp )p' '( r ) .

The second approximation, approximation (2), is simply
to neglect the nonorthogonality term, i.e., to set

n(r)=0 .

We remark here that we discussed the KI formula first,
and then the BT formula. This is because the former was
based on a general formalism of AV, and thus permitted
us to single out the surface approximation from the other
two approximations. In the way the formulation was
done in BT, all the three approximations were unseparably
mingled together.

III. NUMERICAL ESTIMATES OF THE ERRORS

In order to obtain quantitative estimates of the error
caused by each of the approximations (1), (2), and (3), we
have calculated cross sections with and without these ap-
proximations. We took as examples the Nb(d, p) reaction
with Ed ——25. 5 MeV, the Ni(a, t) reaction with E =160
MeV, and the Ni(a, p) reaction with E =80 and 160
MeV. The optical potentials used are as follows. For the
(d,p) reaction, the potentials used in Ref. 2 are elnployed,
while for the (a, t) and (a, p) reactions we took them from
Refs. 12 and 11, respectively.

With our formalism, we have to carry out finite-range
calculations, and to do this we must have an explicit form
of the internal wave function of the projectile. We used
the Hulthen wave function for the deuteron, while for the
a particle the wave function was generated by a Woods-
Saxon potential with V=74.9 MeV, rp ——jL.2 fm, and
a =0.67 fm. (With these values of the parameters, the ex-
perimental binding energy was correctly reproduced. ) Us-
ing these wave functions and the potentials used to gen-
erate them, the zero-range parameters Dp and Np can be
calculated. We found that D p

——125 MeV fm and
No=56 fm ~ for the (d,p) reaction, and Dp ——317
MeV fm ~ and Xo ——13 fm ~ for the (a, t) and (a, p) re-
actions. In the ZR calculations, we used these values as
they stand, except that we set Np ——8 fm for the (a, p)
reaction. We found that, with this, the best cancellation
took place between the contributions from the first and
second terms in Eq. (9a) in the asymptotic region.

Even before carrying out detailed numerical analyses,
we can predict the results to some extent. Generally
speaking, the BT approximations are better for cases in
which the first step, i.e., the breakup process, takes place
predominantly in the peripheral region. Thus, they will
be fairly good for (d,p) reactions; the deuteron is so loose-
ly bound that it is broken up at large distances. On the
other hand, the BT approximations would get poorer for
the (a, p) and (a, t) reactions, because a is so tightly
bound. This is more so the case for (a,p), because in this
case the triton, that is to be eventually fused into the tar-
get, penetrates deep into the "deep peripheral" region
(about 2 fm deeper than the usual peripheral region),
which forces the center of mass (c.m. ) of u to be in the
deep peripheral region as well. (See Ref. 11 for a detailed
numerical confirmation of this fact. ) In the case of the
(a, t) reaction, the proton must now be in the deep peri-
pheral region, but the c.m. of the a stays outside. There-
fore, the situation of (a, t} is expected to be intermediate
between those of (d,p) and (a,p} reactions. As we shall
see, these expectations are all borne out by the numerical
calculations.
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A. Singles cross sections

We present in Figs. l—3 the varjous cross sections as
functions of the energy of the outgoing particles. The an-
gles at which these spectra were obtained are shown in
each of the figures. The quantities oo, o„o,+3, and
o $ +g+ 3 presented there are, respectively, the cross sections
obtained without any approximation (i.e., based on our
formalism), with approximation (1) only, with approxima-
tions (1) and (2), and all of the approximations. Thus,
o.~+2 and o.~+2+3 are the cross sections obtained with the
KI and BT approximations, respectively.

In Fig. 1, where the results of the (d,p) reaction are
shown, one sees that o.

~ is larger than o.o by about
40—60%%uo at the higher E~ region and by nearly an order
of magnitude at the lower Ep. Thus, approximation (1),
i.e., the ZR approximation, is found to let the theory
overestimate the cross sections rather badly. Note that
the ZR approximation, used in the analysis of the usual
(d,p) reactions (that strip a neutron into a bound orbit),
normally underestimates the cross 'section. In these cases
the form factor is localized to the nuclear region, while in
the present case of the continuum state transition, the
form factor is not well localized as we have remarked
above. This difference seems to be the origin of the
differing behavior of the error due to the use of the ZR
approximation.

If one switches on approximation (2), the large error at
the lower E~ disappears, the resultant o.&+2 getting much
closer to o.o. Ho~ever, the error at the higher E„ is now

IO
2

)
a) lO—

V)

E

lO
C3

b
C3

I I

Ni(o, t)
E~ = l60 MeV

8, =6
~I.2

r 0~I
/r ~ ly 2+5

/ g /
r

lo

I

60 80
I 1

l0 0 l 20
E',"(Mevi

l40

FIG. 2. Same as Fig. 1, except that this is for the Ni(a, t)
reaction with E =160 MeV.

about a factor of 2. It is remarkable to see that cr&+3+3 is
essentially the same as is o.~+2, indicating that approxima-
tion (3) is good, at least for the (d,p) reaction. This is
what we have expected.

IO

(D~ IO'—
fJ)

E

& IO—
b

'
Nb(d, )
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FIG. 1. Comparison of the cross sections obtained with and
without approximations. Definition of the various cross sec-
tions oo, o~, cd~+2, and o ~+2+3 is found in the text. This is the
case of the Nb(d, p) reaction with the incident energy Eq ——25.5
MeV.

20 40 60 40 80 l20

Ep (MeV)

FIG. 3. Same as Fig. 1, except that this is for the Ni(a, p)
reaction with E =80 MeV (a) and 160 MeV (b).
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B. Partial %vavc cross sections

We have seen above that the BT approximations be-
come ~orst for the (n, p) reaction. In order to see the ori-
gin of these errors somewhat more closely, we present in
Fig. 4 the partial (wave) cross sections defined by Eq. (7b).
They are plotted as functions of I„, by taking the case of
E =160 MeV and E~=60 MeV.

In Fig. 4, we notice that o.o has a sharp peak at around
I =20, with a small hump at the region of small I,

gi(o, pj
E = l60 MeV

Ep = 60 M@V

Bp =60

I

E

b
CU

IO I

r

/
'/

IO

Z----- 0
~ -2+3

I

IO 20

FIG. 4. Comparison of the partial wave cross sections ob-
tained with and without approximations. The rest is the same
as in Fig. 1, except that this is for the Ni(cx, p) reaction with
E = 160 MeV and E~ =60 MeV.

The results for the (a, t) reaction are shown in Fig. 2.
It is now seen that o.

&
and o.1+2 are fairly close to one

another, both being about a factor of 10 too large com-
pared with o.o. It is also seen that the error is reduced
somewhat in o.]+2+3, although it is still a factor of about
5. [However, this does not mean that the approximation
(3) is a good approximation here. It rather shows that, if
approximation (3) is used by itself, it causes one to un-
derestimate the correct cross section by a factor of 2.]

The results shown in Fig. 3 for the (o.,p) reaction tell us
that all the BT approximations are very wild here. The o.

]

overestimates oo by an order of magnitude, and o.]+2 by
nearly two orders of magnitudes. This large error is then
drastically compensated by the similarly large but oppos-
ing error of approximation (3), letting o.]+2+3 be fairly
close to oo. In fact, we see that ~&+2+&-o.o„at least for
large F~, although it should be kept in mind that this
good agreement may very well be a simple accident, and
further that a]+2+3 predicts the spectrum rather errone-
ously.

where oo ts very small. On the other hand, in o.], o&+z,
and o.]+2+3, this sma/1 hump has dramatically grown up
so as to form another peak at around I =5.

Note that the grazing angular momenta are (l~)g„-36
and (1~)s„=10 in the present case, and 1„ is given by
1 = 1 + 1„. Therefore, to have a peak at small I (=5)
means that small I~ and Iz, and hence the nuclear interi-
or, are contributing significantly. The fact that o.o is
small for 1„=5may mean that the cancellation of various
amplitudes, described properly by the use of the finite
range treatment, is taking place there. Such cancellations
appear to fail to take place if the BT approximations are
used.

C. Surface approximation

We have seen in Fig. 3, for the case of the (u, p) reac-
tion, that the surface approximation helped to decrease
drastically the cross section, so that cr~+z+3 became fairly
close to 0.0, awhile 0.]+2 was very large compared with 0.0.
We thus wanted to find out which of three simplifications
(see the end of Sec. II C) that constituted this approxima-
tion was responsible for the above drastic behavior, and
made a somewhat detailed investigation on this point.

%'e found that the first simplification, i.e., the neglect
of u ' of (14) was acceptable; u' ' was indeed small. On
the other hand, we found that yI (r) ~&yl (r) for the inte-
rior r, a fact that is easy to understand: y& (r) is an irreg-

X

ular wave function, while y~ (r) is regular. Therefore, if
p~ (r} is significant in the interior, as is the case in the
(r~, p) reaction, one obtains a much smaller value for ul''',

X

if y~ (r) is used in place of y~ (r) This .explains why the
surface approximation helped in decreasing the cross sec-
tion.

IV. CONCLUDING REMARKS

We showed that the KI (Ref. 15) [BT (Refs. 2—5}] for-
mula for the BF cross section can be derived by starting
from our exact" formula ' and then by making two
(three) successive approximations. We then investigated
numerically how these approximations made the resultant
cross sections deviate from those obtained based on our
formula.

We expected from the beginning that the KI and BT
approximations were acceptable for reactions in which the
(first-step) breakup took place dominantly in the peri-
pheral region. And this expectation was confirmed by
finding that the approximate results of KI and BT agreed
fairly well with our "exact" results, when (d,p) reactions
were considered. We found, however, that the approxi-
mate results differed significantly from ours, for the non-
peripheral (a, t) and (a, p) reactions, in particular for the
latter.

To be noted here is the fact that the error caused by the
first two approximations in BT is often opposite to that
caused by the third approximation. Therefore, it some-
times happens that the net BT result agrees rather well
with ours. Nevertheless, the cancellation of the above er-
rors is rather fortuitous, and is expected to vary drastical-
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ly from one ease to another. Therefore, one would have to
be very careful in drawing definite conclusions, even when

good fits to data are achieved with the BT-type calcula-
tions.

Concerning the BT fits to data, there is another impor-
tant remark to make. Let us look at the o.o and o.&+2+3
curves (which represent, respectively, our and BT cross
sections) in Fig. 3 for the E =80 MeV case. We note
that this is a rather typical discrepancy we experience in
comparing two kinds of cross sections. We further note
that it also happens sometimes that o )+z+3 fits data rath-
er well, while o.o underestimates the data at lower E~.
This discrepancy between the data and o.o is not unexpect-
ed, however. The discrepancy is to be filled by consider-
ing higher order contributions, going beyond the two-step
approximation which is common to our and BT theories.
In fact, our very recent investigation did show that oo
plus such higher order contributions did fit the data at
lower Ez as well. Also there exists experimental evi-
dence' which shows the presence of the higher order con-
tributions. To be satisfied with the fit to data achieved by
the use of o )+2+3, and to conclude that there is no need to
consider any higher order effects, could thus be too
premature. If the higher order corrections are added to
o~+2+3, the resultant cross section would overshoot the
data.
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the nonorthogonality term correction. We shall explain in
this appendix where in AV the above-mentioned approxi-
mation was in fact committed.

AV presented two methods; the wave function deriva-
tion and the operator derivation. We shall discuss here
only the latter, because it is somewhat more self-contained
than is the former, and because KI (Ref. 15) based their
arguments upon it. In quoting formulas from AV below,
we shall attach a prefix AV to the equation number in
AV. We shall also quote them after transcribing the nota-
tion of AV into ours.

The operator derivation of AV begins with writing an
equation called Eq. AV(20), which we shall reproduce
here as

d o!dEbd Qb ——(2m/A'u, )d(Eb )

where

The transition amplitude given by (A2) is exact, ' in
that (Al) together with (A2) gives the exact b singles cross
section. As seen, (A2) is described in terms of 4'+), the
exact wave function of the total system, and of @„' ~', the
exact wave function of the x +A system. We may intro-
duce an exact Hamiltonian H„z for this x +A system, so
that

We are indebted to Professor M. Ichimura for useful
discussions. This work was supported in part by the U.S.
Department of Energy.

( —) ( —) (A3)

APPENDIX: DISCUSSION OF THE
AUSTERN-VINCENT FORMAI. ISM

In the text, we have stated repeatedly that the AV for-
malism contained an approximation, in that it neglected

Equation (A3) gives a precise definition of the quantity
E„z that appears in (Al). It also defines g~„+z). It is a
sum over the eigenstates 4„z.

The next step followed by AV was to go from AV (20)
to AV (21), i.e., to go from (Al) to

d o/dEbd Qb ———(2ir/fiu, )d(Eb )Im(1/n )
2

(x+2) +x +x, A

= —(2ir/A'u, )d(Eb)Im g (qi'+'1 Vb 1Xb '$b4„' g') (0&„' g'pbXb '1 Vb 1''+')/m
(x+3) Q+ (A4)

In (A4), we may replace the energy denominator (E~+ E„„)by the operator—(E„+ H„q ) by using —(A3). Then we can
carry out the sum over (x+2 ) by using the completeness relation

1@(—)) (@(—)
1

(x+3)

reducing Eq. (A4) to Eq. AV (22), i.e., to

d o/dEbdQb= —(2m/A'u, )d(Eb)lm (4'+'1 Vb1Xb 'pb) (pbXb '1 Vb14'+')/n. (A5)

The final step taken by AV was to approximate 14'+')
by 1X,' 'P, P~), and a'iso H„~ by the optical model
Hamiltonian H„. (Because of these two approximations,
the AV formalism employs the two-step approximation

discussed in the text. ) Note that the latter approximation
is to replace the Green's function (E+ H„z) ' in {A5)—

14'xka)(E —H&)($~$„1. We thus find that (A5) is
replaced by
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d2cr/dEbdQb ——(2'/flu, )d(Eb)

x[(p' 'I —Im(E„—H„) 'lp ')/rr],

where we have used p' ' that was defined in Eq. (10a) of
the text.

The derivation of (A6) more or less completes the re-
view of the operator derivation of AV. W'e find it con-
venient, however, to go one step further, by remarking
that an identity exists, which reads '
—Im[(E+ —H„)-']—= —Imo„'+'

=~IX.-'&(X„'- I+G„'+'+IV„G„+'.

If we insert (A7) into (A6), it is easy to see that the first
and second terms of the rhs of (A7) give rise, respectively,
to the EB and BF cross sections. We thus have, in partic-
ular, the BF cross section of AV as

d o/dEbdQ. b (2n/A——u, )d.(Eb )

{( (b)G(+
I

1V
I

6 +i IbI)/

= (2vr/Ru, )d(Eb )

x ((+'„,b'
I

IV„
I

qi„'+b ) /7r) .

We now show that (A8) is not the unique result one gets
from the starting equation (A1}. In order to see this, we
first note that the following identity holds:

(e'-'y X'-'I v„l q'+ )

(@x,AAbXb
I
[Vb+a(Hx, ~ —E.}l

I

+'+

Here, a is a constant. Eq. (A9) is true, because
(e„'-„

I
(H„„—E„)=O.

We may use in (A4) the rhs, instead of the lhs, of (A9),
and then follow the procedure we did in going from (A4)
to (A5). We then find that the factor (pbX'b

'
I

Vb
I

4'+ )
in (A5) is replaced by

(4'bX'b 'I Vi Iq"+ &+«H, ~ —E )(&bXb 'I q'+
&

Note that the (H„q E„) factor does not —vanish (identi-
cally) any more.

L«us use «10» in p»ce of (dbXb I Vb
I

q'+'& in
(A5), and again go through the procedure by which we ob-
tained (A8} from (A5). We then have

d a/dEbdQb = (2n/hu, )d(Eb)

x [(( 4„' b' an )
I
Iv—„ I

{4'„'+b' an ) ) /m ], —

(A11)

where n stands for the nonorthogonality term n(r"). We
may now choose a=1. We then see that (A11) reduces to
our formula, given in Eq. {2)of the text.

It is thus seen that the AV formalism contains a serious
ambiguity. It can derive either the AV formula or our
formula (or anything else) by starting from the same (ex-

{E H)+'+'=(4—'b4
I

V.
I
X.'+'4. 4~ & . (A13)

Namely, 4„'+' satisfies an inhomogeneous equation with a
prior form source term, without being corrected by the
nonorthogonality term.

We can now use the relation in Eq. (Ba} in the text to
show that (A13) is replaced by

( E„H„)%„'+'= ($8$„ I

V—b I X,'+ P,$„)
(E„H„)(gap„—I X,'+—Q, $~ ), (A14)

showing the clear onset of the nonorthogonality correc-
tion, with which the post form source term must be ac-
companied.

It is interesting to show that (A14}can be rewritten as

{E H. )[+'+'+(&84—
I

X'+'4.4~ &]

=(4'~4
I vi IX'+'&.4'~ &

which shows that the solution of an inhomogeneous equa-
tion, having only the post form source term, is not 41'„+',
but

+*+ ='P + +(4ii4'
I
x.+ 0"4~ &

Clearly, we can express this function 4„'+' as

(A16)

act) expression given by (Al}. And the above argument
shows that the ambiguity was brought into the theory in
the step of going from (A4) to (A5). Note that this step
was to tnake a transformation of an expression, which
contains exclusively on-the-energy shell quantities, into
another, which begins to use off-the-energy shell quanti-
ties for the first time. The trouble encountered by the AV
formalism, as shown above, means that such a transfor-
mation should not be attempted. Note that to attempt
this is essentially the same as to attempt to obtain a wave
function in the nonasymptotic region, when its behavior is
known only in the asymptotic region. One easily sees why
one encounters an ambiguity.

In the text, we have stated repeatedly that one should
use the prior form if one wants to avoid the appearance of
the nonorthogonality term. And in justifying this state-
ment, we have referred to the arguments given in Refs. 13
and 14. Since this is the crucial point of the present pa-
per, we shall review here briefly the arguments in these
two references. As seen, we work in coordinate space, and
work out equations which are valid both in nonasymptotic
and asymptotic regions. It is thus very unlikely that our
formalism would suffer from such an ambiguity.

We want to make our presentation as simple as possi-
ble, and make the two-step approximation of the text
from the beginning. We thus start by writing the total
wave function, which is an eigenstate of H, + V„as

+'+ = Ix'+'&.4~ &+q"+'I4.4a& .

Here, for simplicity, we assume that the particle b has
been captured by 3 so as to form a nucleus 8 in a state
denoted by Pz.

The most important point of the arguments given in
Refs. 13 and 14 (which the reader will follow rather easi-
ly}, is that 4,'+' satisfies an equation written as
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qp(+)' (y y i)II(+)) (A17)

which shows that it is a projection of the total wave func-
tion of (A12), including the incident wave component,
upon the state

~ PzP„). Since the latter. component should
never contribute to the x-channel wave function, it is
quite legitimate to say that 4„'+' contains an unphysical

component.
A11 the above arguments remain valid even after replac-

ing the wave function Pt) by Xi, Pb .The above argu-
ments can then be used to justify the arguments we
presented in the text. Namely, the post form BF formula
must contain nonorthogonality corrections, if one wants
to avoid unphysical contributions.
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