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The effects of virtual Coulomb excitation of giant multipole resonances as well as of relativity on
sub-barrier elastic scattering of heavy ions are investigated. Closed expressions for the effect of gi-

ant quadrupole and octopole excitation from the adiabatic polarization potential, on the elastic
scattering differential cross section, are derived. Comparison with optical model and coupled chan-

nels calculations is reported. The effect of special relativity on the Rutherford cross section is also
described in a closed form.

I. INTRODUCTION

The predominant feature of sub-barrier heavy-ion elas-
tic scattering is the point Coulomb repulsion. However, it
is quite well known that deviations from this pure Ruther-
ford scattering do arise as a consequence of Coulomb ex-
citation of nuclear collective states. These excitation pro-
cesses are of a long-range nature and thus occur at dis-
tances equal to or larger than the Coulomb distance of
closest approach.

Recent measurements' of angular distributions of elasti-
cally scattered light heavy projectiles from deformed tar-
get nuclei have clearly exhibited these deviations in the
form of a long-range absorption arising from the strong
Coulomb excitation of low-lying collective states. Aside
from these deviations, other, albeit smaller, ones occur as
a result of several factors. The excitations of the high-
lying collective giant multipole resonances, atomic screen-

ing, relativistic corrections, and vacuum polarization are
usually cited in this connection.

Owing to the smallness of these latter deviations
( —1.0%) their clear identification is a challenge to experi-
mentalists. Recently, Lynch et al. have presented a clear
evidence of these effects in the sub-barrier elastic scatter-
ing of closed-shell heavy-ion systems, where Coulomb ex-
citations of low-lying collective states are negligible.

Prior to these measurements several theorists have cal-
culated numerically the deviations arising from the excita-
tion of the giant dipole resonance, relativistic effects, as
well as atomic screening. Baur et al. have derived,
within first-order classical perturbation theory, a closed
expression for the deviation from Rutherford scattering
due to virtual excitation of the giant dipole.

The purpose of the present paper is to extend the calcu-
lation of Ref. 4 to include the Coulomb excitation of giant
quadrupole and octopole resonances as well as the relativ-
istic corrections. Furthermore, a careful verification of
the validity of the classical calculation is provided
through comparison with coupled channels calculations.

The paper is organized as follows. In Sec. II a detailed
discussion of the adiabatic polarization potential arising

from the Coulomb couplings to giant multipole reso-
nances is given. In Sec. III the relativistic corrections are
carefully analyzed. Closed form expressions for the corre-
sponding deviations from the point Coulomb (Rutherford)
scattering, are presented in Sec. IV. Comparison with
coupled channels (CC) calculations, and the resulting
trivially equivalent local polarization potentials, is then
given in Sec. V. Concluding remarks and a discussion are
the subject of Sec. VI. A brief summary account of some
of our results has been presented previously (Ref. 5).

II. ADIABATIC GIANT MULTIPOLE
POLARIZATION POTENTIALS

The amplitude for the excitation of a vibrational state
of rnultipolarity k, and excitation energy AE~, using the
first-order time-dependent theory of Coulomb excitation,
is given by

2rtpai(m)=C ~+,r ip+ (A, + 1)r,p

]./2

Xexp -— 2r,p

(A, + 1)r',
p

ai, (oo)= J (n V(r(t))
)
0)e

iA

The interaction V(r (t)} has a matrix element
(n

)
V(r)

)
0) proportional to [r(t)] '. We therefore

have for ai(oo)

exp( i EEi t /A')
ai(oo)=C

[ (t)]"+'

where C is a constant. The largest contribution to the in-

tegral in Eq. (2) comes from the vicinity of the classical
turning point, r,z

= r (0). Thus by expanding

r (t)=r,~+ , r,~t—
and keeping lowest order terms in t, one obtains the sim-

ple estimate
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where r,p is the radial acceleration at the classical turning
point and A@2

—=b,E2/ill. Introducing the average collision
time r„ll=(r,„/rt„)', we have finally

1/2
7T 2

+coll
y, . A+2 .

1/2

X&cou

S(E1)=14.8 (e fm MeV),

3A, (2A, +1) fi' Z'
4m 2m

(8)

and denoted the excitation energy of the A,-pole giant reso-
nance by hE~.

Bohr and Mottelson" derived a classical model-
independent expression for S(EX), which we write below

7T 2

p
~+'

A, +1tp
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+coll
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where 2I is the Sommerfeld parameter, rI=Z&ZTe /Av, v

being the asymptotic relative velocity.
For heavy ion scattering at low energies g &&1, there-

fore, one expects

AEg
al)j.&coll =~2

to be much larger than unity for the excitation of high-
lying collective states [giant resonances (GR)]. This indi-
cates that a2 ( oo ) «1; accordingly, very little amount of
flux is lost from the elastic channel. On the other hand,
a2 ( oo )=1 for the excitation of low-lying collective states,
which reflects the need to incorporate into the elastic
channel optical potential the resulting absorptive long-
range component.

As a consequence of the smallness of a2 (oo) at sub-GR

barrier energies, one expects that the polarization poten-
tials obtained from, e.g. , coupled channels calculation, to
be predominantly real. This is borne out by actual CC
calculations (see discussion to follow).

The adiabatic polarization potential of multipolarity A,

was derived 28 years ago by Alder et aI. using second-
order perturbation theory. The result is

V,'d'p, l(r) = 4mZpe
(2A, +1)'

8 (EA, ,o~n)
X E E„—r 2k+2

~ 8(EA, ', O~n)
Ep —E„

8 (EA,;O~n)(Ep E„)—
(Ep E )2

2 +8(EA,;O~n)(E„—Ep)
—1

(b,E2„)

S(EA, ) (6)
(EE2„)

where we have introduced the familiar notation for the
energy weighted sum rule

S (EA, ) =+8 (EA,;O~n)(E„—Ep )

We can estimate the strength of V,'d'z, l(r) by the use of
the energy-weighted sum rule. This is accomplished by
writing

X(R) (e fm MeV), A, &2

—2k —2 (M V)

Clearly the above expression for V,'d'~, l(r) should be used
in the discussion of heavy-ion elastic scattering at sub-
barrier energies. At center-of-mass energies above the
barrier the above form should be considered valid for
r &R„where R, is the radius of the charge distribution.
At separation distances smaller than R„ the form of
V,'d'~, l(r) becomes

2

(&) ~+ 1 (A, )V,d p,l(r) = V,d „(R,)
A+2

X
2A, +3
A. +1

A, +2 2

where V,'d'~, l(R, ) is given by Eq. (9).
In our discussion to follow we consider sub-barrier elas-

tic scattering only, and therefore Eq. (9) suffices. To get a
feeling about the magnitude of the effect, we give, below,
general expressions for the isovector giant dipole
(A, = 1,T = 1) resonance component and the isoscalar giant
quadrupole resonance (A, =2, T =0) component of
V,d pol(r) (Ref. 8)

(1)V,d ~ol(r) = —6.7X10,/3 + l/3
ZpAq ZTAT

XZ~ZT /r (MeV),

V,",",.=, '(r) = —O. 0208(A,'"+A,'")
XZ~ZT /r (MeV) .

The above expressions were obtained by inserting the ex-
pressions for S(EA, ), Eq. (8), into Eq. (9) and using for the
radius parameter (R =rpA

'/3 fm) the electron scattering
value rp ——1.2 fm. For the excitation energies AE~ 1 and
hE~ 2, we have used the empirical values 80.0A

where X is the neutron number, m is the mass of the nu-
cleon, and R is the radius of the nucleus.

In terms of S(EA, ) and b,E)„,our adiabatic polarization
potential, Eq. (5), may now be written as [after allowing
for the mutual excitation of both target ( T) and projectile
(p)]

(~) 4~e 2 Zp ST(EA, ) ZTSp (EA, )

(2A, + 1)' (bE2.( T))' (&E2.(P) )'
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MeV and 60/OA '/ MeV, respectively. For nuclei with
masses A &40, the expression of AE~ ~ given above is
not valid and one should instead use the following:

0 1111&l I I I I I I

( )

64.65 17.4
] /3 2 /3 (MeV ) (12) 10

(2)T=1 & (2)T=OV,dp, ) (r)=+ —, V,dp, ) (r) . (13)

Therefore the added contributions of the A, =2,T =0 and
A, =2, T =1 resonances become

which follows reasonably well the systematics of the giant
dipole resonance energies of light nuclei ( A & 40).

Finally, one may easily add the contribution of the iso-
vector giant quadrupole resonance to V,'d'~, ~(r) of Eq.
(1 lb), by recognizing that the excitation energy of the
(A, =2, T = 1) resonance is almost twice that of the isoscal-
ar resonance; thus one obtains [see Eq. (9)]

0

O

~ 10

10
V,'d'p, )(r) = ——,

' (0.0208)(Aq +Ar' )

&Z~Zz /r (MeV) . (14)

There has been some recent experimental discussion
concerning the isoscalar giant octopole resonance. The
excitation energy seems to be roughly 1503 ' MeV.
For the purpose of completeness, we give below the polar-
ization potential arising from the coupling to the giant 3
resonance. It is

I I I I I I
'

I I I I I I

(b) =

~o-'
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r(Im)
3

V,'d', i(r)= —3.56X10 (Ay+A )

XZ~Zz. /r (MeV) . (15)
10

Potentials of higher multipolarities, may also be easily
evaluated from our general expression [Eq. (9)]. However,
these are of a lesser importance, as the strength of the
coupling goes down with A, .

The giant multipole polarization potentials for A, =1, 2,
and 3 have been calculated for the systems ' 0+ Pb and

Pb+ Pb at E, m =78 and 567 MeV, corresponding
approximately to their respective Coulomb barrier
heights. The results are shown in Fig. 1. Equations
(10)—(13) have been used for this purpose. For compar-
ison, we also show in Fig. 1 the ion-ion nuclear interaction
constructed from the Christensen-Winther' empirical
formula,

10

4=5
10

R)R2
V„(r)= —50 exp8)+82

with

r —A) —82
10~ I I I

0 2 4 6 8 10 12 14 16 18 2022 24 2628

r (frn)

R; =1.233A —0.978A; ' (fm)

and a„=0.63 fm.
It is clear from the figure that VI, ~

becomes more im-
portant than V„(r) at distances r ~17 fm. This leads to
the conclusion that any unambiguous "observation" of the
physical effects generated by V~„~' in the elastic scattering
of heavy ions is possible only with energies that corre-
spond to distances of closest approach larger than 17 fm
in these cases. This seems to be the case studied by Lynch
et al. Furthermore, inelastic processes populating
discrete states would be sensitive to V(,)' through the form

FIG. 1. The giant multipole polarization potentials for A, =1,
2y and 3 for the systems (a) ' Q + Pb and (b) Pb +2 Pb at
E, =78.0 and 567.0 MeV, respectively. Also shown is the
Christensen-%'inther potential.

factor, in the same region where, again, V' ' ~ V„.
It would be of interest to further investigate this last
point.

Before proceeding to use these potentials, we would like
to investigate the quantum mechanical derivation of the
adiabatic real potential to see how quantum mechanical
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calculations might exhibit the energy and angular momen-
tum independence in the potentials (in contrast to pro-
nounced energy and angular momentum dependence in
the nonadiabatic potentials representing real flux loss).

The general form for the nonlocal potential exactly
representing the effect of Coulomb excitation on the elas-
tic channel (ignoring reorientation) may be written for a
given initial orbital angular momentum l (Ref. 11)

U~(r, r') = Zze B(EA) tg(l OAO~ l'0) &, &, F((k)„r& )H~(kz, r& ),k„A' (2l, +1)z I'
(16)

where ~&(kz, r ) and II~(kz, r ) are regular and outgoing Coulomb wave functions at the momentum kz of the excited
state. This expression may be written equivalently

U~(r, r')= — — Z e B(EA,)tg (lOA,0~1'0),—,J dk
2p 8 F~ (k, r)F~ ( k, r')
A' (2A, +1)z 1' r +' r'+' o kg —k +is

Now if the potential is weak in strength its lowest order effect in Born approximation is a source p(r)

p( r) = dr'U~(r, r')F~(ko, r'),
0

where ko is the ground state momentum. The integral over r' is then

I(k) = J dr'Fp(k, r') ~, F((ko, r')

(17)

(18)

U~(r, r') =—

Asymptotically, F( becomes a sine function and so the integral over k is equal to (n /2)5(r r') (R—ef. 12) and we can per-
form the sum over l' to yield

and we note that I(k) is small if k =kz and it makes its main contribution when k =ko. Thus we ignore the principal
part of the integral over k, factor out the denominator by setting k =ko, and obtain

Z e B( EA, ) yt(lOAO
~

l'0), „, f dk F/ (k, r)F/(k, r') . (20)
(2A, +1)z pA+1 p&A+1 Q Q O

417 Zz 8 B(Ek)t 1 g i)
(2g+ 1)z P E E rzz, +2 (21)

which is equivalent to the local potential [Eq. (5)].
It should be clear that what we have calculated above, Eq. (21), is the contribution to the potential U~(r, r') arising

from the principal part of the Coulomb Green's function. This part is completely dominant over the contribution arising
from the on-energy-shell (imaginary) part of the Coulomb Greens function, when the adiabaticity parameter,
g=zlz —go »1. Therefore, one may estimate the nonadiabatic contribution to the giant resonance polarization potentials
by simply calculating the delta function contribution,

b, U((r, r') = —
z Z~e B(EA, ) tg(lOAO

~

l'0) &, &, F~ (kzr)F((k-z r') .
k, )riz (2A, +1)' 1'

The trivially equivalent local potential is given by

au, (r, r')= pi 4m — ze B(E&)T
z Zp z y ) +) (~0~0

~

~ 0)II'Io(goi gz) i
I

2kz (2A, +1) a()z ( Fi(kor)r +'

(22)

(23)

where (zoz is the symmetrized half distance of closest ap-
proach for a head-on collision, and I(~, (gz, go) is the
Coulomb excitation radial matrix element. This matrix
element approaches the classical orbital integral Iz&(8,g),
p=—I—3', in the limit gog2»1, which is certainly at-
tained at sub-barrier energies. In the limit
(g'/sin8/2) » 1, I~&(8,$) may be approximated by the ex-
pression

I

very small, thus rendering hU~' '(r) insignificant.
Our expression for b, U~ '(r), Eq. (22), is not very useful,

as it involves the ratio

F( (kz, r)

F((k, r)

However, the effect of LU on the wave function may be
estimated easily to be

4) (8k)= 2~ 1
exp —g . —+-

Z [
' (g @+1)] sin8/2 2

2p( 4m z ezB (EA, ) t
kz fi (2A + 1)z (z oz

~g(z.—p —1)/2( ) 8/2) ~+)M+ 1
2 '

2
(24) Xg (lOA0~1'0) [I(( (g,gz)] (25)

which clearly shows that in the back-angle region I~& is which goes approximately as e & at 0= 180'.
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III. EFFECTS GF RELATIVITY

The first two terms on the right-hand side are the usual
nonrelativistic forms. The third term arises from the
momentum correction of special relativity. The fourth
term comes from the magnetic interaction arising from
the motion of a finite mass target.

To evaluate the effect of these last two terms we begin
by rewriting the radial momentum p„

L 2

pr =p— (27)

where L is the orbital angular momentum of the scatter-
ing system. Furthermore, only in these correction terms
do we inake use of the zeroth order expression for p

We consider Coulomb elastic scattering of a spin zero
projectile on a spin zero target. A classical Hamiltonian
may be written which contains relativistic effects to first
order in 1/mc . This Darwin Hamiltonian' takes the
following form in the center of mass system

p (mi+rn2) ZiZ2eH= + 2 3+ 32m)m2 Sc m& m2

Z1Z2e p +pr2 2 2

+ 22m )m2e

lowed to use classical scattering theory. The exact form
of the criterion for the applicability of classical descrip-
tion of scattering was considered by Bohr" and is given
by

«&(b),ae(b)

where k is the de Broglie wavelength of relative motion,
and 9(b) is the classical deflection function. Thus as long
as the deflection function does not exhibit rapid variation
with the impact parameter b, classical mechanics is ade-
quate. In our case 8(b) is different from the Rutherford
deflection function

OR„ih(b) =2 tan

a slowly varying function of b, by a very small deviation
which, as we show below, is also slowly varying with b.
Accordingly we are quite justified in using classical
scattering theory to calculate der/dQ. Furthermore, since
the effect of the polarization potentials is rather small, we
calculate their effect using first order classical perturba-
tion theory. Namely, writing for the deflection function

8(b) =OR„,h(b)+58' '(b),

6O' ' is given by'

2m (m2
p = E—

(mi+m2)
Z)Z2e

where E is the asymptotic center of mass kinetic energy.
If one makes these substitutions and collects terms, the

Hamiltonian becomes

where Po is defined by

0 (32)

p (mi+m2)H=
2m~m2

Z] Z2e
1+

(m i +m 2
—m im2)

2 2

E2
2(mi+m2)mim2c

(rn i +m 2+m im2 )E2 2

(mi+m2)mimic

The variable angle P, which is depicted in Fig. 2 defines
the trajectory equation for Coulomb scattering

1 1 cos0o
(cosP —cosPo),

& sin Po

(m, +mp+3mim2) ZiZ2e

2(mi+m2)m, m2c

Z&Z2e L
2m]m2C r

(29)

where a =g/k =(ZiZ2e )/2E, half the distance of
closest approach for a head-on collision.

The classical cross section,

b db
sinO dO

The effects of the last two terins (in 1/r and L /r )

will be calculated by classical perturbation theory in Sec.
IV. We will ignore the relativistic effects in the slight
change of constants in the other terms which give a slight
angle-independent change in the overall cross section
equivalent to a slight change in the beam energy.

attains the following form when 68' ' is included to first
order:

IV. EVALUATION OF THE CROSS SECTION

In this section, we derive closed expressions for the
cross section of heavy ion elastic scattering in the com-
bined Coulomb plus giant multipole polarization poten-
tials and "relativistic" potential discussed in Sec. III.
Since the Sommerfeld parameter of the heavy-ion (HI)
system at sub-barrier energies is quite large, we are al- FIG. 2. The Coulomb scattering variables [see Eq. (32)].
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daRuth t (2.) g 3 (2, )1+Tb,g( 'tan —+Tb,g cot—
dQ ' 2 ' 2

1 d gg(g)
2 dyo

(33)

At g =a., $0——0, and b, g( '=0. Therefore, the value of the

cross section at g=2r is

„„(~)=-„'„"' (~) 1+ „~g(')(~)
0

(34)

We now apply our formulae given above for A, = 1, 2, and
3, obtaining,

gg(2)

gg(3)

Vp
' cos $0

( —15/0+ 12$0sin $0+ 15 sinpocos((to —2 cos(r}osin t)t 0),2Za' sin'((lo

V, cos Po
(2)

( —3 15/0+ 420$0sin $0—120ppsin $0+ 315cos(t}osinpp —210cosposin $0+8 cosppsin5$0),8Za' sin)0((0

Vo cos Pp
(3) 8

( —15 015/0+27 720(I)osin (r)0 —15 120$0sin $0+2240$0sin $080Za' sin(4(to

(35)

(36)

+15015singpcosgp —17710cosgpsin $0+4648 cosgpsin Pp —80cosgpsin (()0) . (37)

As shown in Fig. 3, the three angular deviations have similar behavior, all peaking at an intermediate angle. Further-
more, they attain zero value at $0——0 and 5r/2 which correspond to g=0 and 5r, respectively, see Eq. (32).

When inserted in Eq. (33) for the cross section, Eqs. (35)—(37) give the following expressions:

der("
dQ

der(2)

dQ
dRuth

dQ

y(2)
0

8Ea

(&)
dRuth ~0

dQ 2Za4

3cos $0
[—,(1+16cos ()(0+ 8 cos $0)——,(29+46 cos pp)cosppsinpp]

2 4 1 2

S111 $0
6cos Pp 9 2 4[(—2 tango —Tcotpo)( —315$0+420posin (t 0—120posin $0—315cosposint})0

sin' $0

(38)

—210 cos((tosin (t)0+ 8 cosppsin $0) + —,(840$0sinppcospp

—480(t)osin (t ocost))0 —840 sin $0+. 960 sin t))0—48 sin $0)] (39)

and

do' d(TRuth Vo cos 40 5
(3) (3) 8

13)- [(—, tango ——,cot—tYI)0)( —15 015(t)0+27 720/pain po 15 120(I)o—stn po80za sin' $0

+2240$0sin pp+ 15 015 cos(t osin(tto —17 710cosposin t}t 0

+4648 cos(t psin (t 0—80 cosgosin (t}0)

+ —,
' (55 440t)I pcosppsin(tto 60480/0—cos(t osin $0+ 13440pocost))osin (t 0

—55 440 sin $0+ 78 960 sin $0—26 208 sin ((}0+640 sin (1)0)]

%e write the percentage deviation

dO dRuth(~)

dQ dn

in the following form:
y(1)

ga() ) 0 g(()(g)
2Ea
y(2)

ga(2) 0
g (2)( g }

8Ea

d ~Ruth

dQ

(41)

y(3)
ga(3) 0 g(3)(g)

80Ea

The three universal functions g'"(g), g' '(g), and g' '(g)
are shown in Fig. 4. As one clearly sees, all universal
functions attain their maximum value at g=180'. Fur-
therrnore, they have zero contribution at 8=0. Thus mea-
surement of these effects in the backward hemisphere
should be compared with forward scattering at each ener-
gy. We should mention that Eq. (38) for A, = 1 has been
previously obtained by Baur et a1. A simple measure of
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FIG. 3. The angular deviations, 60 =', 4(9 =, and 619 =, plotted versus the center of mass angles.

Ao' ' may be obtained by setting 8=180. After tedious
calculation we find

, , Vo
(i) 3.66E ())

(Z|Z2e )

Ao (O=rr)= '
6 Vo

4.43E (2)

(ZiZ2e )

75.09E V(3)
(Z|Z2e )

Note that Vo
' is intrinsically negative.

Since the numerical factors appearing in the expressions
above vary very slowly with A,, one may, to get an order of
magnitude estimate of ho' ', write a general expression
valid for any k

E2A, + l

(43)
(Z + e2)22+2

with Vo given by r ~+2V,'dI~I(r) [see Fq. (9)j.
The calculation of the deviation Ao' ' due to relativis-
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FIG. 4. The universal functions g'"(8), g' '(0), and g' '(9), Eq. (41), plotted versus the center of mass angle.

tic effects is straightforward and follows the same lines as
the ones used to evaluate ho' ' above. As we have seen in
Sec. III, there are two "polarization" terms arising from
special relativity [Eq. (29)], namely

2 2 2'2
(R) ml+m2+3mlm2 Z]Z2e

Vl
2(m~+m2)m&m2c

ZlZ2e J 2
y(R) l 2 L

(45)
2m lm2c

(44)

m&+mq+3m&mq (Z~Z2e )
2 2 2 2

68l cot Pp2(m)+m2)m)m2c Ea2

X ( —go+ sinpocospo) (46)

The corresponding changes in the classical deflection
function, Eqs. (31) and (32), may be easily evaluated

(R) Zlz2e' 2mlm2 2b,82 cot Pp
2m&m2c (m~+m2)a

X ( —Pp+ sinPpcosPp) . (47)

Summing, Eqs. (46) and (47), and noting that the classical
distance of closest approach 2a is equal to (Z~Z2e )/E,
we obtain the total change in the deflection function due
to relativistic effects

b,8' '= 2cot Pp( —Pp+ —,'sin Pp),
pC

(48)

where p=m~m2/(m&+m2), is the reduced mass. The ef-
fect on the Rutherford cross section then obtains from
Eq. (33)

do' dRuth 2E 2 0 ] . 2 61+ tan ——,cot8(sin8+ 8—m. )—cos—
dQ dQ pc2 2 2

(49)
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The corresponding universal angle-function g'"'(8) de-
fined through 10

(a)

g~(R) (A)(g)
pc

is shown in Fig. 5.
Note that in Eq. (49) there is no dependence on ZiZ2

in the relativistic correction term; factors of Z&Zz in the
potential have been canceled by the Ziz2 implicit in the
a from the classical trajectory. At 180' the angle depen-
dent coefficient of 2E, /pc is ——,', and it remains neg-
ative going to ——, at 90' and to —m8/8 at small angles.
For an infinite mass target p is equal to the projectile
mass, and 2E, /pc is equal to V /c . For a
finite mass target relativistic magnetic effects enter in,
and their lowest order effect in combination with the
lowest order relativistic scalar potential term is to cause
the mass, p in Eq. (49) to be equal to the reduced mass of
the system. For the case of spin —, electron scattering a
similar relativistic. correction has been derived to lowest
order in Z&Zze /Pic (which is inappropriate here), but it
only includes the cos 8/2 term in the square brackets. '

We present in Table I the results obtained from Eq. (42)
for several heavy-ion systems with E taken to be equal to
the height of the Coulomb barrier at 1.44(A& +AT )

fm. The strengths Vo
' are calculated from Eqs. (8) and

(9). The effect on the cross section is as large as 2% for
the summed effect of dipole, quadrupole, and octopole ex-
citations with two heavy nuclei and about 0.6% for ' 0
on a heavy nucleus. Though the octopole excitation is
quite small, the quadrupole one is not negligible, a little
less than half that of the dipole. The relativistic effect is
largest for uranium on uranium (0.8%), but not much less
for any of the other cases.

Since the experiments of Lynch et al. were done at
very low energies, the dipole effect (which goes as E ) is
relatively more important than the quadrupole effect
(which goes as E ) when compared to our calculation of
78 MeV ' 0 on Pb. The highest energy measured was
55.7 MeV which corresponds to a distance of closest
approach, 2.0(A& +AT ) fm. At this energy we calcu-
late quadrupole contribution of b,cr' '= —0.03% at 150',
to be added to the dipole contribution of —0.2% obtained
by these authors with a Vo" ———2.24)&10 (MeVfm),
slightly larger in magnitude than our Vo" value. Our for-
mula for her' ' agrees with the angular curve for 50 MeV

CV

10
CU

CD

I

10
40 80 100 120 140 160 180

(deg)

0.6

02

0.1

QO
0 PQ 40 60 80 100 120 140 160 180

63(deg)

FIG. 5. The universal function g' '(0) associated with the
relativistic effects, Eq. (50), plotted versus the center of mass an-
gle.

TABLE I. Adiabatic polarization potentials due to giant dipole, quadrupole, and octopole excitations are tabulated. Percentage
reduction in 180 cross sections are also shown for each contribution as well as for the relativistic effects. Reductions are angular, rel-
ative only to the (sin8/2) Rutherford distribution.

System

40Ar+ 160~d

40Ar+ '48sm
' Q+' Sm
16Q+208Pb

208Pb+ 208pb

238U+ 238U

(MeV)

130
128
64
78

567
683

y(&)

(MeV fm4)

6.24x 10'
5.71X10'
1.08 x 10'
1.89 X 10
1.57X10'
2.45 X 10

y(2)

(MeV fm )

3.05 X 10'
2.81X10'
4.99X104
9.45 X 10'
1.39X10'
2.30x10'

y(3)

(MeV fm )

9.45 X 10'
8.34X10'
1.44X10'
3.43 x10'
6.70X10'
1.21 X 10

y(R)
0

8.73x 10-'
8.74 X 10-'
9.52 x 10-'
1.].3 X 10—'
1.17X 10-'
1.23 X 10

0.66
0.66
0.40
0.42
1.192
1.30

(%)

0.24
0.24
0.176
0.168
0.44
0.46

g~(3)

(%)

5.26 X 10
5.37 X 10-'
4.76x 10-'
4.84 X 10-'
8.32 X 10
8.77 x 10-'

(R)

(%)

0.582
0.583
0.635
0.753
0.780
0.820
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It is interesting to consider the potential further. If one
has solved a set of coupled Schrodinger equations for a
given partial wave, then one may define a trivially
equivalent local potential (TELP) to represent the effect
of the off-diagonal coupling upon the elastic channel

' 0+ Pb calculated numerically by Lynch er, al. , and
we also agree with their energy dependent calculation of
the relativistic effect.

V. COMPARISON VfITH
COUPLED CHANNELS CALCULATION AND

TRIVIALLY EQUIVALENT LOCAL POTENTIAL
lo(Io+ 1)

dr r
-+ko — —— &p(r) XI (&)

0To investigate the validity of our classical calculation
reported above we have performed several computer cal-
culations for the quadrupole case. We take as our test
case the isoscalar quadrupole giant resonance in Pb ex-
cited by 78 MeV (c.m. )

' Q. The sum rule gives us 8 (E2)
of 8055 e fm which with E„=10.13 MeV corresponds
to a polarization potential of —53035/r MeV.

Figure 6 shows an angular distribution of the ratio to
Rutherford cross section from an analytical formula [Eq.
(24)]. Also on the same figure are the results of an optical
model code evaluation of the cross section with the poten-
tial —53035/r and also results of a Coulomb excitation
coupled channels calculation with no potential but with
quadrupole coupling to the 10.13 MeV state with the
above 8(E2) strength. All three calculations agree to
within about a percent of the deviation from Rutherford
scattering at all angles. This not only ensures us that the
classical scattering theory provides a very accurate cross
section for the 1/r potential, but that the adiabatic po-
larization potential truly and accurately represents the ef-
fects of channel coupling when used to provide a cross
section calculation.

=g Vo (r)Xt (r)
J

2po
g2, VTF,p(r)X, (r), (51)0

where X~ (r) is the full solution of the coupled channels
0

problem, not just the homogeneous part.
Figure 7 shows the results of computing the VTEr p for

three initial orbital angular momenta in our test case com-
pared with the analytical I/r potential in the crucial
turning point region for each partial wave. As one moves
out from the turning point one sees the "hair" seen in op-
tical potentials previously calculated"' in the "sudden"
case of coupling to low lying states. An exploratory cal-
culation at a lower energy [64 MeV (c.m.)] verifies that
VTEI p is also energy independent in the sense that the
values of VTEgp always approximated the energy indepen-
dent 1/r potential in the turning point regions.

0,02 I

v (2)
AD POT.

0.9999—

0.9996— 0.012

b

b & 0.0 I 0
I

CLASSI CA
OPTICAL C

.COUPLED

0.006

0.9992—

0.002

/ M ~ ~ ~

'. )/
l5

0 9990 & 1 ) ) & ) ) & ) ) 1 I I 1 I I 'l

0 30 60 90 I 20 I 50 I 80
e, ~ (deg)

FIG. 6. Cross sections as ratio to Rutherford for 78 MeV
{c.m. )

' G+ Pb with parameters in the text. Optical model
and coupled channels calculations were performed with the code
CHORK.

l2 I8

FIG. 7. Comparison of trivially equivalent potential comput-
ed with the code CHoRK (Ref. 17) for orbital angular momenta
0, 40, and 80 with the analytical form. Parameters are the same
as for Fig. 1 {see the text).

SMALL EFFECTS IN SUB-BARRIER HEAVY-ION ELASTIC. . .
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VI. CONCLUSIGN

In this paper we have presented a detailed discussion of
the small deviations, in the sub-barrier elastic scattering of
heavy ions, that arise from virtual giant resonance excita-
tion and relativistic correction. %e have found that these
effects manifest themselves unambiguously at center of
mass energies corresponding to Coulomb distances of
closest approach larger than about 17 fm in the cases con-
sidered.

Using a perturbative classical scattering calculation, we
have assessed the importance of these polarization poten-
tials in the elastic scattering cross section. We have found
that it is more than sufficient to consider the dipole and
quadrupole together with the relativistic correction poten-
tials in considering the 1% deviation from pure Ruther-

ford scattering.
Our classical calculation of the giant quadrupole polari-

zation effect on the cross section has been compared with
exact coupled channels calculations and with an optical
model code evaluation of the 1/r potential. Agreement
was excellent, from which one may infer that not only is
the 1/r + potential an excellent representation of virtu-
al excitation, but that the classical scattering theory is an
excellent representation of the effect of these potentials.
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