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The ability of several collective models to reproduce the low-energy spectrum of ' Er is investigated. It

is found that the interacting boson approximation, the general collective model, and the Gneuss-Greiner
model all describe the data with comparable quality, while the rotation-vibration model appears to be too
restrictive.

The low-energy spectrum of ' Er has recently been the
object of intensive discussions, ' because the geometrical
collective models ' appeared to give different results from
the interacting-boson approximation (IBA).' On the other
hand, it was shown by several authors that the IBA and the
geometrical models can be related mathematically. " The
IBA Hamiltonian can be expressed in terms of the Bohr and
Mottelson variables, " although the IBA still has the addi-
tional condition of maximal number of d bosons. For low

spins this should not play an important role as long as the
total number of s and d bosons is sufficiently large. For
high-spin states the pure s -d -boson description fails" and
other effects, such as g bosons, have to be taken into ac-
count. In the case of ' Er the number of bosons in the
IBA is 16, quite a large number, so that the low-spin states
should be reproducible with both the IBA and the geometri-
cal models with about equal quality (even in the Gneuss-
Greiner model, usually only about 30 bosons are used). In

that sense the results of Refs. 2 and 3 are surprising.
In the present work we investigated ' Er in the frame-

work of the general collective model (GCM), ' the Gneuss-
Greiner model (GGM), the rotation-vibration model
(RVM), 5 and the IBA." The more flexible geometric
models like the GCM and GGM contain a number of spe-
cialized models as limiting cases, e.g. , the five-dimensional
harmonic oscillator, the RVM, and the triaxial rotor. ' The
experimental data are taken from the impressive work of
Casten and co-workers, " giving complete information
about the low-lying spin structure. The error bars in the
B(E2) transitions are obtainable from Ref. 1. In Ref. 3 it

was shown that the IBA can reproduce the data excellently,
while specialized geometric models'" did not fare well. We
want to confront the results of different geometric models
with the IBA and with experiment, showing that there is no
practical difference between the models, although their
mathematical foundation is somewhat different and the IBA
turned out to be easier to use in some applications. Princi-
pal differences between the IBA and a geometrical model as
found in Ref. 3 seem to be caused by the choice of a
strongly restricted parametrization of the geometrical model.

For the geometric models ' the parameters were deter-
rnined by least-squares fitting, i.e., such that the weighted
sum of squares of the difference between theoretical and

experimental values was minimized. One noticeable draw-
back of this method occurs in the fitting of rotational bands:
if the band head does not occur at the right position, the fit
will stretch or shrink the band in order to reproduce the
other members of the band more closely, instead of repro-
ducing the correct level spacing. For ' 'Er the effect was
not too strong, however.

The data utilized in the fit of the RVM were the excita-
tion energies of the first and second 2+ states, the first ex-
cited 0+ state, and the 0~+ 2~+B(E2) value. For the
GGM the energy levels of the ground state band (up to
6+), 2y+ band (up to 6+), 0&+ band (up to 4+ ), and 0+,

band (up to 2+) as well as the B(E2) ratios of Table I

were used; for the GCM, the energy of the 2~ state was ad-
ded, but only the B(E2) values for the 0~+ —2~+ and
0~+ 2„+ were fitted. Note that in the geometric models
the B(E2) operator contains no additional parameters, so
that the B(E2) values had to be adjusted purely via the
Hamiltonian. The optimum fit reached in a least-squares
procedure depends, of course, on the weights assigned to
the different pieces of data (this problem is discussed in

Ref. 16), and careful judgment is necessary for selecting the
fit that appears best to represent the data. The calculations
in the GCM and GGM were done in a basis of up to 30
phonon states of the five-dimensional harmonic oscillator. "
Owing to code limitations, only five states could be calculat-
ed for each angular momentum in the GCM. The RVM
was diagonalized in a basis of 13 states, as described in Ref.
5. The several parameters used in this paper are listed in
Table II.

In Fig. 1 the experimental and theoretical spectra are plot-
ted. In spite of the slight stretching caused by the fitting
method for the GGM and GCM (as discussed above), the
overall fit quality is as good as in the IBA. There appears
an additional 4+ band (in parentheses) not observed in ex-
periment, but also obtained in the IBA (this band was omit-
ted from the figures of Ref. 3—as is mentioned in that
reference). The band head is at 1619 keV in the IBA and at
1380, 1464, and 1647 ke& in the GGM, GCM, and RVM,
respectively, so that it appears in the same energy region in
all models. The K = 03+ band is interpreted as a two-
phonon y band in these models and is quite well reproduced
in energy. Only the RVM yields too high an energy of
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TABLE I. B(E2) ratios in ' Er. Theory (Refs. 5-8), compared to experiment. RVM = rotation-
vibration model (Ref. 5); GG =Gneuss-Greiner model (Ref. 6); GCM = general collective model (Ref. 7);
IBA =interacting-boson approximation (Ref. 3); Expt. =experiment; 5 is the average deviation.
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0.54

0.068

0.026

0.016

0.029

0.0002

0.0019

0.0011

0.0009

0.01

IBA (cons. Q)
(Rer. 2)

0.54

0.076

0.026

0.017

0.035

IBA

0.66

0.06

0.027

0.025

0.043

0.055

0.0009

0.028

0.0009

0.000 06

0.0002

0.3719

0.265

0.054

0.039

0.005

0.031

0.289

0.009

0.199

0.003

0.011

0.056

0.6511

GCM

0.209

0.023

0.039

0.003

0.029

0.399

0.013

0.239

0.003

0.007

0.041

0.7771

RVM

0.322

0.072

0.033

0.010

0.034

55.941

0.021

0.004

0.002

0.000 07

0.0002

63.007

1.586 MeV, which indicates that the restriction to a har-
monic potential in y makes the y vibrations too stiff.

Table I lists some important B(E2) ratios in comparison
to experiment. Two main properties were stressed by
Warner et al. ,

3 namely, that the P y transitions dominate
over the P —g ones, and that the y —g transitions are

stronger than the P —g ones. This was seen as a confirma-
tion of the IBA model, because the geometrical models did
not appear to reproduce this transition structure. Examining
the results in Table I, we see that the geometrical models
are able to reproduce the data with about equal average
quality as the IBA. For example, the ratio of theoretical

TABLE II. Number and values of parameters. All possible additional parameters are zero and are not included in the fit.

Five parameters of IBA

Four parameters of RVM

Eight parameters of GG

(see Ref. 3)

E„„=3&=0.068 MeV
Ep= 1.217 MeV
E =0.793 MeV

Pp = 0.337

B2 = 93.52 x 10 2 MeV sec2

P3 ———0.021 28x 1042 MeV ' sec
C2= —171.98 MeV
C3= 390.27 MeV

C4 = 2167.45 MeV

C, = —5067.32 MeV

C6 = —577.64 MeV
D6= —6.775 MeV

12 parameters of GCM V2p= —41.82 MeV

V3p 1.33 MeV

V4p = 129.96 Mev

V6p = 61.06 MeV
—1.147 MeV

V5, =127.06 MeV

V22
——2.890 MeV

V32 3.33 1 MeV
V62= —5.822 MeV

V23 —8.73 1 MeV

B2 —46.19x 10 MeV sec
P3 ——0.0119x 10+4 MeV ' sec
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tion between the IBA and the geometric models established
in Refs. 9 and 10 should imply that both types of models
can describe low-spin states equally well, as long as the total
number of bosons allowed in the IBA is not too small.
Since in practice the GCM and GGM Hamiltonians are also
diagonalized in a space of finite boson number, it is easy to
test this dependence and it was found ' that except for very
strongly deformed nuclei the low-spin states did not change
appreciably for boson numbers changing from 15 to 30.

In this Rapid Communication it was shown that indeed
the general collective description of co11ective excitations
gives similar results of the IBA model, Even discrepancies
from experiment are similar, most notably the additional 4
band not observed experimentally. It is only the restriction
to quite specialized models such as the RVM, which is really
applicable only to relatively stiff rotational nuclei, that pro-
duces serious discrepancies. For ' Er this is clearly visible
in Fig. 2, where the potential energy surface in the GGM
(the GCM gives a very similar behavior) is plotted as a
function of y at equilibrium deformation. In the RUM the
potential is purely harmonic and, as indicated in the figure,
differs drastically from the softer y dependence obtained in

the GGM.
It is interesting to see that the R&M as a representation

of a collective model with strongly limited parametrization
of the potential-energy surface fails in the branching ratio

ptt
—2g+/0& —2~+, whereas all other branching ratios are in

reasonable agreement with experiment, the IBA, and more
refined collective models. Notable is the fact that the GCM
yields less accurate agreement with experiment than the
GGM model, although the GCM has the more flexible
parametrization containing the GM as a special case. This
apparent contradiction is caused by problems to fit the many

model parameters. ' Finding a set of parameters yielding
reasonable agreement with the experimental data is the
more difficult and time consuming, the more parameters are
to be determined. Practically the quality of the fits de-
creases with the number of parameters. This problem is
quite general and occurs in all models dealing with many ad-
justable parameters. Moreover, the K=2&+ band is inter-
preted in all of these models as a collective band because of
the measured strong 8(E2) transition pt+ —22+ of 0.13e'b'.

Regarding the E =02+ and 03+ bands, Bohr and Mottel-
son~ doubted their collectivity because of the weak transi-
tions of these bands to the g band of only a fraction of a
Weisskopf unit. But this does not necessarily imply that
such bands must be of microscopic origin. The interference
of the basis wave functions can result in very small collec-
tive transition probabilities also. ~e find a 8 (E2;0~+

23+ ) of 0.0435e b 0.111e b a 8 (E2'pt+ 24+ ) of
0.0323e2b, 0.035e b', for the GGM and GCM, respective-
ly, which gives the right trend. The RVM with 8(E2;pt+

23+) =0 208e. b and 8(E2) 0+ 24+) =P.PPP5e2b2 de-
viates from these more refined collective models.

However, as discussed previously, the numerical applica-
tion of the more general collective models is quite compli-
cated, and for cases such as ' 8Er and IBA provides a useful
and easy tool for interpretation of the spectra. Although
there is no direct geometric interpretation of the results, the
corresponding geometric picture can be obtained by a
translation as given in Refs. 9-11.

We hope that this work clarifies the discussion on the
IBA and geometric models by showing that in practical ap-
plications the Aexibility of the specific parametrization and
not the type of model used determines the quality of the
agreement with experiment.
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