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Separable representation of the Paris nucleon-nucleon potential
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A separable representation of the Paris potential is constructed by means of the Ernst-Shakin-
Thaler method. The resulting separable interactions represent a good approximation of the on-shell

as we11 as off-shell properties of the Paris potential. Their form factors are composed of rational
functions not too complicated for today's computer codes for few-body systems. The various

features of the nucleon-nucleon force are discussed together with first results obtained with these se-

parable potentials for elastic eIectron-deuteron and nucleon-deuteron scattering.

I. INTRODUCTION

The on-shell properties of the nucleon-nucleon (N-N)
interaction can be considered as well established. This is
due to the fact that both for the proton-proton (p-p) and
the neutron-proton (n-p) systems we are given a large
amount of reliable experimental data while they are
rather accurate for p-p, they contain only minor uncer-
tainties for n-p. By assuming charge symmetry, which
might be violated just slightly, we can also get informa-
tion on the neutron-neutron (n-n) system, since elec-
tromagnetic effects can be treated with satisfactory rigor
in the transition from p-p to n-n observables. " As a
consequence, realistic N-N interaction models all show
similar on-shell properties despite the fact that they often
result from different approaches to N-N dynamics.

However, the situation is not so obvious with respect to
the off-shell behavior of the N-N interaction. The corre-
sponding evidence can only be found in three- or more-
particle problems involving an N-N subsystem. Though
there exist numerous investigations of N-N off-shell
features from over the last decade or so, there is still
much controversy and uncertainty about them. In par-
ticular, it has been questioned which observables could
provide constraints on the N-N off-shell behavior. From
the theoretical side the situation has been much obscured
by the use of N-N models often with unreasonable off-
she11 characteristics. This is especially true for
phenomenological separable potentials, which are still em-

ployed more than all other models and/or approaches.
Separable representations of subsystem transition matrices
constitute an essential tool for solving more refined three-
or four-body problems; often, only by their use can nu-
merical computations be facilitated such that more in-
volved investigations become feasible. In the past, howev-

er, the N-N physics behind them was hardly realistic. As
a consequence conclusions drawn from calculations with
separable input were unreliable and sometimes even
misleading.

In the past few years it became clear how important it
was to include into the N-N subsystem specific features
related to the (half-) off-shell behavior of the interaction.
Above all this concerned the deuteron wave function in
applications like e-d, m.-d scattering' ' or H and He
form factors. ' Amongst the separable potentials provid-

ing a reasonable overall description of N-N on-shell data
it was only the Graz-II model ' that paid some attention
to this aspect. But also off-shell properties from the N-N
scattering domain were found to play a significant role
evident, e.g., in polarized three-nucleon scattering process-
es."' In addition, recent studies of the inclusion of
three-nucleon forces emphasized the need for a realistic
off-shell behavior such as provided by meson-exchange
potentials.

In order to remedy the unpleasant situation with respect
to a separable parametrization of the N-N interaction, we
constructed a separable representation of the Paris poten-
tial' aiming at a reproduction both of its on-shell and
off-shell characteristics. Thereby it should become possi-
ble to introduce all essential features of the N-N interac-
tion (as resulting from meson-exchange dynamics) into
few-particle calculations relying on well-approved integral
equation approaches. As will be explained in Sec. II we
made use of the Ernst-Shakin-Thaler (EST) separable ap-
proximation method' and adopted the Paris potential as
the given N-N interaction model; it provides a realistic
description of the N-N force, since it is basically derived
from meson-exchange theory (see a more detailed descrip-
tion in the beginning of Sec. III) and shows a good fit to
the modern N-N data base. Therefore it is very desirable
to investigate in detail its (on-shell and off-shell) proper-
ties in few-body systems.

In Sec. II we give a short outline of the formalism
necessary to apply the EST method. Thereafter we
present the explicit forms of our separable representations
of the Paris potential and discuss their on-shell and off-
shell properties. Finally we also report on a first applica-
tion of these separable interactions in three-nucleon
scattering and mention a few preliminary results obtained
for the triton binding energy.

II. SEPARABLE REPRESENTATION METHOD

In our examination of various separable approximation
schemes we found the EST method' as the most direct
and effective one to transpose on-shell as well as off-shell
properties of a given two-body interaction into separable
form. In the literature there already exist some applica-
tions of this method to the N-N interaction, ' but they

1984 The American Physical Society



30 SEPARABLE REPRESENTATION OF THE PARIS NUCLEON-. . . 1823

concern interaction models either unrealistic or out of
date; furthermore, improper treatment of the method led
to erroneous results as was pointed out by Haidenbauer
and Plessas.

I-et us begin by considering the I.ippmann-Schwinger
equation for the radial wave function in the case of a gen-
eral (spin-dependent) N-N interaction potential in some
coupled partial-wave state of total angular momentum
J=/& + 1 =I& —1:

I
4''r. &=14'zr &/'iver, + g . Go, r. (E)I rr. '10zir. '& ~L'=l, l

(L =1+1) (2.1)

with the incoming state 1gzr & of angular momentum
I = l & or I & . For this equation we have chosen standing-
wave boundary conditions corresponding to the use of the
principal-value Green's operator Go L. We remark, how-
ever, that the EST method to be outlined in the following
works with other boundary conditions as well. We adopt-
ed this choice because it leads to simpler formulae and is
easier to use in numerical computations.

The four equations (2.1) can be written in a more con-
cise way by, applying a matrix notation. We combine
the coupled wave functions 1gzir & two by two into the
kets 1%'zi& representing two-dimensional column ma-
trices. The potential and resolvent operators correspond-
ing to this coupled partial-wave state with total angular
momentum J become (2X2) matrices denoted by 1 and
So, respectively.

Given the potential F:in our case it will be the Paris
potential' —the EST method consists in constructing a
rank-N separable potential P of the form

m1e. &x,,(e.. 1m. (2.2)
ij =1

Here the ensembles a;= IE;l; I, (i =1, . . . , N), each
denote a fixed energy E; in some particular channel
/& ——/& or l&. The form factors of the separable potential
P" consist of the objects P 1%' . &. Thus one can achieve

the half-off-shell elements of the reaction (or equivalently
transition) matrices Rrr(E;) and Rri (E;) correspond. ing

to 7 and P, respectively, to be equal at the energies E;
of channel l; by requiring

g k,,(q. . 1w1+, & =s,„. (2.3)
j=l

This condition imposed on the potential strengths guaran-
tees

~1@.. & =w1e. . & =W(E, )1e. &

for N combinations a;. This means that the on-shell as
well as half-off-shell results for both interactions P" and
P" are exactly the same at the energies E~ of channel /;.
At neighboring energies the separable potential P can be
expected to provide a good approximation to the (half-)
off-shell matrix 9P belonging to the original model F".
This approximation can be improved by selecting more
and more interpolation energies E;. We remark that E;

can also be chosen as a bound state energy; this will actu-
ally be the case in our treatment of the S~- D~ coupled
channels (deuteron pole). The corresponding separable
form factors are then furnished by the bound-state wave
functions. Thus the EST method includes the possibilities
offered by the unitary pole approximation (UPA).

The ensembles a; have to be chosen according to the
physical situation. In general, it. turns out that for uncou-
pled partial waves of the N-N system it is sufficient to
select two or three energies E; in order to produce a good
separable approximation to the original interaction over a
wide energy domain, E&,b &500 MeV, say. For coupled
partial waves, notably the crucial S~- D~ state, at least
four interpolation energies are needed.

However, also some care has to be taken in selecting the
ensembles f E~/; I. It is clear from Eq. (2.3) that the ma-
trix ('P 1W14 & must not become singular in the

J
evaluation of the parameters A,;J. Similarly one has to
check carefully on the behavior of the matrix (1—AP),
with A containing the potential strengths A, ,z and 9' de-
fined by the elements

G,,(E)=(e 1&So(E)P-14'., & . (2.5)

x (q .. 1m1e,-,-&
J

(2.6)

for L',L"=/&, l&. The elements DJ(E) belong to the
matrix

&(E)=[A ' —8'(E)) '=[1—AS(E)] 'A . (2.7)

Evidently the matrix (1—AS) cannot become singular ex
cept at the location of a bound-state pole. In the con-
struction of a separable potential via the EST method this
fact has to be checked carefully. Otherwise it could lead
to erroneous results like, e.g., in the case of Ref. 21, where
an unphysical resonantlike behavior is produced in the
scattering domain, which was clearly not present in the
model potential P .

We note that the formalism given above reduces to un-
coupled partial waves by setting L =L'=I. In this case
the a; need only be specified by the interpolation energies
E; (cf. also Ref. 23).

III. SEPARABLE APPROXIMATION
TO THE PARIS POTENTIAL

We now discuss the application of the EST method to
the case of the Paris potential. As already mentioned in
the Introduction, the Paris model can be considered as a
realistic description of the N-N force at least for internu-
cleon separations r &0.8 fm. There it represents rneson-
exchange dynamics —basically (m. +2m+co) exchange —.

The matrix (1—A9') enters into the denominator of the
general solution for the reaction matrix A(E) pertaining
to the separable interaction P, namely,

Rr r-(E E E)= (4z r 1A'(E)
1
@z r- &

X
(ezr 1P 1%' &Dj(E)
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while in the interior (r ~ 0.8 fm) it is parametrized
phenomenologically. As a result it yields a good repro-
duction of the N-N on-shell data. But also the off-shell
behavior —as far as relevant in nuclear physics
processes —seems to be reasonable (we will come back to
this aspect in Sec. IV). Above all it shows properties al-
ready found as essential in various three-particle reac-
tions. ' ' ' ' One is therefore eager to perform more
detailed studies with this interaction. Since in its original
version the Paris potential is of a very complicated
form, ' it has not yet been possible to employ it in the
various few-particle problems aside from the particular
3-N bound-state case (e.g., in Refs. 24 and 25). By means
of the separable parametrizations presented below it will
become feasible to introduce all essential on-shell and off-
shell characteristics of the Paris potentia1 to these kind of
problems; notably the particular separab1e forms will be
well suited to existing computer codes based on integral-
equation approaches.

According to Eq. (2.2) the form factors of the separable
potential /& are furnished by the half-off-shell reaction
matrices %(E; )

I

4 ) at the fixed energies E; in some

partial-wave state l;. We obtained these objects by solving
the Lippmann-Schwinger equation for the Paris potential.
In order to guarantee an easy and good applicability of
our potentials we cast these numerical form factors
(4zL

I
E

I
qI ) into rational functions of the type

L+2( n —1&

gL,;(p)= g, , „, («I).= i (p'+13L.;.}'+"
L +2(n —1)

gI. (p)= g-, , L „, , (2«&3) (31).=i (Iz'+PL;. }'+"
4 C L+2(n —1}

gi;(I )= g.= i V '+PL;. }'+"

where E =p A' l2p, . By adjusting the parameters C and P
we could reproduce the numerical results (i.e., the half-
off-shell functions (@EL

I
1~I'P~ }) up to p&6 fm

rather accurately. Above this region slight deviations oc-
curred, but they were found to be negligible (cf. also the
discussion of the off-shell behavior later on and Ref. 27).
The potentia1 strengths were then determined via

(A ')
J

——g( (p, )

$2
+ g I' Jk'dk gg;(k)gg (k)

L =I,1 Pi—2

the "analytical" analog of

(3.2)

(A '),,=(@ IP I+ )

+(0
I
wS,'(E, )t" I% (3.3)

A. Uncoupled partial waves

So

In this partial wave the Paris potential is given only for
the p-p system. ' In order to construct our separable ap-
proximation we first considered the purely nuclear case.
We designed two different PEST potentials, one of rank 1

that follows from Eq. (2.3} with the use of Eq. (2.1). We
denote the resulting potentials obtained in this way (name-
ly, by representing the Paris potential in separable form
by means of the EST method) by PEST%, where N speci-
fies the rank of the separable interaction in each partial
wave [cf. Eq. (2.2}]. Let us now discuss the partial-wave
states provided by the Paris potential one after another.

TABLE I. Interpolation energies selected for the construction of the separable potentials PEST% in
various partial waves.

Partial
wave

Abbreviation
and rank

PEST1

PEST3

PEST2

Selected energies E; (MeV)
or ensemb}es a;= IF-;I; I

E
1

——0 E2 —100 E ) ——300

E I
——50 E2 ——300

1p 3p

'D„-'D,
PEST2 El ——50 E2 ——150

3I'p-. F2

D-G

PEST1

PEST4

PEST3

PEST4

a) =
I
—2, 2249, —

I

ai= I
—2 2249 —

I az= I125 2I az= l100 0I aq= l425 2I

a~ = l75 1I az=
I

175 3! az= I300 1l

a~ = l75 2I az= l200 4I az= l300 2I aq= l400 4I
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and one of rank 3, according to the interpolation energies
specified in Table I. These two versions, whose parame-
ters are given in Table II, reproduce the on-shell as we11 as
half-off-shell properties of the Paris potential at thresh-
old, since both contain E& ——0. In fact, the low-energy pa-
rameters of Paris and PESTN are the same for 'So (p-p)
purely nuclear (Table III); the small and unimportant
discrepancy in r, stems from the analytical approximation
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FICx. 1. 'So phase shifts. (a) 'So {p-p) purely nuclear phase
shift 5,. (b) 'So (p-p) Coulomb-modified phase shift 5„. (c) 'So
(n-p). (b) and (c) also show a comparison to the latest Graz-II
separable potential (Refs. 6 and 14) and to phenomenological
data of Amdt et al. {Ref. 1).
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TABLE III. Effective-range parameters in the 'Sp state. The recalculated Paris results for 'Sp (purely nuclear) differ slightly from
what is quoted for Sp (n-n) in the original work by the Paris group (Ref. 18). This is due to the different system of units we employ;
we use an averaged reduced mass of p =469.463 17 MeV throughout.

'Sp (p-p)
Purely nuclear

a, (fm) r, (fm)

'Sp (p-p)
Coulomb modified

a„(fm) r„(fm) a (fm)

'Sp {n-p)

r (fm)

Paris
PEST1
PEST3
Expt. (Ref. 28)

—17.54'
—17.54
—17.54

2.87'
2.86
2.86

—7.81"
—7.85
—7.85
—7.8098+0.0023

2.80"
2.85

2.85
2.767+0.010

—23.72
—23.72
—23.748 20.010

2.81
2.81
2.75 +0.05

'Recalculated.
Given by the authors (Ref. 18).

k=0.0000 fm
I

)
t

) C

f
I

k=0. 4911 frn-1
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~ ) ~ ) I ) ~ I I i I i ) a )

0 1 2 3 4 5 6

p(fm )

0 1 2 3 4 5 6

p(fm ~)

~ (

k=1.0980 fm 1

I i I s I i I I

51 2 3 6

p{fm "j
FyG. 2. Half-off-shell functions for 'Sp (p-p) purely nuclear. (a) E~,b ——0 MeV, (b) E/gb —20 MeV, (c) E~,b ——100 MeV. In (a)

PEST1 and PEST3 are identical. Same description as in Fig. 1.
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E 3

2-

0 a

29 1 3 4 5 6
p(fm ')

FIG. 3. 'So purely nuclear off-shell reaction matrices
E. (p, k;E) in units MeVfm at E=O. Same description as in
Fig. 1.

of the numerical form factors. Also the corresponding
phase shifts at low energies are the same for PEST% and
Paris [Fig. 1(a)]. With increasing energy only PEST3
remains a good approximation.

Furthermore, the off-shell behavior at threshold is
equivalent for PEST% and Paris. Figure 2(a) shows the
Noyes-Kowalski half-off-shell functions

R kkz
f(p, k)= (3.4)

R(k, k;k )

at zero energy. Slight differences only occur for off-shell
momenta p &6 fm '. They do not influence the repro-
duction of the on-shell data and are practically unimpor-
tant in three-body applications. ' lf we go to higher en-
ergies [Fig. 2(b) shows f(p, k) at E&,b

——20 MeV] both the
PEST1 and PEST3 approximations become slightly
worse, but PEST3 improves again at Ei,b ——100 MeV [Fig.
2(c)]. Note that in this case Ez ——100 MeV was selected as
the second interpolation energy (Table I). Moving further
up with energy these properties recur for PEST3, since
Es ——300 MeV was chosen. So in the case of PEST3 a
rather accurate approximation is guaranteed up to
E]ab =500 MeV.

Since three-particle calculations require as subsystem
input the N-N amplitude for energies —oo &E (EqN and
off-shell momenta 0&p & oo and 0(k & oo, we also
checked on the reaction matrix elements R(p, k;E) of
PEST% and Paris at negative energies. These are shown
in Figs. 3 and 4 for E~,b ——0 and —10 MeV, respectively.
The figures look similar at other (positive or negative) en-

ergies, but the approximation eventually becomes less ac-
curate for both p and k far off shell. In contrast to the
half-off-shell behavior [for E =0 shown in Fig. 2(a)], the
off-shell properties are slightly different for PEST1 and
PEST3 even at the interpolation energy E] ——0, which was
chosen for both cases. Formally the reason for this can be
observed from the single-channel analog of Eq. (2.6).
Both versions, however, still provide a reasonable approxi-
mation to the Paris potential even fully off shell.

Once the purely nuclear case is established, we can
embed it into the long-range Coulomb field. The
Coulomb distortion of the nuclear interaction for the p-p

E 3

0 2 3 4 5 6

p(fm ')
FIG. 4. Same as Fig. 3 at E&,b

———10MeV.

system can be treated rigorously both on shell and off
shell via the formalism of Ref. 6. Especially the separable
potential form factors of the type we chose in Eqs. (3.1)
lend themselves to this kind of treatment. In particular,
analytical formulae for Coulomb-modified on-shell as
well as off-shell transition matrices (for all partial waves)
can be deduced from the results already found in Ref. 6.

The Coulomb-modified effective-range parameters for
the 'So p-p system are given in Table III, while the per-
tinent phase shifts 5„are shown in Fig. 1(b) in compar-
ison to the original Paris results and latest phenomenolog-
ical data. ' The latter are just quoted for the sake of in-
terest. The Paris phases may fall apart from these data,
because the Paris potential was fitted directly to the N-N
scattering observables; furthermore, the data base in the
analysis of Amdt et a/. ' is different from the one used by
Lacombe et a/. ' Therefore the PEST potentials, as an
approximation to the original Paris potential, should in
the first place be judged by the Paris results. The compar-
ison with the results of the separable Graz-II potential,
which was constructed phenomenologically, should be in-
teresting with respect to the (half-) off-shell behavior and
the relative complexity of the two parametrizations.

For the Coulomb-modified p-p system the quality of
the PEST approximations is typically the same as previ-
ously seen for the purely nuclear case. This is also true
for the off-shell behavior; wherefore we abandon it to
show these graphs.

For the 'So state we finally consider the n-p system.
Though the Paris potential does not contain this case, we
provided PEST parametrizations also for So (n-p), since
various three-particle problems require a distinction be-
tween p-p and n-p in 'So. We obtained these potentials by
simply shifting the Paris-type off-shell behavior, i.e., the
purely nuclear p-p EST form factors, to the on-shell point
that corresponds to n-p experimental data. This pro-
cedure, which in the main leaves the off-shell behavior
unaltered, is justified by the observation that in meson-
theoretical approaches to the N-N interaction there is
practically no difference in the off-shell behavior between
the p-p (purely nuclear) and the n-p system in the 'So
state. The low-energy properties of our 'So (n-p) PEST
potentials are given in Table III together with a compar-
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TABLE IV. Parameters of the PEST2 potentials in uncoupled P waves.

PEST2

p (fm ')

P„=1.869 1379
p|2 ——3.049 9866
p, 3

——3.558 5752
P,4= 1.159 6292

P, i
=2.5512467

F2 =2.665 1826
P.g

——2.953 7139
Pp4

——3.382 713

C (fm')

3p

C11 ———189.744 07
C12 ——2096.7281
C13 ———3066.2694

C. i
——59.861 55

C» ———681.32014
C.g

——5265.5015
C24 ———6825.757

1, (MeVfm )

A, 12 ——0.405 137 83
A, 22

———5.478 932
~21 ~12

PEST2

pl i
——1.622 5099

pl p
——2.471 2881

pl ) =2.7120059
pig ——3.164 2803

P. i
——1.769 7160

p22 ——2.404 9729
Pig = 1.863 1357
p2g ——4.108 4782

C11 ——76.181 266
C12 ———381.785 99
Ci ) ——1471.7803
C1g ———1646.4168

C.
i

——61.335 643
C22 ——1348.5020
C2 ) ———842. 102 04
C2.1.

———1604.2632

0.669 730 64
A. 12 ———0.522 031 05
A. 22 ——0.640 755 03
A. 21 —A, ] 7

PEST2

P, i

——1.565 2079
pi2 ——2.005 8818
pi 3 —2.4 10005 1

ply=4. 298 1726

p~|= 1.546 3024
Ppi ——1.6196926
p2 |——2.000 4143
p2g

——2. 179 6197

C11 ——89.398 777
C, 2

———208. 135 53
C i &

——425.344 13
C lg ———630.352 39

C22 ——166.464 66
C2q ———404.039 68
C.4 ——528.135 75

0.445 145 49
A. 12

———0.340 6788
A.2. ——0.445 015 14
~21 ~12

ison to experimental data. Corresponding pha e shifts
are shown in Fig. 1(c}. They are compared to n-p
phenomenological phases' and to the Graz-II separable in-
teraction. ' The off-shell behavior is essentially of the
type as shown in Figs. 2—4.

a rank-3 P0 potential. Such a parametrization, however,
would overcharge present three-particle codes and there-
fore we contented ourselves with rank 2.

The situation is easier with P& and 'P&, because these
phases are always negative. We aimed at an accurate

2. '~~, '&o, j

For each of these partiai waves we constructed rank-2,
PEST approximations. For the P01 waves it was r1o

longer necessary to distinguish between n-p and p-p ex-
cept that for p-p the Coulomb-distortion effect had to be
taken into account. The interpolation energies were
selected as quoted in Table I; the potential parameters are
given in Table IV.

The on-shell properties of the PEST parametrization
for Po are evident from the phase shift in Fig. 5. Up to
E~,b-70 MeV the approximation to the Paris results is
rather good, because E& ——50 MeV. Since the other inter-
polation energy had to be chosen as F2 ——300 MeV to give
due account to the high-energy repulsion, there is some
discrepancy in the phase shifts around Ei,&-100—150
MeV, but the situation improves again at higher energies.
A better overall phase shift behavior would have required

C

PO
PARIS
PEST 2
GRAZ I I

ARND 7 et al

-20-

I.003000 100 200 500
El(Me V)

FIG. 5. 'Po purely nuclear phase shifts. The effect of the
Coulomb distortion can be estimated from the figures given in

Ref. 6 or Ref. 31.
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reproduction of the phase shifts predominantly at low and
intermediate energies without exceeding rank 2 (Figs. 6
and 7). Thus for E~,& & 250 MeV deviations from the
original Paris results occurred. At first sight this seems
surprising, since, e.g., the Graz-II potential6 comes off
with a better phase shift, particularly for 'P, , with only
rank 1. But one has to consider also the off-shell
behavior. For traditional separable potentials and likewise
for Graz-II it is grossly at variance with meson-theoretical
predictions as shown by the Paris potential, say. The
half-off-shell behavior of the PEST potentials, however, is
a good approximation to the corresponding Paris potential
properties; it is quite accurate at the two interpolation en-

ergies E& and E2 and still reasonable elsewhere. As an
example we show the half-off-shell functions at Ei» ——20
MeV (Fig. 8), i.e., about halfway between threshold and

3. 'B, 82

12-

Q

zO

400
0
0 200 500

L(Me Vj

FIG. 9. 'D2 purely nuclear phase shifts. Same description
and remarks as in Fig. 5.

For each of these partial waves we again constructed
rank-2 PEST approximations. The properties of these po-
tentials are practically the same as discussed above for the
uncoupled P waves. The treatment of the Coulomb dis-
tortion for 'D2 goes again along the lines of Ref. 6. The
on-shell and off-shell behavior of the potentials, whose pa-
rameters are given in Table V, are shown in Figs. 9—11.

B. Coupled partial waves

This partial-wave state is crucial for a proper treatment
of the N-N interaction. But up until now no satisfactory
description of all its aspects has been achieved by means

of separable forces. We tried to remedy this situation by
constructing a rank-4 PEST approximation to the Paris
potential. This separable interaction (parameters in Table
VI) yields to a correct reproduction of the deuteron prop-
erties as well as to a fair description of the scattering
domain up to E&,b-500 MeV.

For certain applications, e.g., where just the deuteron
bound state enters (like in elastic e-d scattering), we also
provided a PEST1 parametrization assuming E& ———ED.
It is equivalent to a unitary-pole approximation to the
Paris potential and is therefore unrealistic above threshold
(see the discussion later in this section).

The location of the deuteron pole was selected as E, in
both cases (Table I). Thereby it is guaranteed that all as-

TABLE V. Parameters of the PEST2 potentials in uncoupled D waves.

A. (MeVfm ')

PEST2

Pii ——1.1690501
pig ——1.3354235
p1 3 =3.631 1131
Pi4 ——2.962 3562

p2| ——0.871 579 18

pg2
——1.285 3211

pg3 ——3.245 7085
Pp4 ——3.883 9614

Ci I
———7.654 1157

C) p
——3.839 7789

C)3 = —348.088 99
C)4 ——330.935 49

C2l ———1.086 7868
C„=-—22.731322
C23 ——265.302 15
C24 ———303.609 67

A, 1 i
———1.908 6253

A. I2 ——1.008 5124
A, p2

———0.975 438 27
A. pf —kfp

PEST2

P„=1.205 5706
pl 2

——1.296 0008
Pi ) ——1.623 9653
P,4 = 1.445 2618

p2 1
——1.595 3203

p22 ——0.362 699 07
p23 ——1.737 0869
Pgg

——0.587 358 27

Ci p ———21.021 097
C)3 ——533.480 26
Ci4 ————436.551 62

C2 i ———245.060 21
C22 ——3.095 0339
C23 ——299.772 37
C24 ——42.826 073

&& I
= —0.266 741 02

A. 12 ——0.143 051 17.,",=-0.158 17248
~21 ~12
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FIG. 10. D2 phase shifts. Same description as in Fig. 5, ex-

cept that the potential GRAZ-II is here substituted by GRAZ-I
(Ref. 32).

400

pects of the deuteron (Table VII), including the wave
functions (Fig. 12) of PEST1 as well as of PEST4, are
practically the same as for the Paris potential; slight
differences appear only for the wave functions, but in a
domain relatively unimportant for nuclear problems.
They stem from the analytical representation of the EST
form factors (i.e., deuteron wave functions) by Eq. (3.1).
These differences show up in the momentum-space wave
functions at rather high momenta p (Fig. 12) correspond-
ing to the very short-range region in configuration space
(r &0.5 fm). The properties, however, important in vari-
ous few-particle problems, like e-d, n.-d, N-d, e- He, and
e- H scattering, ' ' are taken into account adequately,
i.e., the wave function behavior up to p=7 fm ' includ-
ing especially the first zeros in go(p) and $2(p). These
latter features are of particular relevance, e.g., in polarized
e-d scattering.

At threshold both PEST1 and PEST4 are practically
still equivalent to the Paris potential (see the effective-
range parameters given also in Table VII). With increas-
ing (positive) energy PEST1 becomes more and more un-
realistic. This is because of the fact that a rank-1 separ-
able potential cannot reproduce both the S& and D&

phase shifts correctly. In this connection we remark that
a PESTl approximation to the Si state only (i.e., Si
considered as uncoupled} was presented by Zankel et al. '

As for 'So, also treated in that work, their PEST
parametrization relies on form factors composed of ra-
tional functions different from the ones used in Eq. (3.1)
for the present work; this parametrization is sometimes
easier to handle, e.g., with regard to certain integrations,
but involves more parameters.

The PEST4 parametrization is a close approximation to
the Paris potential in the whole scattering domain up to
Ei,b-500 MeV (Figs. 13—1S). In particular, the mixing
parameter eq, which in earlier separable potentials could
hardly be reproduced together with all other S~- D~ data
(including an accurate deuteron), results reasonably, espe-
cially if compared to experimental data of Ref. 2, which
are additionally given in Fig. 14.

The half-off-shell behavior in Si- Di is exemplified in
Fig. 16 for Ei,b ——100 MeV, i.e., both at and aside interpo-

a I i I a I i I a I-1
0 1 2 3 4 5 6

p{fm "}

I { I
/

1

k=0.4911 frn
-1

2

I'

I I I I I

2 3 4 5 6

p{fm )

FIG. 11. Half-off-shell functions for uncoupled D waves at
Et,b ——20 MeV. Same description as in Fig. 5. In (b) the
dashed-dotted line belongs to GRAZ-I as in Fig. 10.

lation energies (cf. Table I); a comparison is given again to
Graz-II. It is evident that with PEST4 a good approxi-
mation of the characteristics of the Paris potential is
achieved. Because of the balanced distribution of ensem-
bles IE;l;I these features are maintained over the whole

energy range. We also observe that the behavior of Graz-
II is grossly unrealistic [perhaps with the exception of the
diagonal elements in Figs. 16(a) and (d)], like it is for most
other conventional separable forces.

3p 3g

In these coupled partial waves we again first dealt with
the purely nuclear case. The Coulomb distortion was then
introduced according to the formalism of Schweiger et al.
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TABLE VI. Parameters of the PESTN potentials in the coupled S]- D] partial-wave state.

p (fm ') C (frn ) A, (MeV fm ') P (fm ') C(fm )

PEST1

P) )
——1.685 5291

Pi z
——3.920 5339

P, z ——5.763 6834
Pi 4

——6.041 9695

Ci i
———17.392 012

C) 2 ——260.914 55
C) g

———1146.8056
Ci4 ——949.11689

A. = —1.0 Pi i
——2.622 8398

Piz
——1.881 5276

P)z ——3.834 678
P )4 ——4.995 9386

Ci i ———139.845 69
Ci2 ——53.407 791
C) g

——302.782 58
C )4 ———270.0781

PEST4

Pi i
——1.685 S291

Piz ——3.920 5339
P(z ——5.763 684
Pi 4 ——6.041 9695
Pzi ——1.787 79
Pzz ——2.175 921

Pzz =2.470 5717
Pz4 ——2.730 3931
Pg) ——1.597 1102
Pgz

——9.967 8931
Pgz =4.594 8011
Pgg ——2.120 6347
P4, =4.026 8195
Pgz

——5.046 6356
P4g =2.579 5951
P44 ——2.395 3665

C] ) ———51.009 539
C) 2

——765.2439
Ci g

———3363.4996
C)4

——2783.6926
Cg j

———68.041 32
Cp2 ——488.861 19
C2g ———1199.164
Cpg ——871.796 04
Cg )

———89.517 302
C )g ——2582.2164
C33 ———3042.3325
Cg4 ——1235.3473
C4) ———382.758 56
C42 ——1005.8091
C4) ——2298.7534
C44 ———2718.2533

k) )
———0.254 222 42

A. ig ———0.171 787 72
0.071 723 814

A, ig ——0.005 105 0109
A,22

——0.087 724 39
A.2) ——0.094 518 781
A.2g

———0.079 244 845
A, g )———0.030 645 992
A.g4 ———0.034 997 609
A.~——0.169 S53 43
A jJ AP

P) i
——2.622 8398

Pt z ——1.881 5276
Pig ——3.834 678

P i4 ——4.995 9386
Pzi = 1.909 8545

Pzz = 1.1170776
Pzz

——1.425 9853
Pz4

——3.073 4784
Pz )

=2.643 1889

Pqz ——2.748 3825
Pzz = 1.928 3993
Pz4 ——2.289 1433
P4i ——4.259 8369
P4z

——2.146 3834
P4z =2.490 5282

P44 ——2.293 0841

Ci i ———410.1S7 S1
Ci2 ——156.641 27
Cj g

——888.039 85
Ci4 ———792.11994
Cp 1

——87.065 827
C22 ——20.554 605
Cps ———6S 702 538
Cg4 ———91.839 262
C3 f

—143.62 1 5

C)2 ——6.474 4841
Cgg ———1384.0981
Cg4 ——1550.1289
C4i ——366.501 18
C42 ——263.872 02
C4g ———611.668 11
C~ ———12.606 207

TABLE VII. Triplet effective-range parameters and deuteron properties.

a, (fm) r, (fm) ED (MeV) QD PD (%)

Paris
PEST1
PEST4
Expt.
(Refs. 28, 34,

and 35)

5.43
5.41
5.41

5.424+0.004

1.77
1.75
1.76

1.759+0.005

2.2249
2.2249
2.2249

2.2246+0.00005

0.279
0.279
0.279

0.28620.0015

5.77
5.77
5.77

0.0261
0.0261
0.0261

0.0271 +0.0004

TABLE VIII. Parameters of the PEST3 potential in the coupled P2- F2 partial-wave state.

A, (MeVfm ) P (fm ')

PEST3

P) )
——1.445 2936

Piz ——2.017 3835
Pig ——5.446 3467
Pig ——2.849 0316
Pzi = 1.899 3563
Pzz =2.4S4 7294
pz3 —1.549 9793
Pz4= 5 977 3387
P g) ——2.965 9955
Pzz=4. 932 483S
Pzz =2.905 1889
Pz4 ——2.046 3803

C„=—28.609 391
Ci2 ———186.1SO 68

Ci4 ——1022.0712
C2i ——65.794 074
C22 ——173.01447
C2 ) ———190.405 69
C24 ———217.747 04
Cg )

———327.4079
Cg2 ———2950.6615
Cgg

——4127.4473
Cg4 = —1298.0249

0.046 725 027
~,2 ——0.417 104 84
A, i g

———0.060 922 483
A, 22 ——0.254 924 96
A, gg ———0.414 81703
A.gg

———0.135 935 96
Alfj XJ1

P) i = 1.166 7491
Piz ——1.5406619
Piz =2.3802869
Pi4 ——4.833 5309
Pz i

——1.095 5323
Pzz = 1.602 0596
pz3 4.458 5234
Pzg

——1.825 4989
Pz i ——2.108 4981
Pzz

——3.197 7404
Pzz =3.957 3349
Pz4 =4.512 0514

Ci )
—0.967 444 07

C„=166.30912
C[3——1 19.42 1 76
Ci4 ——366.969 81
C2i = —0.638 684 15

C22 =—37.538 146
C23 ——3 16.975 99
C24 = 179.593 23
Cg) = —47.364933
Cg2 =2035.5781
Cgg = —592S.4169
Cg„——5407.1036
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TABLE IX. Parameters of the PEST4 potential in the coupled D3- 63 partial-wave state.

1, (MeVfm ')

PEST4

Pi i ——1.727 5071
p)2 ——2.549 3316
pg3 = 1.911 1954
Pi4 =4.066 9172
uzi=1 9189644
F2——2.738 169
p23 —1.539 602
p24= 1.9159334
p3, =3.227 718
p3p ——4.806 0158
p33 ——3.100509
p34 —3.72 1 4 195
Pg) ——2.842 6813
p42= 3.3549103
f43——3.212 1201
P44 =2.776 6588

Ci i ———8.637 9311
Ci2, ——178.846 57
Ci3 ———114.215 07
Ci4 ———86.040 765
C2i ———116.078 58
C2p ——354.481 69
C23 ——196.1262
C24 ———419.699 57
C3) ———110.31148
C32 ——483.294 54
C33 ——442.800 69
C34 ——903.639 57
C4) ———364.8871
Cg2 ——1848.1193
Cg3 ——2550.6547
C44 ———3985.0257

A, i )
———0.098 992 244

ki2 ———0.394 845 62
kj3 ——0.040 135281
ki4 ——0.113430 39
A,22

——0.282 427 64
A,23 ——0.400 483 98
A,24 ———0.346 772 41
A, 33

———0.142 241 21
A,34 ———0.380 0097
A,44

——0.505 603 72
Xfj —Xjp

Pi i =2.400 0943
Pip ——1.283 0437
pi 3 =1.662 7122
Pi4= 1.558 1999
Pgi =3.9194456
p2p

——1.571 9585
p23

——1.655 341
p24 ——2.096 3683
p3I ——4.803 2746
p32= 3.697 6328
p33 =2.721 4754
p34 ——1.973 9909
Pg) = 1.839 9157
F2——2.074 8484
p4.3

——2.283 176
P~=2.609 5142

Ci i ——10.076 418
C]2 ———90.394 797
Ci3 ——283.81707
Ci4 ———204.527 99
C2) ——10.924 992
C22 ——82.607 174
Cz, ———132.302 66
C24 ——47.770 331
C3i ———204.051 05
C32 ———751.6137
C33 ——1886.8354
C34 ——954.9154
Car = —0 242991 33
C42 ——197.5883
C43 ———411.756 99
C44 ——229.35025

for coupled channels. A rank-3 PEST parametrization
(parameters in Table VIII) was necessary to yield a good
on-shell and off-shell approximation to the Paris poten-
tial. The phase shifts and the mixing parameter ez are
shown in Figs. 17 and 18. We laid special emphasis on
the reproduction of the lower partial .wave, since it should
be of greater importance in few-body calculations (cf. the
selection of interpolation energies in Table I.) But also the
mixing parameter e2 and the I"2 phase shift do not devi-
ate more than 1 deg from the Paris prediction up to
E~,b=300 MeV. The half-off-shell functions are evident
from Fig. 19 at E~,b ——100 MeV. This point is just be-

tween the interpolation energies chosen for this channel
(Table I), but still the off-shell approximation to Paris is
found to be satisfactory here.

3. 3D3- 63

For these coupled partial waves we designed a rank-4
PEST parametrization. No satisfactory approximation
was possible with a lower rank. The parameters of the
PEST potential are given in Table IX. The on-shell prop-
erties are shown in Fig. 20; they exhibit a good agreement
with the Paris results. Half-off-shell functions are drawn

k=1.09SO &~-1
'I ' ! '

I
'

I
'

I

k=1.0980 fm

(b)

2
CL

1 2 3 4 5

p(fm I)
0

p{fm )

FIR. 19. Half-off-shell functions in 'P2-3F2 for (a) P2~ P2y (b) P2~ F2 (c) F2~ Pgy and (d) F2,~ F2 transitions at
MeV. Same description as in Fig. 17.
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FIG. 20. {a) Phase shifts 'D3 and 'Gz and (b) mixing parame-

From the foregoing presentation of the PEST interac-
tions it is clear that these separable representations of the
Paris potential incorporate all essential features which are
likely to be relevant in various nuclear applications above
all in few-body problems. In the following we will shed
some light on some of these aspects. Thereby we will also
reveal further evidence on the quality of the PEST ap-
proximations.

As a first case we consider elastic e-d scattering. It
probes on the form of the deuteron wave function and is
therefore an important tool to check on potential proper-
ties that come through this half-off-shell entity. Since the
potentials PEST I and PEST4 of S~ - B

~ both yield prac-
tically the same deuteron wave function up to p (6.5
fm ' (Fig. 12), we found their e-d scattering observables
to e inb

'
distinguishable from the Paris results over a wide

range of momentum transfers, q &40 fm, say. e
figures given for the Paris potential by Plessas et al. can
thus be taken over for the PEST interactions as well. It is
clear that they are also in accordance with experimental
data, especially for the tensor polarization p q, w ic
has become available only recently (see 'g.Fi . 5 of Ref.
33).

Off-shell effects beyond the 2-N bound state enter into
N-d scattering, which we have also begun to study using
the P interac ions.h PEST '

t t ons ' ' Because of limitations in the
computer code we had available hitherto, we have includ-
ed just N-N S waves. For some purposes, however, this is
already sufficient, namely, for N-d second-order polariza-
tions like spin correlations' ' or nucleon-to-nucleon spin
transfers' at low energies. Because of their spin orien-
tations they are mainly governed by N-N S waves and are
therefore also fairly sensitive to off-shell effects related to
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potential properties at intermediate N-N separations. The
reason is that, because of the absence of the centrifugal
barr2cr 2n S waves, thc N-N 1ntcfactloIl 2s tcstcd dowIl to
much smaller distances even at low and moderate ener-
gies. Accordingly, these regions are more or less hidden
to the peripheral interactions in partial waves of higher
angular rnomenta.

As an example for N-d polarization observables we dis-
cuss the PEST results for the spin-transfer coefficient Ez~

of the reaction H(N, N) H at a'nucleon incident energy of
EN ——10 MCV as studied by Zankel and Plessas. For the
(uncharged) n-d case we obtain the solid line in Fig. 22.

In order to demonstrate the off-shell sensitivity of this ob-
servable we designed —folIowing the method by Zankel
et al. ' ' —a Yamaguchi-type potential F(E) on-shell
equivalent to PEST1 but with different off-shell proper-
ties. In particular, the Y(E) interaction has a half-off-
shell function lacking the zero at p =2 fm ' and the adja-
cent repulsion (for 2 (p (6 fm ') as it is present in PEST
like in the original Paris potential. For 'So this behavior
is exemplified in Fig. 23 (the situation in Si is similar).
Translated to configuration space (Fig. 24) this means
that the F and PEST interactions differ in the outer at-
traction (0.9 (r & 1.2 fm) and in the intermediate-range
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repulsion (r(0.8 fm). Such features as shown by the Y

potential are certainly at variance with meson-exchange
theory, which should be reliable in this region; here all
meson-theoretical models yield qualitatively the same pic-
ture as shown by the Paris potential. We remark, howev-
er, that in the long-range domain the K potential was
adapted so as to match one-pion exchange there.

The effect of the off-shell differences of the
Yamaguchi-type potential is clearly visible in the spin-
transfer coefficient K~r (dashed line in Fig. 22). For a
comparison with experiment, i.e., p-d data, we must in-
clude the Coulomb effects. We add Coulomb-distortion

0.5
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FIG. 23. Half-off-shell functions for 'So (p-p) purely nuclear
at 2-N threshold.

FIG. 22. Spin-transfer coefficient K~ of the reaction
2 2H(N, N) H at a nucleon incident energy of EN -——10 MeV. The
solid curve is the PEST I resul t (only N-N 5 waves) for
neutron-deuteron. The dashed curve belongs to the phase-shift
equivalent Y'(E) potential. The dashed-dotted curve is the
PEST1 prediction for proton-deuteron including approximate
Coulomb corrections (Ref. 38). Experimental data are from
Sperisen et al. (Ref. 15).

FIG. 24. Configuration-space representations of the poten-
tials at zero momentum in the 'So partial wave.

contributions via the method of Haftel and Zankel and
thus arrive at the p-d prediction shown for PEST by the
dashed-dotted curve in Fig. 22. The result is in fair agree-
ment with experiment, possibly with the exception of for-
ward angles, where the method of Coulomb correction
may be less reliable. The Coulomb effects would shift the
curve belonging to the Y potential in much the same
manner as demonstrated for PEST and thus make its p-d
prediction lie aside from phenomenological data. Conse-
quently this observable, like other second-order polariza-
tions, can be useful to preclude N-N interactions with un-
realistic off-shell properties.

On the other hand small changes in the off-shell
behavior are not visible in such observables. For instance,
our PEST1 parametrization presented in Sec. III and the
six-term rank-1 interaction (here we denote it by
PEST1—6) employed by Zankel et al. ' differ such as is
evident from Fig. 23, that is at off-shell momenta p &7
fm '. Translated to configuration space it means that the
character of the intermediate-range repulsion is somewhat
different but qualitatively the same (at r (0.75 fm). Such
differences, however, have virtually no influence on the
reproduction of the N-d polarizations under considera-
tion. In fact, the E~~ results corresponding to the PEST1
and PEST1—6 interactions would practically be indistin-
guishable in Fig. 22. From this observation we can also
conclude that the deviations that the PEST interactions
show from the true Paris potential will have no influence
in few-body calculations. The quality of the separable ap-
proximations to the Paris potential can therefore be con-
sidered of sufficient reliability. As a consequence the re-
sult obtained by employing the PEST interactions in vari-
ous few-body applications furnishes a good estimate of
what the Paris potential in its original form would
predict. In this connection we would like to add a further
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result, which was just lately communicated to us. It
concerns the H bound-state energy for the PEST interac-
tions; he found it to be E= —7.30 MeV with N-N S
waves only and E=—7.35 MeV including I' waves. This
should be compared to the results (E= —7.303 MeV and
E=—7.384 MeV, respectively) by Hajduk and Sauer
obtained with the original Paris potential via a different
(configuration space) calculation. All these first results
are very promising and support our hope that the PEST
interactions will be of great use for further and more de-
tailed investigations of various few-body systems.
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