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The microscopic nonrelativistic first-order optical potential for proton-nucleus scattering is stud-

ied in some detail. Momentum-space calculations have been performed for a number of different

target nuclei at proton energies above —100 MeV and these microscopic predictions are compared

with experimental cross section, analyzing power, and spin-rotation function data. The input to

these calculations consists of the free on-shell nucleon-nucleon t matrix, its nonlocal and off-shell

structure, the treatment of the full-folding integral, and target densities obtained from electron

scattering. Off-shell and nonlocal effects, as well as various factorization approximations, are stud-

ied. The sensitivity to uncertainties in the off-shell extension of the t matrix, within the context of
the Love-Franey model, is explicitly displayed. Similarly, uncertainties due to nonlocalities and in-

complete knowledge of nuclear densities are shown. Explicit calculations using the t matrix of Love

and Franey indicate that these effects play significant roles only for relatively large angles {61& 60 )

and/or lower energies {-150MeV). These studies reinforce the conclusion that the lack of agree-

ment between such first-order predictions and the data for spin observables at small angles arises

from a physical effect not included in the nonrelativistic first-order theory, rather than from any un-

certainty in the calculation or in its input.

I. INTRODUCTION

The extraction of physically meaningful microscopic
information from present-day high-quality elastic scatter-
ing data at intermediate energies is severely limited by the
dominance of simple geometric aspects of the scattering
which are described by any reasonable treatment of the
first term of the multiple scattering expansion for the op-
tical potential. This dominant geometry tends to mask
our incomplete knowledge of the effective two-nucleon in-
teraction and higher-order multiple scattering terms. The
sought-after microscopic information which resides in the
fine details of accurate data cannot be addressed with con-
fidence unless the theoretical uncertainties in the dom-
inant first-order theory of the optical potential are under
precise control. Most implementations of first-order opti-
cal potential theories of the Kerman, McManus, and
Thaler (KMT) type' have been carried out under a local,
on-shell assumption in which the optical potential is
described by t(q)p(q), where t(q) is the nucleon-nucleon
(NN) t matrix deduced from NN data, p(q) is the nuclear

density, and q is the momentum transfer. The successes
of these treatments can be attributed in large part to the
correct gross geometrical features of strength and range.
The shortcomings of these treatments, especially at ener-

gies below several hundred MeV or for spin-dependent ob-
servables, can arise from a variety of different sources, in-

cluding higher-order terms in multiple scattering, relativ-
istic dynamics, nuclear medium dependence of the NN in-

teraction, and Pauli exchange effects. Not the least
among the theoretical uncertainties is the reliability of the
local, on-shell ansatz for the first-order multiple scatter-
ing term of the optical potential. In this paper we
describe the details of a momentum-space formulation
and calculations of elastic proton scattering due to a
first-order microscopic optical potential. Results from in-
vestigations of the influence of off-shell and nonlocal ef-
fects are presented so that the theoretical ambiguities of
the first-order theory as a function of energy, target mass,
and scattering angle may be judged.

In this paper we focus entirely on the consideration of
variants of the first-order nonrelativistic impulse approxi-
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mation. Theoretical input to the calculations is restricted
to the free tzz and to densities obtained from electron
scattering. No adjustments or modifications arising from
the sources already mentioned are made (relativistic ef-
fects are considered in separate papers). The motivation
for such a careful examination of the (isolated) impulse
approximation (IA) lies in the fact that it is the center-
piece of multiple scattering theories. Uncertainties and
ambiguities which arise directly from the IA affect not
only one s ability to extract physical implications from ex-
perimental data with the IA but also one's ability to ascer-
tain the signature and the importance of relativistic ef-
fects, medium effects, etc. Of course, IA uncertainties are
always present in addition to any ambiguities which arise
from other sources. Thus it is crucially important to de-
fine sharply the range of variability inherent in predic-
tions which rely strictly on the IA. Once the IA is care-
fully characterized, the investigation of other dynamical
effects and the extraction of nuclear properties can be
conducted with much greater confidence.

We choose a momentum-space representation for the
calculations of the optical potential and for the solution of
the elastic scattering equation primarily because the off-
shell NN t matrix arising from a realistic potential model
is naturally defined in this representation. In the initial
calculations described and presented here, we do not em-
ploy such a general t matrix but rather limit ourselves to
the t matrix of the Love and Franey model. The closed-
form expressions of this model simplify the computation-
al tasks, while the on-shell values are realistic in that they
are fitted to NN data and the off-shell extension is well
defined. The computer code wIZARD1, which we have
developed for the nucleon-nucleus calculations, can ac-
cornmodate a more general NN t matrix. The
momentum-space method is ideally suited to treating non-
localities which arise in the microscopic optical potential
without the need to find local equivalents or to adopt a lo-
cal ansatz. Local prescriptions which turn out to be ade-
quate for the description of elastic scattering data are not
necessarily adequate for the complete description of the
elastic wave function. Since the latter is needed for dis-
torted wave calculations of inelastic scattering, we prefer
to retain all nonloca1 features of our microscopic optical
potential with a view towards eventual use of the resulting
elastic wave functions in calculations of other reactions.

The momentum-space treatment of proton elastic
scattering employed in this work is similar in many
respects to approaches to pion-nucleus elastic scattering.
However, the important features of the pion case at inter-
mediate energy, namely the resonant energy dependence
and the dominance of a few angular momentum states of
the two-body t matrix, are replaced in the proton case by
a weaker energy dependence, strong spin dependence, and
a much larger range of momentum transfer and signifi-
cant angular momentum components. In this work the
first-order optical potential, expressed as the nuclear
ground state matrix element of the NN t matrix, is treated
in the optimum factorization approximation following the
manner recently employed for pions. The nonlocalities
and off-shell dependence predicted by this treatment
derive from both the range and the energy dependence of

the two-body t matrix. In the pion case it is the nonlocal-
ity from the energy dependence which is the more impor-
tant, while in the proton case it is the reverse. Much of
our attention in this work is focused upon the range non-
locality of the t matrix at a fixed two-body energy which
is related to the beam energy.

A similar momentum-space formalism has been
developed and applied to intermediate energy proton elas-
tic scattering from He and He by Alexander and Landau
and by Paez and Landau. An on-shell NN t matrix ob-
tained from phase shift data and extended off shell
through form factors obtained from a separable potential
model is used in that work. The viability of that ap-
proach and the ability of first-order optical potential
theory to reproduce the qualitative behavior of angular
distributions from helium targets over a large range of
scattering angles and beam energies is demonstrated in
that work. Of particular note is the reproduction of
back-angle peaks associated with exchange effects. This
behavior cannot be obtained from local optical potentials
constrained to behave like the nuclear density shape. The
back-angle rise in the angular distribution from light nu-
clei is also found in our calculations for "He, ' C, and ' O.
The uncertainties in the NN t matrix and nuclear density
input and the factorization methods employed for the cal-
culation of the first-order optical potential are found from
our work to be largest for light nuclei and back angles.
The need for exotic exchange mechanisms in explaining
this phenomenon cannot be made in a convincing manner
until the performance of the standard first-order theory is
accurately documented. The results of our calculations
suggest that for very light nuclei nothing less than a com-
plete folding of a realistic off-shell t matrix with the nu-
clear density matrix can settle this question. We note that
for inelastic scattering at large angles a strong sensitivity
to the off-shell dependence of the effective NN t matrix
has been inferred from the comparison of results from
several models based on NN data and modified to account
for the influence of the nuclear medium.

The recent work on elastic scattering in which a Dirac
formalism has been so successfully applied further points
up the need for the studies presented herein. In order to
isolate the physical effect which accounts for the im-
proved description of the data and to ensure ourselves of
its unique identification, one must be able to eliminate
other possible sources of effects of a similar character.
This is one of the main thrusts of the present work.

In Sec. II we describe the optimum factorization treat-
ment that we have employed for the first-order optical po-
tential. We also describe several other factorized treat-
ments that we have used to estimate the sensitivity to be
expected from different approximate treatments of the
full-folding integral. The expansion of the spin-dependent
momentum-space optical potential in angular momentum
states is given in Sec. III. We also describe the methods
which are employed in various aspects of the calculations,
including treatment of the Coulomb contribution to the
optical potential and the treatment of high orbital angular
momentum states. A discussion of results is contained in
Sec. IV. A summary of the accomplishments of this pa-
per is given in Sec. V.
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II. THE FIRST ORDER OPTICAI POTENTIAL U(k', k)= U"'(k', k)=A(k ', y, i
1-~ yo, k), (2.5)

A. Underlying theory

The Watson' multiple scattering series for the optical
potential operator appropriate to the elastic scattering of a
particle (0) from a bound state of A particles can be writ-
ten

where ~ is any one of the ~o;, and we have used the an-
tisymmetric character of ~po). To relate the operator r
to the t matrix, which represents the solution of the prob-
lem of the scattering of two nucleons, we express Eq. (2.2)
in the form

+Oi toi ~oi ~60+pi (2.6)

U= Q ro;+ Q rpg QGoroj+ (2.1)
i = I j&1

Here Gp stands for (E+i5 Ho—)
' which is the ProPaga-

tor for the noninteracting projectile-target system
governed by the Hamiltonian Ho, which in turn is given
as the sum of the projectile kinetic energy operator ICo

and the total Hamiltonian Hz of the interacting target
particles. The operator Q projects onto the space spanned
by all antisymmetric A-body eigenstates of Hz except the
ground state. The scattering operator ~o; is given by

Oi Vpi+VpiQGOVpi 1 (2.2)

where vo; is an NN potential operator for interaction of
particles (0) and (i)

The momentum-space optical potential matrix element
is given by

U(k', k)=(k', Po( Upgo, k), (2.3)

where
~ Po, k) stands for

) Pp) ( k) in which
( Po) is the

ground state of the target nucleus and
~
k) is the plane

wave for the projectile in the zero momentum frame of
the projectile plus nucleus system. If the position-space
representation of the optical potential U(r ', r) can be
described by 5(r ' —r)UL (r), then the calculation of the
elastic scattering obseryables could proceed in the stan-
dard fashion from solutions of the Schrodinger differen-
tial equation. Since the microscopic description of U
yields, in general, a nonlocal optical potentia1, the re-
quired position-space wave equation is an integro-
differential equation. Rather than take this approach to
the calculations, we employ the momentum-space repre-
sentation of the elastic scattering equation for the transi-
tion amplitude. This is the Lippmann-Schwinger integral
equation, which is

T(k', k)=U(k', k)+ d k"
E(k)+i5 —E(k")

(2.4)

where k is the initial (on-shell) momentum and E(k) is
the corresponding initial energy of the system. The prin-
cipal advantage of performing the calculation in this
manner is that one is not hampered by the necessity of
devising approximate treatments of the microscopic
theory of the optical potential which lead to manageable,
but questionable, forms for U in the position space repre-
sentation. Additional advantages include the simple in-

corporation of relativistic kinematics and recoil.
We here restrict our attention to the first-order multiple

scattering term for the optical potential. That is, we take

toi =Upi+ Uor ~Gotoi (2.7)

T(k ', k) = T(k ', k),
A —1

(2.8)

where the auxiliary elastic amplitude is determined by the
solution of the integral equation

T(k ', k) = U'"(k ', k)

d3k„U"'(k', k ")T(k ",k)
(2 9)E(k)+i5 —E(k")

and the auxiliary first order optical potential is defined by

U'"(k ', k) =(A —1)(k ', Po ~

t
~ Po, k), (2.10)

and the Projector I' stands for
~ Pp) (Pp

~

which is related
to Q by P=W Q, whe—re W is the projector onto the
complete, anti~smmetric space of the target nucleons.
The operator tp is presumably much more readi1y ap-
proximated by the free NN t matrix t p; than is Tot.

A supporting argument for this assertion is as follows.
For ground state target expectation values, such as the one
in Eq. (2.5), the important plane wave matrix elements of
the operator for scattering of the projectile from a bound
nucleon are those in which very little momentum is
transferred to the bound nucleon. These momentum
states of the bound nucleon have a large overlap with the
nuclear ground state [this can be verified from Eq. (2.26)
given later on]. If the free N-N t matrix tp; were to be
used in Eq. (2.5), then intermediate states in which one
nucleon has a large overlap with the single particle states
of the target would be favored. The intermediate state
structure of the operator to;, given by Eq. (2.7), is such
that this would also be the case were I;o; to be used in Eq.
(2.5) since W ~pp)= ~pp). The Watson operator ro;, on
the other hand, has the target ground state explicitly
prohibited from the intermediate state spectrum because
of the operator Q and is therefore not so readily approxi-
mated by the free t

The first order KMT prescription is equivalent to the
aPProXimation tp;-tp; with 7.o; calculated from Eq. (2.6)
and U' '(k', k) from Eq. (2.5), without further approxima-
tion. %e will comment on the above-Inentioned approxi-
mation shortly. The target ground state matrix elements
of ro; do not have to be calculated explicitly since, upon
taking the relevant matrix elements, Eq. (2.6) takes on the
same form as the j.ntegral equation for the elastic scatter-

ing amplitude T(k ', k) given in Eq. (2.4). The combina-
tion of the three equations (2.4), (2.5), and (2.6) yields the
familiar first-order KMT formulation in which the elastic
scattering amplitude is given by
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where t is any one of the to;. Since the operator to; con-
tains no restriction (other than antisyrnmetry of the target
nucleons) oo the allowed intermediate states, the auxiliary
optical potential U' '' contains contributions from inter-
mediate states in which the target propagates in its
ground state. We emphasize that these contributions are
not spurious since they are not present in the true (Wat-
son) optical potential which is the equivalent of the
above-mentioned KMT formulation and which is given by
Eq. (2.5). We also note that, although an approximation
of to; in Eq. (2.10) by the free-space NN t matrix to; ig-
nores nuclear medium modifications of the NN scattering
amplitude contained in the definition of the auxiliary
KMT optical potential U '', it does not ignore nuclear
medium modifications of the effective NN scattering
operator (~) used in describing the equivalent physical
(Watson) optical potential. For example, if to; were taken
to be the free NN t matrix and an infinite nuclear matter
model employed for the description of the target jn the
propagator of the second term of Eq. (2.6), then ~o; would
reduce essentially to the Brueckner-Bethe-Goldstone '

g
matrix for the scattering interaction of a distinguishable
particle from a nucleon constituent of nuclear matter.
This is because the ground state projector P becomes, in
this 1imit, the projector onto the interior of the Fermi
momentum sphere. If the relation kt-( p ) between Fermi
momentum kz and nuclear matter density p were to be
«sed with the local density approximation p p(r) for a
finite-sized nucleus, then Eq. (2.6) can be expected to con-
tain a substantial overlap with the content of these ap-
proaches. For a nucleon projectile, a feature of the local
density g-matrix approach that is not contained in Eq.
(2.6) is the antisymmetrization of the project i le with
respect to the target nucleons. In this work we have not
as yet addressed the identity of the projectile in the
description of the theory underlying our approach. We
adopt the approach of Picklesirner and Thaler' in this
matter, who show that it is possible to develop a multiple
scattering expansion in the case where the projectile is
identical with the target nucleons by distributing, in an
exact way, the Pauli exchanges involving the projectile
amongst all terms of the multiple scattering expansion so
that in each term the identity of all the "active" particles
experiencing the residual interaction is respected. For the
first-order multiple scattering term, this formulation leads
to the same expression as given in Eq. (2.10) for the auxi-
liary KMT optical potential, with the requirement that to;
be antisymmetrized with respect to exchange of the pro-
jectile with just particle (() of the target. This result and
its extension to higher-order multiple scattering terms is a
confirmation of the validity of the prescription advocated
by Takeda and Watson" and by KMT. It is a physically
reasonable approach for high energy scattering. For low
energies it may be more appropriate to retain the full re-
strictions of ( A + 1) body antisymmetry in each term of a

I

multiple scattering expansion. ' In this way a nucleon-
nucleon scattering operator having features very close to
those of a finite nucleus g matrix would be obtained for
use in a first-order optical potential. Ho~ever, there
would remain residual differences due to the fact that the
definition of the standard g matrix originates from bound
state perturbation theory in which the zeroth-order Ham-
iltonian is symmetric in the coordinates of all particles in
the system. In the scattering case the corresponding
Hamiltonian is the asymptotic channel Hamiltonian
which, by its very nature, is necessarily not symmetric in
all A +1 body coordinates. An antisymmetric multiple
scattering model incorporating these considerations is be-
ing developed and investigations of the first-order term
are in progress. '

The calculations described in this paper utilize Eqs.
(2.8)—(2.10) together with the assumption that t in Eq.
(2.10) may be replaced by t, the antisymmetric free NN t
matrix. Since to; is a many-body operator due to
the many-body nature of both .V and Go in Eq. (2.7), the
validity of this assumption is difficult to judge. At the
very least a three-body model is needed to investigate this
point, as well as to fix a suitable prescription for the effec-
tive NN energy at which the free NN t matrix employed
should be evaluated. We do not investigate these ques-
tions in this work. We choose a reasonable prescription
for the energy parameter of the free NN t matrix and con-
sider the consequences of various factorization prescrip-
tions for the evaluation of Eq. (2.10) and the consequent
influence on the scattering observables.

T(k ', k)=U(k ', k)+ d3k„U(k ', k")T(k, k)
E(k)+i6 —E(k")

(2.11)

where

U(k ', k)=(A —1)(k ', Po ~

t(e)
~ Po, k & . (2.12)

Here t(e) is the free NN t matrix evaluated at a fixed en-
ergy e to be specified shortly. In Eq. (2.12) the integra-
tions over the initial and final momenta of the struck nu-
cleon of the target are reduced to one momentum integra-
tion through conservation of total two-nucleon momen-
tum obeyed by the operator t(e) That is, throu. gh the use
of the relation

B. Optimum factorization

In the remainder of this paper we will deal only with
the first-order optical potential within the KMT formula-
tion and therefore omit the superscript denoting first or-
der from Eqs. (2.9) and (2.10). The problem at hand is
described in the zero momentum frame of the nucleon-
nucleus system by

(k';k; ~t(~)~k;k, &=a(k +k; —k —k, )(k', k; ~t(~)~k;k, &, (2.13)

with the introduction of the variables q=k ' —k, K= —,(k '+k), and p=k~ ——, q, Eq. (2.10), when expressed with
kinematics that maintain time reversal invariance, becomes
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0( k ', k ) = ( A —1 ) f d p g ( k '; p ——,
'

q, s, i
i
t (e)

i
k; p + ,' —q,s,i )p';„',[m '( p, q, K );m( p, q, K)], (2.14)

where

3 —1qKA —1qKm'=p — —+—;m=p+ —+—.
2 3' 3 2

(2.15)

In Eq. (2.14), s and i are the spin and isospin projections of the struck nucleon which must be conserved for elastic
—+

scattering, and U(k, k) and the matrix element of t(e) are operators in the spin and isospin space of the projectile nu-
cleon. The quantity p';„',(m', rn) is the one-nucleon density matrix of the target corresponding to a change in the intrinsic
momentum from m to m' for a nucleon of spin and isospin projections s, i B.y intrinsic momentum we mean the
momentum of a nucleon relative to the center of mass of the remaining nucleons (core). To simplify matters, we assume
that we are dealing with a spin-saturated nucleus, i.e., p';„',(m', m) =p';„",(m';m) =p;'„,(m', m). In this circumstance, the
spin trace will eliminate those components of the t matrix which depend (linearly) on the spin of the struck nucleon. The
eliminated terms are the tensor term, and the 0 ~

o.
2 and 0 &. 02~& ~2 parts of the central term. The remaining terms are

the spin-independent central term and part of the spin-orbit term for each of the pp and np t matrices. We denote these
"reduced" t matrices by t' and the corresponding density matrix by p;„,where n =n,p.

Thus far we have for a proton projectile

0(k', k)= g f d'p(k', p ——,
'

q i

t' (~)
i k;p+ —,

'
q)p;, t(m', m),

a=n, p

(2.16)

where the density matrices are normalized to X for neutrons and Z for protons. It is convenient to make a change of in-

tegration variable from p to P= p+(K/3 ), so that Eq. (2.16) becomes
r

U(k ', k }= g f d'P k ', P ————t' (e) k;P+ ———p;„,P —y —;P+y—
2 A

'
2 3 '" 2' 2

(2.17)

where y=(A —I)/A. We note that the density matrix is
related to the momentum-space density profile p (q) of
the nucleus by

A —1
p (q)—=p'. t

I

This is expected to be a good approximation for X =Z
nuclei.

The NN t-matrix element in Eq. (2.17) is evaluated in
the zero-momentum frame of the nucleon-nucleus system.
The relationship to the corresponding t-matrix element
evaluated in the zero-momentum frame of the two nu-
cleons is taken to be

where p (q) is the Fourier transform of the position space
point neutron or point proton density profile defined in a
system of coordinates with the origin at the center of
mass of the nucleus. The normalization is such that

p (q =0)=N or Z. If q is the momentum transfer taken

up by the degree of freedom described by the position R
of the struck nucleon relative to the center of mass of the

target, then (A —I/A)q is the momentum transfer taken

up by the degree of freedom described by the position

r=(A/3 —1)R of the struck nucleon relative to the
center of mass of the core. %'e will deal with the density

p (q), since for protons it can be obtained from the nu-

clear charge density measured by electron scattering after
the intrinsic proton charge form factor is divided out. We
will take the point neutron density to be equal to the point
proton density for X=Z nuclei unless otherwise stated.

I

p q K
2

(2.20)

2
k' —P—

2 A
(2.21)

The first factor ri in Eq. (2.19) is the Moiler' factor for
the frame transformation and is given by

t'(e) k;P+ ———
2 3 ' 2

=7)(P, q, K)(A '
~

t' (E)
i A)NN, (2.19)

where the initial nucleon momentum 4 and the final nu-
cleon momentum 4 ' in the zero momentum frame of the
NN system are taken to be given by the nonrelativistic
definitions

q(P, q, K)=
K - q K

N NE (k)E P+ ———
EN(A ')EN( —4 ')EN(A)EN( —4)

r

qEN(k ')EN P ———
2

1/2

(2.22)
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where EN(k) is the (relativistic) energy of a nucleon of
momentum k. This factor imposes the Lorentz invari-
ance of flux. The NN t matrix on the right-hand side of
Eq. (2.l9) can be written in the form d P Pp «P —y —;P+y—=0 (2.30)

The time-reversal invariance property of the ground state
density matrix for even-even nuclei leads to

where

q = A' ' —A' = k ' —k

(2.23)

(2.24)

so that AU is zero if we choose Po ——0. Thus the optimal-
ly factorized optical potential is

U(k', k)= g(q, K) g t' e;q, K p (q),

1 A+1—K —P
2

(2.25)

This form is useful since the roles of the variables q and

2M are reversed in a spatial exchange operation. The
model of the NN t matrix that we employ is specified in

terms of its dependence on q and 2A . With these nota-

tions, Eq. (2.17) becomes

U(k ', k)= g f d Pg(Pq, K, )t ['e;q2M, (P)]
a=n, p

)&p;„, P —y —;P+y — . (2.26)

This "ful1-folding" expression for the first-order KMT
optical potential is numerically quite difficult to compute
and to our knowledge no microscopic treatment of proton
elastic scattering which fully incorporates this integral has

been reported. Most treatments have adopted a local form
(independent of M) for the NN t matrix. This leads to a

t (q)p(q) structure in which the equivalent convolution in-

tegral in position space has effectively been performed. In

this work we employ the optimum factorization approxi-

mation for Eq. (2.26). Since the nuclear size is signifi-

cantly larger than the range of the NN interaction, and

therefore also of the t matrix (if the energy parameter is

fixed), the most slowly varying factor in Eq. (2.26) is rit'

The method of optimum factorization is to expand gt' in

a Taylor series in P about a fixed value Pp, which is

chosen by requiring that the contribution of the first

derivative term is minimized. The expansion

(2.31)

where g( q, K ) shall be used to stand for g( P =0, q, K ).
Referring back to Eq. (2.19), we see that the optimum

choice for factorization, P=O, selects the initial momen-

tum of the struck nucleon to be (q/'2) —(K/A) and the fi-

nal momentum to be —(q/2) —(K/A) in the frame of
zero total momentum of the system. This is illustrated

pictorially in Fig. 1. In the limit of a single nucleon for

the target (A =1), these Inomenta become —k and —k ',

which are the correct values for NN scattering. Also, in

this limit, g 1 and p (q)~1. In the general case, the
recoil effects for a finite target mass are included through
the kinematics employed in Eq. (2.31).

The optical potential obtained thus far is an operator in

the spin space of the projectile. To make the spin depen-

dence explicit we write the t matrix t' (which has been

averaged over the spin of the struck nucleon) in the form

t (e;q', 2M)=t'(E;q, 2M)+ —cr q)& Mr (e;q, 2M) .

(2.32}

The first term corresponds to the central spin-independent

contribution, while the second term corresponds to the
spin-orbit contribution. In the latter term the usual total
Pauli spin operator of the NN system is replaced by just
the projectile's Pauli spin operator, the other having been

eliminated by the trace over the spin of the struck nu-

cleon. With an on-shell constraint, t~ for a=n, p is pro-

portional to the NN Wolfenstein' spin-independent

q(P)t' (P)=q(Pp)t' (Pp)

+(P—Pp) 8- q(Pp)t' (Pp)+ (2.27)

when used in Eq. (2.26) gives

U(k ', k)= 71(Pp, q, K) g r' [E;q,2A (Pp)]
a=n, p

Qp (q)+AU+ .

(2.28)
where

[B g(P, )t' (P„)]
po

x J d'P(P —Pp)p;„, P —) ~;P+y (2.29)

FIG. 1. The first order term in the optical potential. The di-

agram illustrates the kinematics in the zero total momentum

frame implied by "optimum" factorization. Here q =(k ' —k)
and K= 2(k'+k).
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scattering amplitudes A~„(q) and A~~(q), respectively,
while t~~, for a=n, p, is proportional to the NN Wolfen-
stein spin-dependent scattering amplitudes C~„(q) and

C~~(q), respectively .Substitution of Eq. (2.32) into Eq.
(2.31) gives the optical potential as

resemblance of the off-shel1 behavior inherent in this t-
matrix model with that obtained for r matrices generated
from phenomenological potentials is not known. We view
the obtained nucleon-nucleus results as including typical
off-shell effects related to the range of the interaction.

U(k', k)= U'(k ', k)+ —o"q XKU (k', k),
2

(2.33) C. Other factorizations

where the central term is given by

U'(k', k)= g(q, K) g t' e;q, K p (q),

(2.34)

and the spin-orbit term is given by

U (k', k)= g(q, K)

X g t~ e;q, K p~(q).L,S

a=n, p

(2.35)

Equations (2.33)—(2.35) exhibit the nonlocality and off-
shell effects present in the optimally factorized optical po-
tential. The nonlocality is evident in the dependence of g
and t upon K= —,'(k '+k). The factor (i/2)0"(q XK)
comes from the momentum representation of the spin-

orbit operator L S and is always included in optical po-
tentials which are referred to as local. The off-shell ef-
fects enter in Eqs. (2.34) and (2.35) because the three argu-
ments of t~ and t~ are completely independent. Inspec-
tion of Eqs. (2.23)—(2.25} shows that the imposition of
the two-body, on shell constraint

~

4 '
~

=
~

4
~

and

@=EN(4 ) + EN( —4) in terms of the variables q and K
leads to

q K=O, (2.36)

q + E =44 (2.37).

where 4 is the on-shell nucleon momentum in the zero
momentum frame of the NN system and is calculated
from the prescribed value of e. Thus, under the on-shell
constraints, the third argument [(2 +1/A)K] of the r
matrices in Eqs. (2.34) and (2.35) is completely determined
by e and q and the optical potential becomes local, apart
from the nonlocality of the Moiler factor g(q, K). This
latter nonlocality is found to be quite negligible. In the
calculations employing the optimally factorized optical
potential we have made use of the Love-Franey model of
tNN in which the t' and t can be obtained as functions
of the three independent variables as required in Eqs.
(2.34) and (2.35). The energy parameter e of the t matrix
is taken to be fixed at the value appropriate to NN
scattering at a laboratory energy equal to the beam energy.
This prescription ignores recoil energy shifts and should
be most appropriate for forward angle nucleon-nucleus
scattering, assuming that binding energy shifts are not im-
portant. As discussed later, we have estimated the error
in this prescription and find it to be quite small. The

A —1
Uosi(k k)= g g t'(e;q)p (q)

a=n, p

(2.38)

"Is -.- ~ —1 ~+1
U os'(k ', k) =

a=n, p

r (e;q)p (q) .

(2.39)

We have ignored here the very small effects from the
momentum dependence of g. This optical potential is lo-
cal and corresponds to the prescription used for most pre-
vious intermediate energy calculations referred to in the
literature as employing the first-order KMT theory. The
on-shell t-matrix components in Eqs. (2.38) and (2.39) can
be obtained directly from compilations of NN phase shift
data. ' The utility of this OS1 prescription decreases with
decreasing energy because the range of momentum
transfer over which an on-shell NN t matrix exists is sig-
nificantly less than the range of momentum transfer ac-
cessible in nucleon-nucleus scattering. With the NN ener-
gy e fixed at the value appropriate to NN scattering at the
beam energy, the on-shell NN relative momentum is ap-
proximately half of the on-shell nucleon-nucleus momen-
tum for a heavy target. Thus, at a nucleon-nucleus
scattering angle of approximately 60', the NN t-matrix
components in Eqs. (2.38) and (2.39) correspond to an NN
scattering angle of 180. The nuclear form factor beyond
60' nuclear scattering at high energies is sufficiently small
so as to mask contributions to the small angle scattering
amplitude from large momentum transfer components of
the optical potential. The OS1 prescription can be expect-
ed to be adequate for descriptions of scattering data in the
forward hemisphere. At lower energies and/or for light
nuclei where nuclear scattering data can be. measured in
the backward hemisphere, the OS1 prescription can be ex-
pected to be inadequate. The calculations that we present
in Sec. IV confirm these expectations. In our implemen-

We will compare the nucleon elastic scattering results
from the optimally factorized optical potential with re-
sults from several other factorizations which treat off
shell and nonlocalities in a different way. These compar-
isons are used to estimate the influence of these effects
and to judge the departures from the optimum factoriza-
tion results that might be obtained if the folding integral
in Eq. (2.26) were to be computed exactly.

The usual on-shell factorized optical potential can be
obtained from Eqs. (2.34} and (2.35) by fixing the third ar-
gument of the t-matrix components t~ and t~ in terms of
e and q by using Eqs. (2.36) and (2.37). We write the re-
sulting t-matrix components as t~(e;q) and t~ (e;q).
For this prescription, which we refer to as OSl, the cen-
tral and spin-orbit optical potentials are
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talion of the OS1 prescription we set the optical potential
to zero for momentum transfers beyond which the on-
shell t matrix does not exist. Of course, this extreme
method of dealing with the optical potential outside the
region where the on-shell t matrix exists is unphysical.
However, we use the OS1 results solely to identify the re-
gions of momentum transfer, beam energy, and target
mass, where the limitations of the completely on-shell fac-
torization show up at all. The optimum factorization
method provides results which do not have these limita-
tions and which are on a better theoretical foundation.

A second on-shell factorization prescription (OS2) with
which we compare is similar to OS1 discussed previously,
with the exception that the NN relative energy parameter
e of the on-shell t matrix t(e;q) is calculated from the in-
variant mass of the NN system defined by the kinematics
shown in Fig. 1. This prescription for the energy of the
NN t matrix has been suggested by studies in which the

many-body propagator Gp of Eq. (2.7) is expanded about
the two-nucleon propagator g0(e) which would make the
operator t0; in Eq. (2.7) the free NN t matrix. The effects
of the first-order correction [60—go(e)] can be argued to
be minimal when e is calculated from the invariant NN
mass. '

From Fig. 1, the square of the invariant mass is

2 1—
~ =~NN = &N( k ) -I-Ew

2

A —1
K

(2.40)

where Ez(k)= k +m z. With the on-shell constraint
2, 2 2

q K =0, the NN t-matrix total energy e defined this way
is a function of target mass number A, on-shell nucleon-
nucleus momentum k, and momentum transfer q, and is
given by

e2(A, k, q) =, (k2+mN)]l'+ 4q' 1 — + k'+m N

]/2 'i 2 2

! —(k ——,q) 1 ——
A

(2.41)

When q =2k, we obtain

e( 3,k, q =2k) =2Eg( I-) (2.42)

III. CALCULATIONAL FRAMEWORK

A. Partial wave expressions
so that the NN system on-shell momentum becomes equal
to the nucleon-nucleus (NA) system on-shell momentum
and the 180 scattering conditions coincide for the NN
and NA systems. Thus, with this variable-energy on-shell
prescription for the t matrix, the OS2 optical potential is
defined for all momentum transfers accessible in on-shell
nuclear scattering. Of course, in solving the Lippmann-
Schwinger equation, the optical potential is required for
larger momentum transfers, but the nuclear form factor
causes such contributions to be quite negligible. For the
OS2 prescription we have set the optical potential to be
zero beyond this momentum transfer where the on-shell t
matrix is not defined. Comparison of the results obtained
from the OS2 optical potential to the results obtained
from the optimally factorized optical potential pro~ides
an estimation of the effects which generally arise from
coupling the t-matrix energy to the kinematics of the
first-order optical potential reaction mechanism. Also,
since this prescription is local, a comparison to the op-
timum factorization results provides a sensible estimation
of the role played by the nonlocality in the latter prescrip-
tion.

The final variation that we consider for the factoriza-
tion of the optical potential is the asymptotic momentum
(ASM) approximation which has been found to be qualita-
tively reasonable for distorted-wave impulse approxima-
tion (D%'IA) treatments of inelastic scattering. ' In this
approximation the nonlocality variable K of the t-matrix
components in Eqs. (2.34) and (2.35) is replaced by its
(fixed) limiting value k0 which is appropriate for forward
angle on-shell scattering. The resulting optical potential
is (like prescriptions QS1 and QS2) local, but some off-
shell effects are retained.

The optimally factorized first-order KMT optical po-
tential as an operator in the spin space of the projectile is
given in Eq. (2.33) as

U(k ', k)=U'(k ', k)+ —0'q &KU (k ', k) . (3.1)

From conservation of total angular momentum and pari-
ty, this spin operator can be expanded as

PJL(k)= g YL '(k)
~
m, )(LmL', —,ms

~
JM) (3.3)

is a standard spin-spherical harmonic. %hen the expan-
sion in Eq. (3.2) is substituted into the Lippmann-
Schwinger equation [Eq. {2.11)], the resulting transition
operator for elastic scattering is seen to have the analo-
gous expansion

T(k', k)=4' Q M~g (k ')T~J(k', k)9'JL (k),
JLM

with the components satisfying

TLJ(k', k ) = ULJ(k', k)

(3.4)

„ULJ(k ) TLJ(kf

�+
4m. k "2dk"

0 E(k)+i6 —E(k")
(3.5)

The details of the calculation of the partial wave com-

U( k ', k ) =4' g ~P~g (k ') ULJ(k', k ) &Jr (k ), {3.2)
JLM

where J=L+ —, and
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ponents Urq of the optical potential in terms of the mi-
croscopic ingredients (t matrix and density) is provided in
the Appendix. We summarize here the important formu-
lae in two steps. In terms of the partial wave components
of the quatitities U'(k', k) and U (k', k), wehave

U(r)=U'(r)+ V (r)L.S,
where

(3.9)

[say U '( r ) and U ( r )], then the results of Eqs.
(3.6)—(3.8) are equivalent to the representation

ULJ(k', k)= UL(k', k)+CL~ VL (k', k),
where

CLJ ———,
' [J(7+1) 1.(I—.+1)——„']

(3.6)

(3.7)
(3.10)

and

(3.8)
—+ —+

obtain these results, the quantities U '( k ', k ) and

U (k ', k) are expanded in a manner similar to Eq. (3.2)
C

with the exception that the partial wave components ( U l
and U L, ) are independent of J. If the position-space rep-

resentations of U'(k ', k) and U (k ', k) were purely lo-

cal functions of the projectile-nucleus relative separation

The microscopic content of U' and U, given in Eqs.
(2.34) and (2.35) for optimum factorization, does not lead
to local forms, and thus microscopically based departures
from the simple (standard) forms [Eqs. (3.9) and (3.10)]
for optical potentials are included in the optimum factori-
zation calculations.

—+ —+

The partial wave components of U '( k ', k ) and
LSU (k ', k) can be calculated in terms of NN t-matrix

components and nuclear densities from Eqs. (2.34) and
(2.35). For example, the projection can be performed nu-
merically by evaluating the integral

U I.(k', k) = —, J dx PL (x)U '( k ', k ),
+' 3+1

dxPL(x) q g t' e;q(x), K(x) p [q(x)],

(3.11)

(3.12)

where q (x)=k' + k —2k'kx, K (x)= , (k' +k-
+2k'kx), and q K= —,(k' —k ). Alternatively, in terms
of partial wave components of t~, t, and p defined
with the same convention as Eq. (3.11), the result can be
expressed as

where

(2l+1)(2l'+1) (1 l,
~

~ )2
l, l'L=

2L +1 (3.14)

UL, (k ~k) ll Q g pl, I', Lta, l(k tk)pl'(k ~k) &

l, I'a=n, p

(3.13)

I

and the Heitler equation,

TL~(k', k)=R L(Jk', k) ikkRLJ(k', —k)TLJ(k, k),
where

EN(k)E~ (k)=(2'�)',
EN(k)+Eg(k)

(3.17)

Here, k is the on-shell momentum in units of MeV/c and
E(p) =EN(p) + E~(p) where the energies are given b~
EN (p) =p +m N for the projectile and Ez (p) =p +m~
for the target. We have used

1
lim (x+ie) ':P — irt5(x—)—

&[E(k)—E(k")]=, 5(k —k") .
(2~) k

(3.18)

After Eq. (3.15) is solved for RLJ, the Heitler unitarity
equation (3.16) gives the on-shell TIJ as an algebraic ex-
pression. This unitarity constraint ensures that the on-
shell 11J has the form

2l5L J
TLq(k, k) = ——

2ik
(3.19)

4m.P k" dk" UI.J(k', k")RLq(k", k)

E (k) E(k")—where 5Lz is a real phase shift if UI J and, hence, RLz are
real. The corresponding physical scattering amplitude (in
units of fm) is given by(3.15)

For both methods, analogous results hold for UL (k', k).
We have employed both methods as a check on the accu-
racy of the numerical procedures.

The one-dimensional integral equation [Eq. (3.5)] for
the partial wave elements T&J is treated by separating the
principal value and on-shell delta-function components of
the propagator. Thus, Eq. (3.5) becomes a pair of equa-
tions, namely the E-matrix Lippmann-Schwinger equa-
tion,

RLg(k', k )= ULJ(k', k)
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F(0)=3 (6I)+i o'nc(0),
where

(3.21)

and

A(8) = g [(L +1)FL++IFL ]PL(cos8)
L=0

(3.22)

C(8)= g (FL FL )PL(—cos8) .
L =]

(3.23)

Here n is the unit vector in the direction k ')& k, where

k ' is the final momentum, and FL- denotes FL J for
J=L + —, , respectively.

B. Treatment of the Coulomb potential

There are esser1tially two problems associated with the
inclusion of the Coulomb interaction of the projecti1e with
the charge density of the nuc1eus into KMT optical poten-
tial calculations for elastic scattering of the type con-
sidered here. The lesser of the two problems concerns the
question of whether the KMT scaling factor of A —1/A
should multiply both the nuclear and Coulomb parts of
the optical potential. When Coulomb excitation of the
nucleus is ignored, as it always is compared to the strong
nuclear excitation, the correct procedure is to add the
Coulomb potential for the interaction of the projectile
with the distributed charge of the nucleus to the physical
(Watson) nuclear optical potential [Eq. (2.5)]. The pro-
cedures presented fo11owing Eq. (2.5) for the rep1acement
of the inconvenient nuc1ear NN operator 7. by the more
convenient nuclear NN operator t introduces the A —1/A
scaling of only the short range nuclear contributions to
the KMT nucleon-nucleus transition operator T. This to-
pic has been discussed previously. In summary the re-
quired KMT first-order optical potential is given by

z
U'(k', kI=tk', QD QUO po, k)i=I

A —1+ k ', $0 g & po, kDl, (3.24)

A. TLg(k, i ),3 —1

where the scaling factor 3/3 —1, required by the KMT
procedure, is included. The full scattering amplitude, as
an operator in spin space, is then obtained in the standard
fashion as

scattering amplitude due to V'(q). This standard pro-
cedure is simple to implement when the approach of a
wave equation in position space is followed.

However, for a momentum-space integral equation ap-
proach the equivalent of this procedure is not straightfor-
ward. This is the second problem that is alluded to above.
A direct calculation of the nuclear-bar transition ampli-
tude via an integral equation involves Coulomb distorted
Green's functions in momentum space. The method pro-
posed by Vincent and Phatak ' avoids this problem and is
a practical procedure which is exact, in principle. Its ac-
curacy has been documented for low angular momentum
states and low momentum transfers that are typical of low
energy pion scattering from nuclei. We find that the
method is numerically unstable and not reliable in its
present form for the high angular momentum states and
larger momentum transfers typical of intermediate energy
proton scattering from nuclei. Let us consider the posi-
tion space Coulomb potential separation

V'(r) = V;(r)+ V2(r),

where

V] (r) = V'(r)0(R —r)

and

V2(r) = V'(r)0(r —R) .

Here R is a radius outside of which the nuclear potential
is negligible. In momentum space, only the exterior po-
tential V2 (q ) has the 1/q singularity. The Vincent-
Phatak method consists of solving the Lippmann-
Schwinger equation with the potential V|(q) + U(k', k)
to obtain phase shifts 5'Lz from which the corresponding
position-space radial wave function at the point R can be
constructed. This wave function is then to be matched to
the usual sum of regular and irregular pure Coulomb radi-
al wave functions at the point R to obtain the desired
nuclear-bar phase shifts 6&J. This momentum-space pro-
cedure would accurately reproduce the (exact) position-
space results if Vl(q) could be treated accurately in solv-
ing the Lippmann-Schwinger equation. However, V|(q)
involves the Fourier transform of a straight edge cutoff
and the required partial wave components Vl L(k', k) will
in practice contain spurious contributions, especially for
high angular momentum states. Since Vl and V& are
treated numerically in different ways it is difficult to
avoid spurious sharp edge diffractive oscillations in corn-
puted observables at high momentum transfer. The con-
vergence of partial wave expansions is easily lost.

The method that we employ involves the separation
= V'(q)+ U(k ', k), (3.2S)

V'(q) = V', (q)+ V,'(q), (3.26)

where U is the nuclear potential we have already dis-
cussed, V'(q) is the distributed Coulomb potential given
by v'(q)p, ~(q), where v'(q) is the momentum-space
Coulomb potential between the projectile and a proton.
The required procedure is to calculate only the Coulomb-
distorted (nuclear-bar) scattering amplitude from U', to
apply the factor 3 /A —1 to obtain the physical nuclear-
bar scattering amplitude, and then to add the Coulomb

U'(k ', k)= Vpt(q)+U (k k)

where the total short-range piece is

(3.27)

where V~, (q) is the Coulomb potential due to a point
charge Ze, and V,'(q) is the remainder, which is of short
range. From Eq. (3.25) the total first-order optical poten-
tia1 is written as
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U'(k ', k)= V,'(q)+ U(k ', k) . (3.28)

The total scattering amplitude due to the potential
U'( k ', k) can be written in the standard way as

C

As~(g) =As(g) —g [(L +1)Fs+r +LE r ]Pr (cosg)

F(g) =A(g)+io" nC(g),

where now instead of Eqs. (3.22) and (3.23) we have

A(g)=F', (8)+ g e [(L+1)F++LF ]
L=0

(3.29)

L

Cs (8)=Cs(g) —g (F~+r Fs i—)Pr'(cosg) .

(3.34)

(3.35)

)&Pr {cosg) (3.30)

C(8)= g e (Fr+ Fr )Pr—(cosg) .
L=1

(3.31)

Here Fz, (g) is the Rutherford amplitude for Coulomb
scattering from a point charge, or is the corresponding
Coulomb phase shift, and Fr—+ are the nuclear-bar scatter-

—+ —+
ing amplitudes due to U'(k ', k). That is, the distortion
effects due to Vz, (q) are included in F r . Since the major
part of the Coulomb-nuclear interference effect is carried
out by the interference of the two terms in Eq. (3.30) and

the presence of the e factors in Eqs. (3.30) and (3.31),
and since the nuclear-bar amplitudes are quite close to the
pure short-range amplitudes, we replace I" L by scattering

-+ —+

amplitudes due to the short-range potential U'(k', k)
only. We found this approximation to be more useful
over the large range of momentum transfers and angular
momenta involved than the method based on dealing with
the cutoff 8(R r) translated to—momentum space.

and

2l 0'I
+e ' As (8) (3.32)

Lc 2l CFL

C(g)= y e ~(F~+ Fr )Pr'(cosg)+e —' Cs (8),
L=1

(3.33)

C. Treatment of high angular momentum states

For proton scattering at intermediate energies the num-
ber of L values needed to represent the nuclear optical po-

-+ —+

tential U(k ', k) at the level of accuracy we require
through the partial-wave components Ur J(k', k) can be as
large as 60 for a Ca target at 500 MeV and 120 for a

Pb target at 800 MeV. The procedures expressed by
Eq. (3.12) or Eq. (3.13) for calculating Urz(k', k) become
increasingly difficult to perform accurately for high
values of L. This problem can be alleviated through the
use of the three-dimensional Born approximation to the
scattering amplitude to account for the infinite set of L,

values satisfying the condition L &L„where L, is such
that the Born approximation is sufficiently accurate.
That is, Eqs. (3.30) and (3.31) are evaluated in the forms

L

A(g)=+), (g)+ g e [(L + 1)Fr+, +LFr. ]Pr (cosg)
L=0

Here As(g) and Cs(g) are the scattering amplitudes due
—+

to the short range potential U '( k ', k) in the Born approx-
imation, determined without angular momentum projec-
tion, and Iz L are the corresponding partial-wave projec-
tions for low angular momenta. Since the angular
momentum components of As (8) and Cs (8) are not
separated, it is not possible to properly include in Eqs.
(3.32) and (3.33) the Coulomb distortion factors e ~ for
each L &L, . Since or. is slowly varying with L for large
L, we have adopted the procedure of multiplying by the

2l Crl. + '[

single factor e ~+ . The Born amplitudes in three-
dimensional form As ( 8) and Cs {8) are calculated
directly from the short range optical potential U'(k', k)
given by Eqs. (3.28), (2.33), (2.34), and (2.35) by removing
the KMT scaling factors A —1/A, applying the on-shell
condition

~

k '
~

=
~

k ~, and multiplying by —Aci, to pro-
duce the properiy normalized scattering amplitude in
units of fm. This procedure, represented by Eqs.
(3.32)—(3.35), essentially includes an infinite number of
partial waves.

IV. RESULTS

A. Off-she11 and non1ocal effects

In Figs. 2 and 3 the scattering observables calculated
from the various factorization treatments of the first or-
der optical potential are compared with each other and
also with data for elastic proton scattering from Ca at
500 MeV. The point proton density was obtained from
the nuclear charge density which was taken to be a three-
parameter Fermi shape with the parameters fixed at the
values determined by an analysis of electron scattering
data. The point neutron density was set equal to the
point proton density. This same procedure was followed
in all calculations used to explore the influence of off-
shell and nonlocal effects as described in this section. It is
obvious from the differential cross section calculations
shown in Fig. 2 that with small adjustments of the density
parameters (especially those for the neutrons) a much im-
proved agreement with the data could be achieved. How-
ever, the object of the present investigation is to test the
sensitivity to the manner in which off-shell and nonlocal
effects are treated in the implementation of the first-order
theory of the optical potential.

The solid curve results from the optimum factorization
[Eqs. (2.33)—(2.35)] procedure in which the optical poten-
tial is nonlocal and includes off-shell elements of the NN
-t matrix. The energy of the NN t matrix is fixed at the
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FIG. 2. Differential cross section Itop panel) and analyzing

g()power (bottom panel) for protons scattered from Ca at 500
Me&, calculated «ith the first-order (KMTj optical potential.
The solid curi e represents the optimum factorization calculation
ivhich incorporates off-shell and no»local effects, the dashed
curie represents the usual on-shell factorization procedure. The
shaded band displays an estimate of the range of uncertainties to
be expected from approximate treatnients of the foldi»g in-

tegral. The data are from Ref. 22.

value corresponding to NN scattering at the beam energy.
The dashed curve represents the results from the OS1
prescription [Eqs. (2.38) and (2.39)] which is the on-shell
factorization procedure that is almost invariably em-
ployed in representations of first order optical pote»tials.
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F(G. 3. The spin rotation fttnctiott Q for protons scattered

from Ca at 500 MeV with everything else as in Fig. 2. The
data are from Ref. 31.

The energy of the NN t matrix is agai» fixed as described
previously. The corresponding optical potential is local
and contains no off-shell NN information whatsoever.
The qualitative features of both these calculations are the
same for the angular ra»ge shown. However, if details of
the nuclear densities were varied to fit data, different den-
sities would be deduced from the two prescriptions. In
the first Born approximation, the OS1 prescription gives
»o scattering beyond about 60', because, as described in

Sec. III, this is the limit of the on-shell region for NN
scattering at the beam energy. A part of the difference
between the solid and dashed curves, particularly beyond
20', is attributable to this cutoff introduced by the nature
of the on-shell factorization procedure. The only infor-
mation we infer from the difference between the solid and
dashed curves is that, with a fixed energy of the NN t ma-
trix, a model of the off-shell behavior is needed for accu-
rate quantitative analysis of data. At 500 MeV this effect
is, nevertheless, small compared to other effects that have
tarot been included with calculations shown here. We will

retur» to this point shortly.
The shaded regions in Figs. 2 and 3 are an estimate of

the u»certainty we introduce by using a factorization
method instead of performing the full-folding integral for
the first-order optical potential. The variations away
from the optimum factorization result introduced by the
asymptotic momentum (ASM) approximation and the
variab1e NN energy on-shell factorized prescription (OS2j
have been used to define the shaded regions. In both these
latter cases the optical potential is local. For the ASM,
off-shell elements of the NN I matrix enter at a fixed NN
e»ergy, while for the OS2, the i matrix is on shell but the
effective NN energy is defined by the invariant NN mass
which i»troduces a coupling to the kinematics of tbe reac-
tion process as described in Sec. II. Consequently, the
shaded regio»s may be viewed as also yielding an indica-
tion of the typical size of off-shell and no»local effects.
The main point to be made for 500 MeV is that off-shell
a»d nonlocal effects, and the way these aspects are han-
dled i» treatrne»ts of the full-foldi»g integral, do not lead
to a sig»ifica»t change in the qualitative nature of the
scattering observables. This is due in large part to the
limited angular range over which interest can be focused
because of the rapid falloff of the cross sections. At lower
energies and for lighter targets, the off-shell and nonlocal
effects ca» be significant in regions where data exists.

At 500 MeV the discrepancy between any of the
theoretical calculations shown here and the experimental
data is of more significance than differences between the
individual calculations. Relativistic effects that can be in-

corporated through the use of a Dirac equation together
with a microscopically based ansatz for the first-order op-
tical potentia1 transformed to the appropriate spinor basis

9have been shown to be much more sizable. In the partic-
ular case of Ca at 500 MeV, such relativistic calcula-
tions with the same density parameters employed here im-

prove the description of the experimental cross section by
causing the diffraction minima to be shallower and shift-
ed to larger angles, in agreement with the data. More
dramatic improvements are likewise obtained for the
a»alyzing power and spin rotation functions for all angles



30 MOMENTUM. SPACE APPROACH TO MICROSCOPIC EFFECTS. . . 1873

where data are available, especially at —10' where A„and
Q have the wrong qualitative behavior in nonrelativistic
treatments. However, the off-shell and nonlocal effects
studied here for the nonrelativistic treatment have their
analogs in the relativistic treatment, and one would expect
a comparable amount of uncertainty from these sources in
the latter case. This is indeed the case as will be discussed
in a further publication. Thus accurate quantitative
analysis of data require not only the incorporation of
purely relativistic features but also nonlocal and off-shell
effects, as well as an understanding of the importance of
any medium-dependent departure from the free NN t ma'-

trix and higher-order scattering mechanisms.
We show in Figs. 4 and 5 the corresponding results for

Ca at a beam energy of 181 MeV. The dashed line,
which represents the fixed energy on-shell factorization
prescription OS1, is terminated at -60'. The reason for
this is that the OS1 prescription involves a sharp cutoff in
the optical potential at this point which gives rise to un-
physical behavior in the angular distribution just beyond
-60'. After about 15 —20' beyond this point the dashed
curve lies close to, or within, the shaded band. This evi-
dently occurs because the amplitude for large angle
scattering is dominated by multiple small angle scattering.
Such behavior is typical of OS1 in the other cases dis-
cussed below. The off-shell and nonlocal effects
represented by the shaded regions become more sizable as
the scattering angle is increased. The structure of the
analyzing power as a function of angle at this energy only
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roughly resembles the experimental data. The minima
are too shallow and they occur at too small angles at this
energy. The first order truncation of the multiple scatter-
ing expansion for the optical potential is questionable as is
the use of a free NN t matrix.

Approximate treatments of the nuclear density depen-
dence of the effective NN scattering operator introduced
by Pauli exclusion effects have been seen in the case of
135 MeV scattering from ' 0 to deepen the minima in
analyzing power calculations. Relativistic extensions
employing the same ansatz as has been successful for 500
MeV also produce deep minima in the 181 MeV analyzing
power, but the effect appears much too strong and the re-
sulting differential cross section is shifted significantly
away from the data compared to the nonrelativistic result
shown here. At this energy it seems likely that a
comprehensive theoretical approach, combining nuclear
medium effects on the NN t matrix together with a better
microscopic understanding of the appropriate relativistic
extension of first-order theory, may provide a much im-
proved description. Off-shell and nonlocal effects (among
others) need to be addressed for accurate calculations of
spin-dependent scattering observables.

The situation for a light target is displayed in Figs. 6
and 7 for ' 0 at 318 MeV, and in Fig. 8 for ' 0 at 135
MeV. As is evident from the shaded regions, there is rela-
tively little sensitivity to off-shell and nonlocal effects at
318 MeV. This is most likely due to the weak strength of
the spin-independent part of the NN t matrix which arises
from the near cancellation of the effects of short range
repulsion and long range attraction in this energy regime.
However, as seen from Fig. 8, these effects become quite
significant at energies near 100 MeV, especially for spin-
dependent observables. The extent of the agreement with
data for the cross section resulting from the optimum fac-
torization treatment of the first-order optical potential is
somewhat surprising for an energy as low as 135 MeV.
This result raises the expectation that a first-order theory
of the optical potential supplemented with the essential
physical features of additional processes not considered
here (medium effects, antisymmetrization effects, and rel-
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Love-Franey model of t~z that we have employed only
contains off-shell and nonlocal effects that can be mani-
fested through the interplay of a direct and exchange term
each of which is obtained from an intrinsically local func-
tion. Work is in progress on the construction of optical
potentials from a tzz generated from realistic NN poten-
tial models. "

V. SUMMARY AND CONCLUSIONS

In the preceding text we have described in some detail
the nonrelativistic momentum-space proton-nucleus cal-
culations we have performed for and with the first-order
KMT type of optical potential. The calculations present-

ed are designed to yield a picture of the reliability and the
range of variability of predictions based upon the first-
order optical potential due to uncertainties in the input
quantities. The basic input quantities in the calculations
are the on-shell two-body t matrix, its nonlocal character
and off-shell extension, the treatment of the full-folding

integral, and nuclear densities taken from electron scatter-
ing. Comparison of calculations using the Love-Franey I,

matrix as opposed to direct use of the phase shifts indi-
cates the on-shell I; matrix is under very good control.
Energy and momentum transfer regimes of sensitivity and
insensitivity to off-shell and nonlocal effects and to the
treatment of the folding integral have been indicated.
%'ork is currently in progress which will yield further
information and documentation relative to these sensitivi-
ties by removing the particular locality and nonlocality as-
sumption implici. t in the Love-Franey parametrization.
However, it is presently clear that in order to analyze data
confidently below -200 MeV, and at large scattering an-
gles both the f matrix and the folding integral must be
precisely treated. On the other hand, the regimes of sensi-
tivity to the nuclear density are not of precisely the same
character. Comparison of the figures indicates regimes
where density sensitivities are much greater than for the
other sources of uncertainty studied in this paper so that
density information may be extracted. Qf course other
sources of uncertainty, not studied herein, certainly bear
on this issue. Nevertheless, these sources of ambiguity are
in addition to the ones we have investigated and the
current work represents the best (only) detailed study to
date of the reliability of predictions made on the basis of
the first-order optical potential.

From this study we may conclude that the anomaly in
the spin observables for Ca at 500 MeV, for example,
represents a true failure of the first order KMT type of
optical potential to give a complete description of the
data. The recent successful work with the Dirac equa-
tion, in which the effect of virtual pair production and
annihilation is added to the nonrelativistic multiple
scattering theory, is thus more firmly founded than in the
absence of these studies. It must be emphasized, however,
that other effects not included in the nonrelativistic first-
order multiple scattering approach used here may need to
be taken into account and that this is by no means exclud-
ed by the present study. At any rate, these effects must be
investigated to the point where they are under rehable
control, both theoretically and computationally.
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APPENDIX: ANGULAR MOMENTUM PROJECTIONS

The details of the derivation of the results given in Eqs.
(3.6)—(3.8) for the angular momentum projections of the
nuclear part of the optical potential of Eq. (3.1) are out-
lined here. We begin with Eq. (3.1) in the form

(Al)

and note that, from the defining Eqs. (2.34) and (2.35), the
-+ —+ —+

quantities U'(k ', k) and U (k ', k) are invariant under
rotations of the coordinate system and depend on
cosO=k '.k as the only angular variable. Accordingly, we
can make the angular momentum expansions (where a
stands for either c or I.S)

U'(k', k)=4m g 9'gg(k ')UI (k', k)9'Jl (k), (A2)

and thus,

=4' g YL (k')UI (k', k)YI (k), (A3)
I.MI

UL(k', k)= f dk'dk YI (k')U'(k', k)YL (k),
4m

g f dk'dk YL (k') (

&& U'(k ', k)YI '(k), (A5)

= —, f dx Pl (x)U '( k ', k ),
where x =cos8=k ' k. For the first (central) term of Eq.
(Al) the required angular momentum projection Ul.z is

Subject to the limitations mentioned already, the sensi-
tivity to off-shell and nonlocal effects, as well as to treat-
ments of the full-folding integral, has been documented in
this work. We find that for small and moderate momen-
turn transfer at high energies the standard approximations
are tenable. We further conclude that systematic study of
data at higher momentum transfer will yield physically
interesting information, provided a reliable theoretical
framework and careful calculations are employed.

These assertions follow not only from the representative
results explicitly shown herein, but also from a large num-
ber of additional calculations performed for other targets
and energies, as well as from other variations of the input
assumptions.

ACKNOWLEDGMENTS
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thus identified to be ULJ(k k) —UL(k k) for both
values of J=L+ —,'. The second (complete spin-orbit)
term of Eq. (Al) can be treated by writing

—o"k ' X k U ( k ', k ) = —, o"k 'U ( k ', k )o"k
2

For the term F we introduce the expansion

&)=4W g 3 JL'(k ')FJL'L(k' k)3' (k )
JL'LM

——,'k'. kU (k' k)

=F(o, k ', k) —G(k ', k) .

(A7)

(A8)
which implements conservation of total angular rnomen-
turn. The components are given by

FJL L(k', k)= J dk 'dk PJL (k ')[ —, o"k 'U (k ', k)o k]M&qq(k) . (A10)

When Eq. (A2) is substituted into Eq. (A10), we obtain

k'
F,„.,(k', k) = g (JI.'I

~

o k '
~

J "L"I")U", -(k', k)(J"I."I"
~

o k
~

JLM) .
J IIL JIM II 2

(A11)

We now make use of the fact that o. k is a Hermitian, un-

itary, pseudoscalar operator that commutes with J and
Jz. It changes the parity but not the norm. This leads
immediately to the result

~ ki™(k)=—Z& "(k)
where L =2J —L. With this, Eq. (A11) becomes

—o k'XkU (k' k)
2

=4~ y &JL« ') ~LJ(k', k) + (k ), (A19)
JLM

where

k'kW'„'(k,k) = [(2I. +1)U,''(k, k)-
2 2L. +1

I

gS, ,,-„S,„,-U .(k, k),
2

L
II

(AJ33 —(L + &)U L+](k',k)

k'-
(A14)LL

The expected J dependence of this term is implicitly con-
tained in the definition of L.

The second term of Eq. (A8) is invariant under rota-
tions of the coordinate system and can be expanded as in
Eqs. (A2) —(A6). The angular momentum component is
(x=k '-k ),

LU L i(k'—, k)]

or equivalently

$VLJ(k pk ) —Cg J VL (k', k) 9

where

k'k

(A2l)

GL(k', /')= —, J dx PI (x)[—, k
' kU (k ', k)],

I

xdxP (x)U (k' k)—l

With the help of the recurrence relation

(A l. 5)

(A16)

Cgj ———, [J(J+1)—L(L+1)——,] .

(A22)

(A23)
1

xPL (x)= [(L +1)PI + i(x)+LPL i(x)],
21 +1

Eq. (A16) becomes

Gg(k', k )= [(L+1)UL+,(k', k)
2 2L+1

+LU L )(k', k )],
where we have used Eq. (A6) with a=LB. The angular
momentum expansion of Eq. (A18) for the complete
spin-orbit term is thus

U„(k',k ) = U', (k', k)+C„V,"(k',k), (A25)

in agreement with the results stated in Eqs. (2.6)—(2.8) of
the text.

When this result is combined with the expansion in Eq.
(A2) for the central term of the optical potential, we ob-
tain for the total optical potential

U(k ', k)=4m g Pgg(k ')ULg(k', k) M~JL (k), (A24)
JLM

where the components are
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